概率论学习心得总结

概率论学习心得总结
概率论学习心得总结

竭诚为您提供优质文档/双击可除

概率论学习心得总结

篇一:《概率论与数理统计》课程学习心得

《概率论与数理统计》课程学习心得

1004012033陈孝婕10计本3班

有人说:“数学来源于生活,应用于生活。数学是有信息的,信息是可以提取的,而信息又是为人们服务的。”那么概率肯定是其中最为重要的一部分。巴特勒主教说,对我们未来说,可能性就是我们生活最好的指南,而概率即可能。

概率论与数理统计是现代数学的一个重要分支。近二十年来,随着计算机的发展以及各种统计软件的开发,概率统计方法在金融、保险、生物、医学、经济、运筹管理和工程技术等领域得到了广泛应用。主要包括:极限理论、随机过程论、数理统计学、概率论方法应用、应用统计学等。极限理论包括强极限理论及弱极限理论;随机过程论包括马氏过程论、鞅论、随机微积分、平稳过程等有关理论。概率论方法应用是一个涉及面十分广泛的领域,包括随机力学、统计物理学、保险学、随机网络、排队论、可靠性理论、随机信

号处理等有关方面。应用统计学方法的产生主要来源于实质性学科的研究活动中,例如,最小二乘法与正态分布理论源于天文观察误差分析,相关与回归分析源于生物学研究,主成分分析与因子分析源于教育学与心理学的研究,抽样调查方法源于政府统计调查资料的搜集等等。本研究方向在学习概率论、统计学、随机过程论等基本理论的基础上,致力于概率统计理论和方法同其它学科交叉领域的研究,以及统计学同计算机科学相结合而产生的数据挖掘的研究。此外,金融数学也是本专业的一个主要研究方向。它主要是通过数学建模,理论分析、推导,数值计算以及计算机模拟等理论分析、统计分析和模拟分析,以求研究和分析所涉及的理论问题和实际问题。

生活中会遇到这样的事例:有四张彩票供三个人抽取,其中只有一张彩票有奖。第一个人去抽,他的中奖概率是25%,结果没抽到。第二个人看了,心里有些踏实了,他中奖的概率是33%,结果他也没抽到。第三个人心里此时乐开了花,其他的人都失败了,觉得自己很幸运,中奖的机率高达50%,可结果他同样没中奖。由此看来,概率的大小只是在效果上有所不同,很大的概率给人的安慰感更为强烈。但在实质上却没有区别,每个人中奖的概率都是50%,即中奖与不中奖。

同样的道理,对于个人而言,在生活中要成功做好一件

事的概率是没有大小之分的,只有成功或失败之分。但这概率的大小却很能影响人做事的心态。

如果说概率有大小之分,那应该不是针对个体而言,而是从一个群体出发,因为不同的人有不同的信念,有不同的做事方法。把地球给撬起来,这在大多数人眼里是绝对不可能的。但在牛人亚里士多德眼里,他觉得成功做这事的概率那是100%——绝对没问题,只要你给他一个支点和足够长的杠杆。就像前面提到的抽奖一样,25%、33%和50%这些概率只不过是外界针对这个群体给出的。25%的机率同样能中奖,50%的机率也会不中奖,对于抽奖者个人而言,没有概率大小之分,只有中与不中之分。别人说做这件事相当容易,切莫掉以轻心,也许你做这件事会相当困难。大家都说做这件事相当困难,切莫心灰意冷,也许你做这件事能如鱼得水。成功与否,不在概率大小,而在于自己能否清楚地认识自己:容易的事自己是否具有做这件事必备的素质,困难的事自己是否有克服这个困难的潜质。

人们常说:“希望越大,失望越大”,此话并不无道理。希望越大,成功的概率就越大,由此而麻痹了人的心态——以为如此大的概率也是自己能够成功的筹码,这样在思想和行为上就会有所懈怠。自以为十拿九稳的事,到头来却把事情弄砸了。这并不奇怪,因为所谓的“概率大”已逐渐由“希望”转移到“失望”上面了。一说到把这件事做好的概率微

乎其微,做事的人难免心灰意冷,因为觉得机会渺茫。因此而丧失了克服困难的意志,觉得事情做不好那是理所当然。

学好《概率论与数理统计》这门课程,其实有很大的作用,它会对你日常生活中一些涉及概率方面的问题有更加深刻的体会,其他方面也有很多应用,比如现实生活中的彩票问题,可以利用概率的知识来建立数学模型,通过现在电脑的仿真来模拟实际的抽奖,当然这方面需要更加专业的知识了,如果要想得到更加精确的结果,建立的模型就会更加复杂!

篇二:概率论与数理统计学习的感想

概率论与数理统计学习的感想

概率问题是研究随机现象统计规律性的学科,是近代数学的一个重要组成部分,生活中概率与统计知识应用非常普遍,科学家对实验统计的数据的分析,企业对产品质量检查,产品的市场分析,人口普查,有奖债券,国家彩票等等都用到了概率与统计学的基本知识;许多政治选举的结果,医疗上的决定也取决于统计的数据,因此掌握基本的概率论与数理统计知识并加以灵活运用非常必要。

由于高中学过排列组合、概率统计的一些基本知识,并且生物课程中遗传学中也接触到了概率的一些知识,所以开始上概率课时并没有太大压力,基本上是在高中的基础上更深入地学习概率的有关知识。高中学习的是古典概型,等概

事件,离散型随机变量,是最基础的,而大学学到的是更一般的概率统计知识,适用范围也更广。高中的一些思维模式必须转变才能适应大学的学习:在高中某一事件概率为0等价于该事件不可能事件,某一事件的概率为1就等价与该事件是必然事件,而大学中学过几何概率后才知道高中学的不全对,几何概率中边界上概率为0但也可能发生。

学习到连续型随机变量时已经与高中学习的相差很大,对连续型随机变量求其在去某值时的概率是无意义的,只能求变量落在某一范围内的概率。因为现实生活中的事件大多受到两个或多个因素影响,很多随机现象中,往往要涉及到多个随机变量,而且这些随机变量之间存在某种联系,因此多维随机变量的知识在生活中应用更广。随机变量的概率密度与分布直接反映出随机变量的分布情况,随机变量的数学期望,方差等在生活中可以帮助人们做出选择。比如大赛前选拔选手才赛,对某产品的质量估计等。

当一些随机变量的分布不易求出或不需要知道随机变

量的概率分布,而只需要知道其数学期望,方差即可知道其大概分布情况。随机变量的数学期望反映了随机变量取值的平均值,而随机变量的方差反映了随机变量离开其平均值的平均偏离大小,反映了随机变量的稳定性。比如灯泡的寿命这一随机变量的数学期望越大,方差越小其品质也越好,一名学生的成绩的数学期望越大,方差越小说明其成绩越好越

概率论与数理统计知识点总结!

《概率论与数理统计》 第一章随机事件及其概率 §1.1 随机事件 一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率 古典概型公式:P (A )= 所含样本点数 所含样本点数 ΩA 实用中经常采用“排列组合”的方法计算 补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A : “每个盒子恰有1个球”。求:P(A)=?Ω所含样本点数:n n n n n =???... Α所含样本点数:!1...)2()1(n n n n =??-?-?n n n A P ! )(=∴ 补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少? 解:设A i :“信箱中信的最大封数为i”。(i =1,2,3)求:P(A i )=? Ω所含样本点数:6444 443==?? A 1所含样本点数:24234=?? 8 36424)(1== ∴A P A 2所含样本点数: 363423=??C 16 9 6436)(2== ∴A P A 3所含样本点数:443 3 =?C 16 1644)(3== ∴A P 注:由概率定义得出的几个性质: 1、0

P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n ) 推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1 推论3: P (A )=1-P (A ) 推论4:若B ?A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式): 对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律: n n A A A A A A ???=???......2121 n n A A A A A A ???=??? (2121) §1.4 条件概率与乘法法则 条件概率公式:P(A/B)= )()(B P AB P (P(B)≠0)P(B/A)= ) () (A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A ) 有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。 全概率与逆概率公式: 全概率公式: ∑==n i i i A B P A P B P 1 )/()()( 逆概率公式: ) () ()/(B P B A P B A P i i = ),...,2,1(n i = (注意全概率公式和逆概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式;如果求在第二步某事件发生条件下第一步某事件的概率,就用逆概率公式。) §1.5 独立试验概型 事件的独立性: )()()(B P A P AB P B A =?相互独立与 贝努里公式(n 重贝努里试验概率计算公式):课本P24 另两个解题中常用的结论—— 1、定理:有四对事件:A 与B 、A 与B 、A 与B 、A 与B ,如果其中有一对相互 独立,则其余三对也相互独立。 2、公式:)...(1)...(2121 n n A A A P A A A P ???-=??? 第二章 随机变量及其分布

概率论重要知识点总结

概率论重要知识点总结 概率论重要知识点总结 第一章随机事件及其概率 第一节基本概念 随机实验:将一切具有下面三个特点: (1)可重复性 (2)多结果性 (3)不确定性的试验或观察称为随机试验,简称为试验,常用表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事不可能事件:在试验中不可能出现的事情,记为。必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间.样本空间用Ω表示.一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件发生必然导致事件B发生,则称B 包含A,记为,则称事件A与事件B 相等,记为A=B。 事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 事件的积:称事件“事件A与事件B 都发生”为A 或AB。事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为A-B。用交并补可以表示为互斥事件:如果A,B两事件不

能同时发生,即AB=Φ,则称事件A 与事件B 是互不相容事件或互斥事件。互斥时可记为A+B。对立事件:称事件“A不发生”为事件A 的对立事件(逆事件),记为A 。对立事件的性质:事件运算律:设A,B,C为事件,则有: (1)交换律:AB=BA,AB=BA A(BC)=(AB)C=ABC (3)分配律:A(BC)=(AB)(AC)ABAC (4)对偶律(摩根律): 第二节事件的概率 概率的公理化体系:第三节古典概率模型1、设试验E 是古典概型,其样本空间Ω个样本点组成.则定义事件A 的概率为的某个区域,它的面积为μ(A),则向区域上随机投掷一点,该点落在区域假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作乘法公式: P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设第五节事件的独立性两个事件的相互独立:若两事件A、B 满足P(AB)=相互独立.三个事件的相互独立:对于三个事件A、B、C,若P(AB)=相互独立三个事件的两两独立:对于三个事件A、B、C,若P(AB)=两两独立独立的性质:若A 均相互独立总结: 1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。 2.乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用,应

最新统计概率文科题型总结

精品文档 统计和概率高考题型总结 题型一、频率分布直方图 1.对某校高三年级学生参加社区服务次数进行统计, 随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数. 根据此数据作出了频数与频率的统计表和频率分布直方图如下: (Ⅰ)求出表中,M p 及图中a 的值; (Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15) 内的人数; (Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间 [25,30)内的概率. 题型二、古典概型 2.某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下: (I )若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值; (Ⅱ)在(I )的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率. 题型三、回归方程 3.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5

精品文档 (I )从3月1日至3月5日中任选2天,记发芽的种子数分别为,,求事件“,均小于25”的概率; (II )请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程???y bx a =+; (III )若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方 程是可靠的,试问(II )所得的线性回归方程是否可靠? (参考公式:回归直线方程式???y bx a =+,其中1 2 2 1 ???,n i i i n i i x y nx y b a y bx x nx ==-==--∑∑) 题型四、独立性检验 4. 为了解学生喜欢数学是否与性别有关,对50个学生进行了问卷调查得到了如下的列联表: (1(2(参考公式:2 () ()()()() n a d b c K a bc d a cb d -=+ +++,其中na b cd =+++ ) 题型五、茎叶图 5.随机抽取某中学甲、乙两班各10名同学,测量它们的身高(单位:cm ),获得身高数据的茎叶图如图所示。 甲班 乙班 2 18 1 9 9 1 0 17 0 3 6 8 9 8 8 3 2 16 2 5 8 8 15 9 (1) 根据茎叶图判断哪两个班的平均身高较高; (2) 计算甲班的样本方差; (3) 现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率。 题型六、分层抽样 已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1) 求x 的值;

概率论知识点总结

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随 机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示.

一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件 B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A ∪ā= S,且Aā=Φ。

概率论与数理统计公式定理全总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ),(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

概率统计大题总结

概率与统计大题总结 一、 知识点汇编: 1.线性回归分析 (1)函数关系是一种确定性关系,而相关关系是一种非确定性关系.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. (2)线性回归分析:方法是画散点图,求回归直线方程,并用回归直线方程进行预报.其回归方程的截距和斜率的最小二乘估计公式分别为: 回归模型中,R 2表示解释变量对于预报变量变化的贡献率.R 2越接近于1,表示回归的效果越好.如果对某组数据可能采取几种不同的回归方程进行回归分析,也可以通过比较几个R 2,选择R 2大的模型作为这组数据的模型. 说明:r 只能用于线性模型,R 2则可用于任一种模型. 对线性回归模型来说,2 2 =R r . 3、独立性检验 (1)对于性别变量,其取值为男和女两种.这种变量的不同“值”表示个体所属的不同类 别,像这类变量称为分类变量. (2)假设有两个分类变量X 和Y ,它们的值域分别为{}11x ,y 和{}12y ,y 其样本频数列联表

称为 y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计 a +c b +d a + b + c +d (3)构造随机变量()()()()()() 2 2 +++-= ++++a b c d ad bc K ,a b c d a c b d 利用K 2的大小可以确定在多大程度上可以认为“两个分类变量有关系”,这种方法称为 如:如果k >7.879,就有99.5%的把握认为“X 与Y 有关系”. 4、概率 事件的关系: ⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ?; ⑵事件A 与事件B 相等:若A B B A ??,,则事件A 与B 相等,记作A=B ; ⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ?(或B A +) ; ⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ?(或 AB ) ; ⑸事件A 与事件B 互斥:若B A ?为不可能事件(φ=?B A ),则事件A 与互斥;

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

概率论知识点总结

概率论知识点总结 第一章 随机事件及其概率 第一节 基本概念 随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω. 样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示. 一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件的关系与运算(就是集合的关系和运算) 包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ?或B A ?。 相等关系:若A B ?且B A ?,则称事件A 与事件B 相等,记为A =B 。 事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。记为 A ∪B 。 事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。 事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。 用交并补可以表示为B A B A =-。 互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。互斥时B A ?可记为A +B 。 对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。对立事件的性质: Ω=?Φ=?B A B A ,。 事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA (2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC (3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ?=? B A B A ?=? 第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1 (3)可数可加性: ????n A A A 21两两不相容时

概率论知识点总结及心得体会

概率论总结及心得体会 2008211208班 08211106号 史永涛 班内序号:01 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。

概率论知识点总结

概率论知识点总结 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω、样本空间:所有样本点组成的集合称为样本空间、样本空间用Ω表示、一个随机事件就是样本空间的一个子集。基本事件多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件A 发生必然导致事件B发生,则称B包含A,记为或。 相等关系:若且,则称事件A与事件B相等,记为A=B。事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。事件的差:称事件“事件A发生而事件B不发生”为事件A 与事件B的差事件,记为 A-B。用交并补可以表示为。互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。互斥时可记为A+B。对立事

件:称事件“A不发生”为事件A的对立事件(逆事件),记为。对立事件的性质:。事件运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律: A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)对偶律(摩根律): 第二节事件的概率概率的公理化体系:(1)非负性: P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时当AB=Φ时P(A∪B)=P(A)+P(B)(3)(4)P(A-B)=P(A)- P(AB)(5)P(A∪B)=P(A)+P(B)-P(AB)第三节古典概率模型 1、设试验E是古典概型, 其样本空间Ω由n个样本点组成,事件A由k个样本点组成、则定义事件A的概率为 2、几何概率:设事件A是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可、第四节条件概率条件概率:在事件B发生的条件下,事件A发生的概率称为条件概率,记作 P(A|B)、乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则

统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

概率论与数理统计总结

第一章 随机事件与概率 第一节 随机事件及其运算 1、 随机现象:在一定条件下,并不总是出现相同结果的现象 2、 样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω 表示基本结果,又称为样本点。 3、 随机事件:随机现象的某些样本点组成的集合常用大写字母A 、B 、C 等表 示,Ω表示必然事件,?表示不可能事件。 4、 随机变量:用来表示随机现象结果的变量,常用大写字母X 、Y 、Z 等表示。 5、 时间的表示有多种: (1) 用集合表示,这是最基本形式 (2) 用准确的语言表示 (3) 用等号或不等号把随机变量于某些实属联结起来表示 6、事件的关系 (1)包含关系:如果属于A 的样本点必属于事件B ,即事件 A 发生必然导致事 件B 发生,则称A 被包含于B ,记为A ?B; (2)相等关系:若A ?B 且B ? A ,则称事件A 与事件B 相等,记为A =B 。 (3)互不相容:如果A ∩B= ?,即A 与B 不能同时发生,则称A 与B 互不相容 7、事件运算 (1)事件A 与B 的并:事件A 与事件B 至少有一个发生,记为 A ∪B 。 (2)事件A 与B 的交:事件A 与事件B 同时发生,记为A ∩ B 或AB 。 (3)事件A 对B 的差:事件A 发生而事件B 不发生,记为 A -B 。用交并补可以表示为B A B A =-。 (4)对立事件:事件A 的对立事件(逆事件),即 “A 不发生”,记为A 。 对立事件的性质:Ω=?Φ=?B A B A ,。 8、事件运算性质:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA (2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC (3)分配律:A ∪(B ∩C)=(A ∪B)∩(A ∪C)、 A(B ∪C)=(A ∩B)∪(A ∩C)= AB ∪ AC (4)棣莫弗公式(对偶法则):B A B A ?=? B A B A ?=? 9、事件域:含有必然事件Ω ,并关于对立运算和可列并运算都封闭的事件类ξ 称为事件域,又称为σ代数。具体说,事件域ξ满足: (1)Ω∈ξ; (2)若A ∈ξ,则对立事件A ∈ξ; (3)若A n ∈ξ,n=1,2,···,则可列并 ∞=1n n A ∈ξ 。

概率统计常见题型及方法总结

概率统计常见题型及方法 总结 Prepared on 22 November 2020

常见大题: 1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件 i A ”可以导致B 这个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因i A 的概率问题 全概率公式: ()()() 1B |n i i i P B P A P A ==∑ 贝叶斯公式: 1(|)()() ()()n i i i j j j P A B P A P B A P A P B A ==∑|| 一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少 解 i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=i i A 表示从第i 个口袋中任取一个球为红球, 2分 则 b a a B P +=)(1, 2分

)()()()()(1111111B A P B P B A P B P A P += 111++++ ++++= b a a b a b b a a b a a b a a += 2分 依次类推 2分 b a a A P i += )( 二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少 、解 记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n = = ++,()1P A B =,()1 2r P A B =―—5分 ()()1()212()()()()12 r r r n P B P A B n m n P B A n m n m P B P A B P B P A B m n m n ?+===++?+?++ 三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。现在每次从中任取一件产品进行检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。在检验时,一件正品被误判为次品的概率为,而一件次品被误判为正品的概率为。(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概率。 解 设 A 表示“任取一件产品被检验为正品”, B 表示“任取一件产品是正品”,则 ()96100P B = ,()4100 P B =,()|0.95P A B =,()|0.01P A B = (1)由全概率公式得 ()()()()()||0.9124P A P B P A B P B P A B =+= (2)这批产品被检验为合格品的概率为 ()3 3 0.91240.7596p P A ===???? 四、在电报通讯中不断发出信号‘0’和‘1’,统计资料表明,发出‘0’和‘1’的概率分别为和,由于存在干扰,发出‘0’时,分别以概率和接收到‘0’和‘1’,以的概率收为模糊信号‘x ’;发出‘1’时,分别以概率和收到‘1’和‘0’,以概率收到模糊信号‘x ’。

高中数学概率统计知识点总结

高中数学概率统计知识 点总结 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

高中数学概率统计知识点总结 一、抽样方法 1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法。 3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模) 4.分层抽样: 二、样本估计总体的方式 1、用样本的频率分布估计总体分布 (1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。 茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。 2、用样本的数字特征估计总体的数字特征 (1)众数、中位数、平均数的算法;(2)标准差、方差公式。 3、样本均值:n x x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 2 22212)()()(-++-+-== 三、两个变量的线性相关 1、正相关 2、负相关 正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减) 四、概率的基本概念 (1)必然事件(2)不可能事件(3)确定事件(4)随机事件 (5)频数与频率(6)频率与概率的区别与联系 必然事件和不可能事件统称为确定事件 1他们都是统计系统各元件发生的可能性大小; 2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值

概率论与数理统计小结

概率论与数理统计主要内容小结 概率部分 1、全概率公式与贝叶斯公式 全概率公式: )()|()(11B P B A P A P = ++)()|(22B P B A P )()|(n n B P B A P + 其中n B B B ,,,21 是空间S 的一个划分。 贝叶斯公式:∑== n j j j i i i B A P B P B A P B P A B P 1 ) |()() |()()|( 其中n B B B ,,,21 是空间S 的一个划分。 2、互不相容与互不相关 B A ,互不相容0)(,==?B A P B A φ 事件B A ,互相独立))(()(B A P B A P =? ; 两者没有必然联系 3、几种常见随机变量概率密度与分布律:两点分布,二项分布,泊松分布,均匀分布,二项分布,指数分布,正态分布。 ),,1(~p b X 即二点分布,则分布律为.1,0,)1(}{1=-==-k p p k x P k k ),,(~p n b X 即二项分布,则分布律为.,...,1,0,)1(}{n k p p C k x P k n k k n =-==- ),(~λπX 即泊松分布,则分布律为,......1,0,! }{== =-k k e k x P k λ λ ),,(~b a U X 即均匀分布,则概率密度为.,0),(,1 )(??? ??∈-=其它 b a x a b x f ),(~θE X 即指数分布,则概率密度为.,00 ,1)(?? ???>=-其它x e x f x θ θ ),,(~2σμN X 即正态分布,则则概率密度为+∞<<-∞= - x e x f x ,21)(2 2π .

概率统计大题题型总结 理 学生版

统计概率大题题型总结 题型一频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. 第17题图 (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t该产品获利润500元,未售出的产品,每t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品,以X(单位:t,150 100≤ ≤X)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T表示为X的函数; (Ⅱ)根据直方图估计利润T不少于57000元的概率; (Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入 X∈,则取该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110) X=的概率等于需求量落入[100,110)的概率),求利润T的数学期105 X=,且105 望. 变式1.【2015高考重庆,理3】重庆市2013年各月的平均气温(o C)数据的茎叶图如下: 则这组数据的中位数是() A、19 B、20 C、 D、23 变式2.【2015高考新课标2,理18】(本题满分12分)

某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); (Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级: 记时间C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率. 变式3.(2012辽宁理)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情 况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图; 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”. (Ⅰ)根据已知条件完成下面的22 列联表,并据此资料你是否认为“体育迷”与性别有关 A 地区 B 地区 4 5 6 7 8 9

相关文档
最新文档