各种接触开关的接线方法

各种接触开关的接线方法
各种接触开关的接线方法

各种接触开关的接线方法

一、概述

接近开关又叫做接近传感器或是无触点行程开关,在工业中用途广泛,是工业自动化、半自动和限位、定位、速度/转速/计数等应用中经常用到的额传感器。它的特点是在工作的时候完全无机械接触,当被检测物体靠近的时候就触发开关,输出控制信号,使用的寿命长、性能稳定、功耗低、精度高、动作响应时间短、防水防尘可在恶劣条件中工作等。

二、接近开关种类

接近开关有电感式、电容式和超声波式三大类,电感式是用来感应金属的,电容式可以感应金属和非金属的物体。按电流流通可以分为直流和交流两种,直流是10-30V,交流是90-220V。按照外形来分可以分为圆形和方形,圆形有M3,M4,M5,M6,M8,M12,M18,M30,M34,方形有小拇指大小的,也有半个手掌大小的,有好多种,它的体积大小和它的感应距离有很大关系,体积越小,距离越近。体积越大,距离越远。M3,M4,M5,M6的感应距离一般是1MM,M8为2MM,M12为4MM,M18为8MM,M30为15MM。

Waytop的接近开关有方形标准型接近开关,超小形方形接近开关,超小型圆形接近开关,远距离接近开关,本安型防爆型接近开关,耐腐蚀型接近开关,全不锈钢感应面接近开关,电容式液位接近开关,涡电流位移接近传感器,超声波位移接近传感器。waytop可以订做二倍检测距离接近开关,三倍检测距离的接近开关,以及按客户要求订做各种外形的接近开关。

三、接近开关接线方式方法

接近开关的接线有两线和三线之分。两线工作电源电压为AC和DC电源。三线按照NPN和PNP分,当然现在的产品中海油四线制的产品,具体是在三线的基础上增加常开和常闭信号端。

两线的接法为接近开关串联负载直接接电源,DC电源情况下需分红黑线接正负极,交流AC不用;三线或是四线连接的话,棕线接正极,蓝线接负极,黑线或是白线连接负载为信号端。在三线中负载的接法,在NPN中负载的一段连接接近开关的信号,另端连接电源正极,PNP反之连接电源负极和开关信号。

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

各种不同导线的连接方法及电工接线标准,非常值得收藏

各种不同导线的连接方法及电工接线标准,非常值得收藏 1、下面是第一种接法。注意:在家装中是不应有接头的,特别是在线管内更不能有接头,如果有接头也应该是在电线盒内。通常的电线接头都是这样的接法,才能保证电线接头不发生打火、短路,与接触不良的现象。 下面是第二种接法(防火胶布隔离法),多用于吊项内,或比较高能的工程中,主线不能能弄断,符线绕主线6--8周,

吊顶内的射灯,一路上要有很多灯就是这样接法,用防火胶布缠在里面,它的作用就是防止电打火烧坏东西,这是在吊顶内很重要。外面再用绝缘胶布缠绕。

下面是第三种接法,就是压线冒接线法,这种方法是最规范和最实用的,但是它需要专用工具来做,压线冒的压线钳来压线,把压电线用的专用钳子,套在压线冒上,用力压紧就行了。另外还要说一下,压线冒的大小根据所压线经的大小与根数有关我们常用的是T4型的,就是直径毫米的,能压四根四平方毫米的电线。

各种不同导线的连接方法1.剖削导线绝缘层

可用剥线钳或钢丝钳剥削导线的绝缘层,也可用电工刀剖削塑料硬线的绝缘层。 用电工刀剖削塑料硬线绝缘层时,电工刀刀口在需要剖削的导线上与导线成450夹角,斜切入绝缘层,然后以250度角倾斜推削。最后将剖开的绝缘层折叠,齐根剖削。剖削绝缘时不要削伤线芯。 2.单股铜芯导线的直线连接和T形分支连接 (1) 单股铜芯导线的直线连接先将两线头剖削出一定长度的线芯,清除线芯表面氧化层,将两线芯作X形交叉,并相互绞绕2~3圈,再扳直线头。将扳直的两线头向两边各紧密绕6圈,切除余下线头并钳平线头末端。 (2) 单股铜芯导线的T 形分支连接将剖削好的线芯与干线线芯十字相交,支路线芯根部留出约3~5mm,然后顺时针方向在干线线芯上密绕6~8圈,用钢丝钳切除余下线芯,钳平线芯末端。

电感式接近开关原理

电感式接近开关原理 1.电感式接近开关工作原理 电感式接近开关由三大部分组成:振荡器、开关电路及放大输出电路。振荡器产生一个交变磁场。当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的 2.霍尔接近开关工作原理 当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U,其表达式为U=K·I·B/d其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。 由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。输出端一般采用晶体管输出,和其他传感器类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。霍尔开关可应用于接近传感器、压力传感器、里程表等,作为一种新型的电器配件。 3.线性接近传感器的原理 线性接近传感器是一种属于金属感应的线性器件,接通电源后,在传感器的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 该接近传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。线性传感器主要应用在自动化装备生产线对模拟量的智能控制。 4. 电感式接近开关工作原理 电感式接近开关由三大部分组成:振荡器、开关电路及放大输出电路。振荡器产生一个交变磁场。当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的。 附录1:部分常用材料的值 1、概述 接近传感器可以在不与目标物实际接触的情况下检测靠近传感器的金属目标物。根据操作原理,接近传感器大致可以分为以下三类:利用电磁感应的高频振荡型,使用磁铁的磁力型和利用电容变化的电容型。 特性: ●非接触检测,避免了对传感器自身和目标物的损坏。

电工接线方法和标准

电工接线方法和标准接线方法

下面是第三种接法,就是压线冒接线法,这种方法是最规范和最实用的,但是它需要专用工具来做,压线冒的压线钳来压线,把压电线用的专用钳子,套在压线冒上,用力压紧就行了。另外还要说一下,压线冒的大小根据所压线经的大小与根数有关我们常用的是T4型的,就是直径毫米的,能压四根四平方毫米的电线。

过很多电线的事故发生,有一部分是电线超负荷的使用造成的,另一部分是电线的接头松动造成的。电线线盒内的接头不付合规范,电线不受负载情况下,没有一点事,只要一推上电闸就会跳闸,并且电线的接线盒内就会"啪啪"几声的冒火,后再出现跳闸声,这种现象全部是由于,电线的接头不规范,电压在受负载的情况下,接触不良造成的。 导线的几种连接方法 1.剖削导线绝缘层可用剥线钳或钢丝钳剥削导线的绝缘层,也可用电工刀剖削塑料硬线的绝缘层,如图3—1所示。 用电工刀剖削塑料硬线绝缘层时,电工刀刀口在需要剖削的导线上与导线成450夹角,如图3—1b)所示,斜切入绝缘层,然后以250度角倾斜推削,如图3—1c)所示。最后将剖开的绝缘层折叠,齐根剖削如图3—1d)所示。剖削绝缘时不要削伤线芯。

2.单股铜芯导线的直线连接和T形分支连接 (1) 单股铜芯导线的直线连接先将两线头剖削出一定长度的线芯, 清除线芯表面氧化层,将两线芯作X形交叉,并相互绞绕2~3圈,再扳直线头,如3—2b)示。将扳直的两线头向两边各紧密绕6圈,切除余下线头并钳平线头末端。 (2) 单股铜芯导线的T 形分支连接将剖削好的线芯与干线线芯十字相交,支路线芯根部留出约3~5mm,然后顺时针方向在干线线芯上密绕6~8圈,用钢丝钳切除余下线芯,钳平线芯末端,如图3—3所示。 3.7股铜芯导线的直线和T形分支连接 (1) 7股铜芯导线的直线连接首先将两线线端剖削出约150mm并将靠近绝缘层约1/3段线芯绞紧,散开拉直线芯。清洁线芯表面氧化层,然后再将线芯整理成伞状,把两伞状线芯隔根对叉,所示。理平线芯,把7根线芯分成2、2、 3三组,把第一组2根线芯扳成如图3—4c)所示状态,顺时针方向紧密缠绕2圈后扳平余下线芯,再把第二组的2根线芯扳垂直,所示。用第二组线芯压住第一组余下的线芯紧密缠绕2圈扳平余下线芯,用第三组的3根线芯压住余压的线芯,所示,紧密缠绕3圈,切除余下的线芯,钳平线端,用同样的方法完成另一边的缠绕,完成7股导线的直线连接。 (2) 7股铜芯导线的T形分支连接剖削干线和支线的绝缘层,绞紧支线靠近绝缘层1/8处的线芯,散开支线线芯,拉直并清洁表面,所示。把支线线芯分成4根和3根两组排齐,将4根组插入干线线芯中间,所示。把留在外面的3根组线芯,在干线线芯上顺时针方向紧密缠绕4~5圈,切除余下线芯钳平线端。再用4根组线芯在干线线芯的另一侧顺时针方向紧密缠绕3~4圈,切除余下线芯,钳平线端,所示完成T形分支连接。 4.19股铜芯导线的连接其方法与7股导线相似。因其线芯股数较多,在直线连接时,可钳去线芯中间几根。 导线连接好以后,为增加其机械强度,改善导电性能,还应进行锡焊处理。铜芯导线连接处锡焊处理的方法是:先将焊锡放在化锡锅内高温熔化,将表面处理干净的导线接头置于锡锅上,用勺盛上熔化的锡从接头上面浇下。刚开始时,由于接头处温度低,接头不易沾锡,继续浇锡使接头温度升高、沾锡、直到接头处全部焊牢为止。最后清除表面焊渣,使接头表面光滑。 5.铝芯导线的连接因铝线容易氧化,且氧化膜电阻率高,所以铝芯导线不宜采用铜 螺栓压接法接线

接近开关工作原理,及接线图

接近开关工作原理,及接线图 发布者:david 发布时间:2011-4-20 13:30:02 阅读:607次 接近开关工作原理 1、概述 接近传感器可以在不与目标物实际接触的情况下检测靠近传感器的金属目标物。根据操作原理,接近传感器大致可以分为以下三类:利用电磁感应的高频振荡型,使用磁铁的磁力型和利用电容变化的电容型。 特点: ●非接触检测,避免了对传感器自身和目标物的损坏。 ●无触点输出,操作寿命长。 ●即使在有水或油喷溅的苛刻环境中也能稳定检测。 ●反应速度快。 ●小型感测头,安装灵活。 2、类型 (1)按配置来分

(2)、按检测方法分 ●通用型:主要检测黑色金属(铁)。 ●所有金属型:在相同的检测距离内检测任何金属。 ●有色金属型:主要检测铝一类的有色金属。 3、高频振荡型接近传感器的工作原理 电感式接近传感器由高频振荡、检波、放大、触发及输出电路等组成。振荡器在传感器检测面产生一个交变电磁场,当金属物体接近传感器检测面时,金属中产生的涡流吸收了振荡器的能量,使振荡减弱以至停振。振荡器的振荡及停振这二种状态,转换为电信号通过整形放大转换成二进制的开关信号,经功率放大后输出。下面为详细介绍: (1)通用型接近传感器的工作原理

振荡电路中的线圈L产生一个高频磁场。当目标物接近磁场时,由于电磁感应在目标物中产生一个感应电流(涡电流)。随着目标物接近传感器,感应电流增强,引起振荡电路中的负载加大。然后,振荡减弱直至停止。传感器利用振幅检测电路检测到振荡状态的变化,并输出检测信号。

振幅变化的程度随目标物金属种类的不同而不同,因此检测距离也随目标物金属的种类不同而不同。 (2)所有金属型传感器的工作原理 所有金属型传感器基本上属于高频振荡型。和普通型一样,它也有一个振荡电路,电路中因感应电流在目标物内流动引起的能量损失影响到振荡频率。目标物接近传感器时,不论目标物金属种类如何,振荡频率都会提高。传感器检测到这个变化并输出检测信号。 (3)有色金属型传感器工作原理

接近开关NPN和PNP区别(初学必读!)

接近开关NPN和PNP区别(初学必读!)在市场上不同类型的接近开关当中,除二线制开关以外,无论是在工程设计时选型还是使用安装时都需要考虑传感器与系统(PLC)的输出连接方式。大多数的接近开关输出回路无论是NPN型还是PNP型都是属集电极开路输出信号形式(AC型除外),且都具有最基本的3条信号线,其分别为(VCC;GND;OUT),也有4线制的OUT(NO+NC)。 一、NPN型、PNP型输出线定义要素 首先我们对3条信号线定义或称呼进行说明: 1.VCC:即为电源,又称为+V;(俗称电源正极,接红色或褐色线)。 2.GND:即为接地线,又称为0V;(俗称电源负极,接蓝色线)。 3.OUT:即为信号输出线,又称为负载;(接黑色(或白色)线)。 接着单纯的说明NPN型、PNP型代表的意思: NPN型:可简称N型,N表示信号端为负电压输出;部开关连接于信号端 与负极。 PNP型:可简称P型,P表示信号端为正电压输出;部开关连接于信号端与正极。

同时两种类型都有NO(常开)型或NC(常闭)型不同的输出常态,在选型时单 纯的选择NPN型或PNP型输出均是不全面的描述。 从 信 号 端 而 言 NP N型或PNP型严格来说应为如下情况: 但是在实际应用中往往不仅仅简单了解信号端输出类型就能知道自己所需 要的接近开关、光电开关、传感器之类的接线方法是否正确,还需要了解对具体应用的输入输出信号和电源。多凯科技作为专业的传感器制造商,在多年与客户的接触中总结出,在实践中有直接连接中间继电器或者连接单片机使用的,也有连接PLC使用的,接入方式不同,对应的信号线接法也就不同,整理应用如下。

两线接近开关的接线方式

两线接近开关的接线方式 接近开关又叫接近传感器,在看很多领域当中都有一定的应用。接近传感器具有稳定性高、寿命长、功耗小、动作响应频率高、防水防尘等优点。接近开关在接线的时候接线的方法是比较复杂的,用户必须要掌握一定的接线知识这样才能正确并且快捷的安装完成接近开关。那么接近开关正确的接线方法是什么呢?今天电工学习网就来为大家具体介绍一下吧。 (1)接近开关有两线制和三线制之区别,两线制接近开关工作电压分为AC(交流)和DC(直流)电源,三线制接近开关又分为NPN

型和PNP型,它们的接线方式是不同的。多凯公司还有生产四线制产品,四线制是在三线基础上实现了常开(NO)+常闭(NC)双信号端,为客户减少库存和成本。 (2)两线制接近开关的接线方式比较简单,接近开关与负载串联后接到电源即可,DC电源产品需要区分红(棕)线接电源正端、蓝(黑)线接电源0V(负)端,AC电源产品则不需要。 (3)三线制或四线制接近开关的接线:棕色线(BN)接电源正(+)端;蓝线线(BU)接电源0V(负)端;黑色线(BK)或者白色线(WH)为信号端,应连接负载。 (4)三线制或四线制负载接线是这样的:除负载连接接近开关信号一端,对于NPN型接近开关,负载的另一端应接到电源正(+)端;对于PNP型接近开关,负载的另一端则应连接到电源0V(负)端。 (5)接近开关的负载可以是信号灯、小型继电器线圈、可编程控制器plc的数字量输入模块。 (6)用于可编程控制器PLC需要特别注意接到PLC数字输入模块的三线制或四线制接近开关的型式选择。PLC数字信号输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流从输入模块流入(欧洲模式),此时,一定要选用PNP 型接近开关。千万不能选错了哟! (7)两线制接近开关受工作条件的限制,导通时开关本身产生

信号处理电子电路图全集

信号处理电子电路图全集 一.波形发生器电路图 交流驱动电路实现的基本要求是要在选通像素点两端施加交变脉冲信号,而在非选通端加零偏压或负偏压。为了增加电路应用的灵活性,并且为研究OLED的驱动信号变化对于其性能的影响提供方便,要求交流驱动电路的相位和占空比可调。为此,本文设计了一个可以灵活控制的波形信号发生器,其结构为图1所示的一个由双D型触发器构成的振荡器。该振荡器的起振、停止可以控制,输出波形的相位和占空比也可以调节,其工作波形如图2所示。 二.红外接收头的构造 红外接收电路通常由红外接收二极管与放大电路组成,放大电路通常又由一个集成块及若干电阻电容等元件组成,并且需要封装在一个金属屏蔽盒里,因而电路比较复杂,体积却很小,还不及一个7805体积大! SFH506-38与RPM-638是一种特殊的红外接收电路,它将红外接收管与放大电路集成在一体,体积小(大小与一只中功率三极管相当),密封性好,灵敏度高,并且价格低廉,市场售价只有几元钱。它仅有三条管脚,分别是电源正极、电源负极以及信号输出端,其工作电压在5V左右.只要给它接上电源即是一个完整的红外接收放大器,使用十分方便。 它的主要功能包括放大,选频,解调几大部分,要求输入信号需是已经被调制的信号。经过它的接收放大和解调会在输出端直接输出原始的信号。从而使电路达到最简化!灵敏度和抗干扰性都非常好,可以说是一个接收红外信号的理想装置。 · [图文] T形R-2R电阻网络D/A转换电路

· [图文] KD9561组成的开关式警音发生器电路 · [图文] 石英晶体矩形波振荡器电路 · [图文] 方波振荡器电路 · [图文] 8031与DAC0832双缓冲方式接口电路 · [组图] 矩形波电压发生器 · [组图] 用DAC0832产生锯齿波电路 · [图文] 功率变换电路 · [图文] 数字温湿度传感器SHT11与CC2430应用接口电路 · [图文] 调制解调器与电脑接口电路 · [图文] 数字信号的纠错原因及解决方法 · [组图] 变压器电桥原理图 · [图文] 利用运算放大器式电路虚地点减小电缆电容原理图 · [组图] 差动脉宽(脉冲宽度)调制电路 · [图文] 通断温度控制电路--On-Off Temperature Control · [组图] Phorism with 12V · [组图] 击落模型定位器电路 (Downed Model Locator II) · [组图] 红外线开关电路-Infra Red Switch · [组图] 电池组接收器的放电电路--Discharger for Receiver Battery Packs · [组图] 多通道火箭发射器 -Multi Rocket Launcher · [组图] 阻抗变换器电路 · [图文] 步进电机各相绕组驱动电路 · [图文] 速度判别电路 · [图文] 一种实用的步进电机驱动电路 · [图文] 4线步进电机分列分列电路原理图 · [组图] 击落模型定位器电路 (Downed Model Locator) · [图文] CW431CS比较器应用线路 · [图文] 智能天线技术的应用 · 天线的基本概念及制作 · [组图] 红外接收头的构造 · [图文] 手机信号指示器电路原理图 · [组图] 二阶高通分频器单元电路 · [组图] 二阶分频器低通单元电路 · [组图] 分立元件无稳态多谐振荡电路 · [图文] 用Max038制作的函数波形发生器 · [图文] 多波调频信号产生器电路 · [组图] 方波和三角波发生器电路 · [组图] RC桥式正弦振荡电路 · [图文] AD8228集成芯片构成的阻抗匹配电路 · [图文] 分立元件组成的阻抗匹配电路 · [图文] 采用间接电流反馈架构的IA · [图文] 使用三运放搭建输入缓冲级和输出级电路

接近开关原理及接线图

电容/电感/霍尔式接近开关的工作原理 1、电感式接近开关工作原理 电感式接近开关属于一种有开关量输出的位置传感器,它由LC高频振荡器和放大处理电路组成,利用金属物体在接近这个能产生电磁场的振荡感应头时,使物体内部产生涡流。这个涡流反作用于接近开关,使接近开关振荡能力衰减,内部电路的参数发生变化,由此识别出有无金属物体接近,进而控制开关的通或断。这种接近开关所能检测的物体必须是金属物体。工作流程方框图及接线图如下所示:

2、电容式接近开关工作原理 电容式接近开关亦属于一种具有开关量输出的位置传感器,它的测量头通常是构成电容器的一个极板,而另一个极板是物体的本身,当物体移向接近开关时,物体和接近开关的介电常数发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通和关断。这种接近开关的检测物体,并不限于金属导体,也可以是绝缘的液体或粉状物体,在检测较低介电常数ε的物体时,可以顺时针调节多圈电位器(位于开关后部)来增加感应灵敏度,一般调节电位器使电容式的接近开关在0.7-0.8Sn的位置动作。工作流程方框图及接线图如下所示:

3、霍尔式接近开关工作原理 当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U, 其表达式为U=K·I·B/d其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。 由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。我门销售的霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。 霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。输出端一般采用晶体管输出,和接近开关类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。 霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。霍尔开关可应用于接近开关,压力开关,里程表等,作为一种新型的电器配件。 霍尔开关的功能类似干簧管磁控开关,但是比它寿命长,响应快无磨损,而且安装时要注意磁铁的极性,磁铁极性装反无法工作。 内部原理图及输入/输出的转移特性和接线图如下所示:

三极管开关电路设计详细过程

揭秘:三极管开关电路设计详细过程 电源网首页| 分类:功率开关| 2011-03-10 09:15:39 | 评论(0) 摘要:三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电... 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。 输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。

同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕ 因此,基极电流最少应为: 上式表出了IC和IB之间的基本关系,式中的β值代表三极管的直流电流增益,对某些三极管而言,其交流β值和直流β值之间,有着甚大的差异。欲使开关闭合,则其V in值必须够高,以送出超过或等于(式1) 式所要求的最低基极电流值。由于基极回路只是一个电阻和基射极接面的串联电路,故Vin可由下式来求解﹕

三线接近开关接线方法

接近开关接线图|选型|厂家|接线图|NPN|PNP|电气符号|型号|品牌|24v 接近开关实物接线图|二线接近 感应式传感器三线接近开关接线方法 40 mm 齐平安装 NAMUR sensors must be operated with approved switch amplifiers. Please find suitable devices below: 参数表节选:的技术参数三线接近开关接线 方法 一般特性 开关功能 常闭 (NC) 输出类型 NAMUR 额定工作距离 40 mm 安装 齐平 可靠动作距离 0 ... 32 mm 实际动作距离 36 ... 44 mm 类型 40 mm

接近开关接线图|选型|厂家|接线图|NPN|PNP|电气符号|型号|品牌|24v 接近开关实物接线图|二线接近 衰减因素 r 铝 0,35 衰减因素 r 铜 0,35 衰减因素 r 304 0,8 输出类型 2 线 额定值 安装条件 F 100 mm 额定电压 8,2 V (R i 约 1 kΩ) 开关频率 0 ... 80 Hz 迟滞 0 ... 5 类型 3 %

接近开关接线图|选型|厂家|接线图|NPN|PNP|电气符号|型号|品牌|24v 接近开关实物接线图|二线接近 反极性保护 反极性保护 短路保护 是 电流消耗 未检测到测量板 ≥ 3 mA 检测到测量板 ≤ 1 mA 开关状态指示 黄色 LED 功能安全性参数 平均失效时间(天) 2360 a 使用寿命(...月...天) 20 a 诊断范围 0 % 与标准和规范体系的一致性

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充 电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电

每个电工都应该知道的接线方法

每个电工都应该知道的接线方法 电工接线是不能马虎的,能不能做一名优秀的电工,除了深厚的理论基础外,更是从精工细活中体现出来的。这种精工细活不仅需要有标准和规范的支撑,也要有长期坚持不断的耐性练习。 其实接线有很多种,为什么把这些接线方法叫做规范接线呢?因为我们最常见的非专业接线方式(但常见的不一定就是正确的)很容易出现毛刺、棱角、虚接,导致运行过程中出现打火、局部过热、接触不良甚至短路的故障现象,是存在很大安全风险的。 电线接头的处理方法 方法一:

通常的电线接头都是这样的接法,才能保证电线接头不发生打火、短路,与接触不良的现象。这是施工规范,是每个电工的应该的做到的。 方法二:

分支线路就是这种接法,主线路不能截断,附电线围绕主线缠绕6--8圈。当电线出现打火、短路、接触不良的现象很严重时,也能够很简单的处理,电线打火与短路是因为没有正确的接线头造成的,接线头松动后,高负荷电流通过时就会产生电离子,电离子相互排斥样子很象电焊的焊花,同时温度也升高起来了,而且很快,如果能粘上就通电,通不了电就形成了短路。 接线头的处理方法:

现在接线头如果讲究的话,电线应该用防火胶布缠在里面,它的作用就是防止电打火烧坏东西,这是在吊顶内很重要,特别是现在很多吊顶材料用了木方做龙骨,更需要这样做。 电线末端的处理方法

每一根电线的末端都要做这样的处理,这样有效的避免触电的危险,也是从细微处看工人的做工是否专业 接线盒是引发故障的原因之一

电线的打火,短路,接触不良,等等的故障不止是在接头上,还有一处是在接线盒内,有很多的现象是新房子水电都没有问题,装修结束后问题就现来了。再说一下电线盒内线头接法,看着乱其实是有规律的,红的是火线,篮的是零线,花的是地线,套线帽是一次性,有的工人打开后把线接好用胶布简单的处理一下就完事了,这是不正确的。 接线盒内接线头的处理方法

接近开关与PLC的接线方法

摘要:本文主要分析了数字量输入时PLC内部电路常见的几种形式,SINK- 拉电流输入,SOURCE- 灌电流输入,并结合传感器常见几种输出形式和经常遇到的NPN和PNP输出,以及单端与双端接口,给出了和不同的PLC电路形式连 接时的接线方法。 关键词: PLC SINK- 拉电流输入 NPN输出 SOURCE- 灌电流输入 PNP输出单端双端接口 一:引言 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二:输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释 SINK漏型 SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。

接近开关怎么接线-接近开关实物接线图

接近开关怎么接线-接近开关实物接线图

————————————————————————————————作者:————————————————————————————————日期:

接近开关怎么接线?接近开关实物接线图 接近开关是一种无需与运动部件进行机械直接接触而可以操作的位置开关,当物体接近开关的感应面到动作距离时,不需要机械接触及施加任何压力即可使开关动作,从而驱动直流电器或给计算机(plc)装置提供控制指令。接近开关是种开关型传感器(即无触点开关),它既有行程开关、微动开关的特性,同时具有传感性能,且动作可靠,性能稳定,频率响应快,应用寿命长,抗干扰能力强等、并具有防水、防震、耐腐蚀等特点。产品有电感式、电容式、霍尔式、交、直流型。接近开关又称无触点接近开关,是理想的电子开关量传感器。 1)接近开关有两线制和三线制之区别,三线制接近开关又分为NPN型和PNP型,它们的接线是不同的。请见下图所示:

2)两线制接近开关的接线比较简单,接近开关与负载串联后接到电源即可。 3)三线制接近开关的接线:红(棕)线接电源正端;蓝线接电源0V端;黄(黑)线为信号,应接负载。而负载的另一端是这样接的:对于NPN 型接近开关,应接到电源正端;对于PNP型接近开关,则应接到电源0V端。 4)接近开关的负载可以是信号灯、继电器线圈或可编程控制器PLC的数字量输入模块。

5)需要特别注意接到PLC数字输入模块的三线制接近开关的型式选择。PLC数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入(欧洲模式),此时,一定要选用PNP型接近开关。千万不要选错了。 6)两线制接近开关受工作条件的限制,导通时开关本身产生一定压降,截止时又有一定的剩余电流流过,选用时应予考虑。三线制接近开关虽多了一根线,但不受剩余电流之类不利因素的困扰,工作更为可靠。

两线接近开关的接线方式

两线接近开关的接线方式

————————————————————————————————作者:————————————————————————————————日期:

两线接近开关的接线方式 接近开关又叫接近传感器,在看很多领域当中都有一定的应用。接近传感器具有稳定性高、寿命长、功耗小、动作响应频率高、防水防尘等优点。接近开关在接线的时候接线的方法是比较复杂的,用户必须要掌握一定的接线知识这样才能正确并且快捷的安装完成接近开关。那么接近开关正确的接线方法是什么呢?今天电工学习网就来为大家具体介绍一下吧。 (1)接近开关有两线制和三线制之区别,两线制接近开关工作电压分为AC(交流)和DC(直流)电源,三线制接近开关又分为NPN

型和PNP型,它们的接线方式是不同的。多凯公司还有生产四线制产品,四线制是在三线基础上实现了常开(NO)+常闭(NC)双信号端,为客户减少库存和成本。 (2)两线制接近开关的接线方式比较简单,接近开关与负载串联后接到电源即可,DC电源产品需要区分红(棕)线接电源正端、蓝(黑)线接电源0V(负)端,AC电源产品则不需要。 (3)三线制或四线制接近开关的接线:棕色线(BN)接电源正(+)端;蓝线线(BU)接电源0V(负)端;黑色线(BK)或者白色线(WH)为信号端,应连接负载。 (4)三线制或四线制负载接线是这样的:除负载连接接近开关信号一端,对于NPN型接近开关,负载的另一端应接到电源正(+)端;对于PNP型接近开关,负载的另一端则应连接到电源0V(负)端。 (5)接近开关的负载可以是信号灯、小型继电器线圈、可编程控制器plc的数字量输入模块。 (6)用于可编程控制器PLC需要特别注意接到PLC数字输入模块的三线制或四线制接近开关的型式选择。PLC数字信号输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流从输入模块流入(欧洲模式),此时,一定要选用PNP 型接近开关。千万不能选错了哟! (7)两线制接近开关受工作条件的限制,导通时开关本身产生

NE555 双键触摸电子开关电路图

NE555 双键触摸电子开关电路图元件: R1,R2=3.3M 1/4W 5% D1=1N4148 二极管 RL1=12V 继电器 R3=10K 1/4W 5% 电阻 D2= 发光二极管 R4=1K 1/4W 5% Q1=BC547 三极管 C1=10nF 63V MKT 5% 电容 IC1=555 集成电路 分立元件的五路跑马灯控制电路

NE555和CD4017组成的流水灯控制电路 双键触摸式照明灯 本电路图使用两个触摸电极片,分别代替在实际生活中的开和关控制。 一、电路工作原理双触摸式照明开关电路如图1所示。 VS与VD7构成了开关回路。当人触摸到M1(开)电极片时,人体通过R4、VD5整流后给IC NE555集成电路的2脚一个低电平信号(此时IC NE555集成电路接为RS触发器),输出脚3输出高电平,通过R3后触发VS的门极,VS 导通,电灯点亮。 当人触摸到M2(关)电极片时,人体通过R5、VD6整流后给IC NE555集成电

路的6脚一个低电平信号,输出脚3输出低电平,R1提供的正向触发电压被R3 通过集成电路的3脚对地短路,VS失去触发电压,当交流过零时即关断,电灯 熄灭。 二、元器件选择 IC选用NE 555型集成电路;VS选用2N6565型普通塑封小型单向晶闸管;VD1~VD4选 图1 双键触摸式照明灯电路图 用IN4007硅整流二极管;VD7选用6.2V、1W的2CW105硅稳压二极管;VD6、VD7选用IN4148型硅开关二极管;R1~R5均选用RTX—1/8W型碳膜电阻器;C1选用CD11—16V型电解电容;C2选用C'I'I型瓷介电容器。 三、制作与调试方法本电路结构简单、使用方便,只要焊接正确,选用元件正确都能正常工作。由于本电路负载的能力受到稳压管VD7的限制,所以负载的功率不宜大于60W。

接近开关如何令伺服电机精确定位

接近开关如何令伺服电机精确定位 发布: 2009-5-07 21:26 | 作者: admin | 查看: 57次 动作示意图如上,PLC控制步进电机或是伺服电机带动执行机构向右运行,PLC检测到接近开关信号后,要求精确停在A点。 实现此控制的方法是,PLC检测到接近开关信号后,给脉冲指令赋于新的脉冲值,令步进电机或是伺服电机带动执行机构行走到A点停止。 PLC的扫描周期决定了PLC检测输入信号存在一定的滞后性,此滞后性会造成第一次在B点接收到接近开关信号,而另一次可能是在C点接收到开关信号。两次接收到开关信号的位置不同,而新的脉冲数却相同,必然造成两次停止点不相同,即重复定位精度不理想。 由此,想到了利用输入中断方式,即检测接近开关信号的上升沿执行中断程序,在中断程序中改变脉冲指令的脉冲数。 这种用输入中断实现重复精确定位是现在常用的方法,但是目前很多PLC的脉冲指令都不支持在运行中改变脉冲数,即改变脉冲数只能是在下一次驱动时才执行新的脉冲数,而支持在运行中改变脉冲数的指令运用起来又都不太理想。这就要求在检测到接近开关信号时,必须先停止脉冲指令,赋于新的脉冲数后再重新驱动此脉冲指令。如下图:

上图是以三菱FX的相对脉冲DRVI为例,当接近开关(X0)上升沿时,中断程序复位脉冲指令DRVI 的驱动M0,并将脉冲数重新赋值为K1000,再利用程序将M0重新置位(图中省略置位M0程序)。这样看似可以,但是上段程序还是没有真正领会PLC扫描周期概念。 我们假设程序扫描DRVI指令后才收到中断信号,中断程序复位M0后,程序返回执行FEND指令,然后要经过通讯处理阶段、输出扫描阶段,输入扫描阶段才能再次执行到第0步,此时PLC才知道M0已经断开,从而停止脉冲指令DRVI的执行。这又令DRVI指令发出了一定量的脉冲,如果频率设的很大,这些脉冲造成的误差也是很可观。 看来此种方法也不理想,而下面以松下FPX的PLC为例的方法重复定位精度就很理想了. TAG: 电机开关伺服

接近开关如何接线(1)

一、接近开关原理: 简单的讲就是信号输出分PNP型(24V输出)和NPN型(0V输出) 在讨论这个问题时,有一个问题先弄明白就是这里所说的低电平即0V,并不是指如果不给电的状态例如一个接近开关的黑线或蓝线被剪断时黑/蓝线一端就是0V;0V也是有电压的,而剪断的话就没有了电压,所以没电和0V是两个概念,不要混淆。其次,负极不一定就是0V,要看负极给定的引入电压是多少。 首先说NPN:NPN接通时是低电平输出,即接通时黑色线输出低电平(通常为0V),下图即为NPN型接近开关原理图,中间电阻代表负载,此负载可以是金属感应物或继电器或PLC等,中间三个圆圈代表开关引出的三根线,其中棕线要接正,蓝线要接负,黑色为信号线。此为常开开关,当开关动作关闭时黑色和蓝色两线接通如下图2,这时黑色线输出电压与蓝线电压相同,自然就是负极给定电压(通常为0V)。 图1:NPN型接近开关电路图 图2:NPN型接近开关工作状态 PNP:PNP接通时为高电平输出,即接通时黑线输出高电平(通常为24V),下图为PNP型三线开关原理图,电阻代表负载,当开关工作时,图1开关闭合,即黑线和棕线接通如图2,此时棕线与黑线相当于一条线,电压自然就是正极电压(通常为24V)。 图1:PNP接近开关原理图 图2:PNP常开型接近开关工作状态

1)接近开关有两线制和三线制之区别,三线制接近开关又分为NPN型和PNP型,它们的接线是不同的。请见下图所示: 2)两线制接近开关的接线比较简单,接近开关与负载串联后接到电源即可。 3)三线制接近开关的接线:红(棕)线接电源正端;蓝线接电源0V端;黄(黑)线为信号,应接负载。而负载的另一端是这样接的:对于NPN型接近开关,应接到电源正端;对于PNP型接近开关,则应接到电源0V端。 4)接近开关的负载可以是信号灯、继电器线圈或可编程控制器PLC的数字量输入模块。 5)需要特别注意接到PLC数字输入模块的三线制接近开关的型式选择。PLC数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入(欧洲模式),此时,一定要选用PNP型接近开关。千万不要选错了。 6)两线制接近开关受工作条件的限制,导通时开关本身产生一定压降,截止时又有一定的剩余电流流过,选用时应予考虑。三线制接近开关虽多了一根线,但不受剩余电流之类不利因素的困扰,工作更为可靠。 7)有的厂商将接近开关的“常开”和“常闭”信号同时引出,或增加其它功能,此种情况,请按产品说明书具体接线。 1)如同我在3楼第5)条中所说的,接入PLC的三线制接近开关是用NPN型还是用PNP

相关文档
最新文档