轿车悬架螺旋弹簧的设计

轿车悬架螺旋弹簧的设计
轿车悬架螺旋弹簧的设计

轿车悬架螺旋弹簧的设计

当今乘用车大多数悬架系统的弹性元件都采用螺旋弹簧。它具备结构简单、制造容易、成本低廉、可靠耐用等优点。

虽然在通用机械上的螺旋弹簧计算已相当成熟,但是,车辆用的螺旋弹簧因其恶劣的使用环境和路面随机的动载荷,使它在设计方法上和制造工

艺上都有别于其他机械上的螺旋弹簧。

为此,本文将详尽介绍如下。

状见图1。

图1

应力集中,从而降低弹簧

端圈墩粗长度应大于πD0

D0弹簧中径mm

用锥形钢丝绕制的变刚度弹簧

震器、缓冲块和烛式悬架导向

柱。图2

为基准,定义它为100%,对其它结构型式进行成本

结构型式是个折衷方

案。

A B C D E F 图3

图4

2. 已知参数

1) 弹簧刚度Ks N/mm

2) 空载时,弹簧作用负荷Go N

3) 满载时,弹簧作用负荷Gm N

4) 弹簧可能的中径Do mm

5) 满载时,车轮上跳动行程反应到弹簧上的挠

度fr mm

3. 在弹簧绕制过程中,钢丝将产生变形,内侧产生压缩(见图5 A区),由此产生最高的扭转应力τ,其大小取决于旋绕比值ξ=Do/d

图5

计算扭转应力τ时应考虑螺旋曲率影响的系数δ,比其许应力上限值的函数。因此,在允许的条件下,弹簧

中径Do应尽可能地取值大一些是合理的。见图6 图62

8

7451ξξλ++=

5. 计算参数符号

k 车轮处的悬架刚度,N/mm

ks 弹簧刚度N/mm

d 弹簧钢丝直径mm

Do 弹簧中径mm

f 1车轮压缩行程mm

f 1s 弹簧压缩行程mm

f 2车轮拉伸行程mm

f 2s 弹簧复原行程

mm

G 剪切弹性模数(G=8×104MPa )

ix 车轮与弹簧之间的行程传动比

iy 车轮与弹簧之间的力传动比

io 弹簧工作圈数

ig 弹簧总圈数

δ 钢丝弯曲时的应力降低系数

L o 弹簧自由长度mm

Lw 预加载荷Fw下的弹簧长度mm

L B 弹簧并圈时的长度

mm L n 最小工作长度mm

Su 弹簧螺线之间的间隙之和mm

ξ=Do/d 旋绕比

λ 弹簧的稳定系数

τ 考虑钢丝弯曲的允许剪切应力MPa

首先确定钢丝的公差,以便用最小的直径d min进行计算。因为直径在很窄的公差带内变动,就会导致弹簧刚度显著改变。例如直径为20mm的钢丝,若采用±0.2mm的公差(即±1%)时,刚度变化可达±4%。公差制定过严将导致成本上升,根据经验数据推荐公差如下:

允许偏差:d<10mm ±0.05

10 ~20 ±0.08

20 ~28 ±0.10

>28 ±0.15

先初步设定d值,求出ξ后根据图6查得系数δ。

2)查出弹簧所用材料的屈服极限σs 和抗拉强度σb MPa 取弹簧钢的扭转屈服极限约为τ=0.63 σs ,为了能在充分利用材料能力的条件下制造出轻量结构,应该选取强度贮备系数υ=1.05-1.10 ,则许用扭转应力为:

τ=0.63 σs b0/υ

系数b0值.

则:

汽车悬架弹簧一般采用60Si2MnA 弹簧钢丝冷卷而成,其抗拉强度

σb =1600-1850 MPa 屈服极限

σs =1450 MPa

取υ=1.1 按d=11.5mm,查图7得b 0=0.98

则τ=0.63 σs b 0/υ=0.63×1450×0.98/1.1=812 MPa

当曲率影响的系数δ=1.1时,理想的弹簧扭转剪切应力τi τi =τ/δ=812/1.1=740 MPa

许用应力幅是最大极限强度的函数,并在υ=1.1 b1=0.99以及δ=1.1的条件下计算其值:

τiA =0.24σb min b 1/(υδ)=0.24×1600×0.99(1.1×1.1)

= 314 MPa

×

—Fs=Gw×i y

Gw 单轮上的质量(抛去非悬架质量)N

i y车轮与弹簧之间的力传动比

—f 1s=f1/ i X f1车轮压缩行程f2s=f2/ i X f2 车轮拉伸行程

ks=k×i X×i y k车轮处的悬架刚

—作用于弹簧上的最大力

弹簧在压缩行程时受力值

F1=ksf1s=ks×f1/i X

4)根据以上计算而得的力Fs max、Fa 及刚度ks ,然后根据这些值计算比

y 2=Fa/τi A 钢丝直径d min 进行比较,如果理想的

图8

剪切应力比较小时,则要求重复计算。

31

0min 55.2y D d =

算将用到平均直径。当钢丝直径小于20mm时,允许偏差为3/d d ττ=0D k i S =

将工作圈数i0精确到小数点1位即可,同时在弹簧两端各加上3/4圈,就可得到弹簧总圈数ig

ig= i0+1.5

7) 求对汽车姿态有影响的有关参数:

—预加载荷Fw下的弹簧长度Lw。Lw下限值取决于最小工作高度L n ,即略大于弹簧并圈长度L B。确定L n时,应利用钢丝最大直径d max=d+0.08(上偏差)。此时需要验算缓冲块是否完全被压缩至2H/3(H为缓冲块自由高度);弹簧压缩后的高度不应小于L n。

弹簧并圈长度L B= ig×d max

L n= L B+Sa Sa 是螺旋间的最小间隙

Sa=χd max i0

χ 可根据旋绕比ξ=Do/d 由图9中查得。

悬架设计指南

设计指南(弹簧、稳定杆) 不管悬架的类型如何演变,从结构功能而言,它都是有弹性元件、减振装置和导向机构三部分组成。 一 弹性元件 弹性元件主要作用是传递车轮或车桥与车架或车身之间的垂直载荷,并依靠其变形来吸收能量,达到缓冲的目的。在现用的弹性元件中主要有三种;(1)钢板弹簧,(2)扭杆弹簧,(3)螺旋弹簧。 钢板弹簧设计 板弹簧具有结构简单,制造、维修方便;除作为弹性元件外,还兼起导向和传递侧向、纵向力和力矩的作用;在车架或车身上两点支承,受力合理;可实现变刚度,应用广泛。 (一) 钢板弹簧布置方案 1.1钢板弹簧在整车上布置 (1) 横置;这种布置方式必须设置附加的导向传力装置,使结构复杂,质量加大,只在少数轻、微车上应用。 (2) 纵置;这种布置方式的钢板弹簧能传递各种力和力矩,结构简单,在汽车上得到广泛应用。 1.2 纵置钢板弹簧布置 (1) 对称式;钢板弹簧中部在车轴(车桥)上的固定中心至钢板弹簧两端卷耳中 心之间的距离相等,多数汽车上采用对称式钢板弹簧。 (2) 非对称式;由于整车布置原因,或者钢板弹簧在汽车上的安装位置不动,又 要改变轴距或通过变化轴荷分配的目的时,采用非对称式钢板弹簧。 (二)钢板弹簧主要参数确定 初始条件:1G ~满载静止时汽车前轴(桥)负荷 2G ~满载静止时汽车后轴(桥)负荷 1U G ~前簧下部分荷重 2U G ~后簧下部分荷重 1W F =(G 1-G 1U )/2 ~前单个钢板弹簧载荷 2W F =(G 2-G 2U )/2 ~后单个钢板弹簧载荷 c f ~悬架的静挠度; d f -悬架的动挠度

1L ~汽车轴距; 1、 满载弧高a f 满载弧高指钢板弹簧装在车轴(车桥)上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差。a f 用来保证汽车具有给定的高度。当a f =0时,钢板弹簧在对称位置上工作。为在车架高度已确定时得到足够的动挠度,常取a f = 10~20mm 。 2、 钢板弹簧长度L 的确定 L —指弹簧伸直后两卷耳中心间的距离 (1)钢板弹簧长度对整车影响 当L 增加时:能显著降低弹簧应力,提高使用寿命; 降低弹簧刚度,改善汽车平顺性; 在垂直刚度C 给定的条件下,明显增加钢板弹簧纵向角刚度; 减少车轮扭转力矩所引起的弹簧变形; 原则上在总布置可能的条件下,尽可能将钢板弹簧取长些。 (2)钢板弹簧长度确定 钢板弹簧一般跟据经验确定; 轿车: L =(0.40~0.55)轴距 货车前悬架: L =(0.26~0.35)轴距 后悬架: L =(0.35~0.45)轴距 3、断面尺寸及片数确定 (1)宽度b 的确定 有关钢板弹簧的刚度、强度等,可按等截面简支梁的计算公式计算,但需引入挠度增大系数δ加以修正。因此,可根据修正后的简支梁公式计算钢板弹簧所需的总惯性矩J 0。对称式钢板弹簧 0J =[(L-ks )3c δ]/48E (1) s -U 形螺栓中心距; k -U 形螺栓加紧后无效长度系数(刚性加紧,k=0.5,挠性加紧,k=0); c -钢板弹簧垂直刚度(N/mm ),c=F W /f c ; δ-挠度增大系数(先确定与主片等长的重叠片数1n ,再估计一个总片数0n ,求得η=n 1/n 0,然后用δ=1.5/[1.04(1+0.5η)]初定δ;

普通级轿车前悬架(麦弗逊式)设计

摘要 悬架是现代汽车上的重要总成之一,它把车架(或车身)与车轴(或轮胎)弹性地连接起来。它的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。 本文完成的是东方之子轿车前悬架设计,重点从东方之子轿车前悬架的选型、减振器的计算及选型、弹性元件形式的选择计算及选型和横向稳定杆的设计计算。首先,我把形式不同的悬架的优缺点进行了比较,然后定下东方之子轿车前悬架的形式—麦弗逊式悬架,最后围绕麦弗逊式悬架的部件进行设计。先是弹簧的设计计算,再是减振器的计算选型,最后是横向稳定杆的设计。 关键词:悬架;麦弗逊式;设计

Abstract Suspension is an important element of one of the modern automobile, it flexibly to link the chassis (orbody) and axle (or tires) . Its main role is the role of transmission in the bodybetween the wheels and all the power and moment, such as support of, system dynamics anddriving force, and easing the road to the whole body impact load, decay resulting vibration,ensure the comfort of the crew, cargo and vehicles reduce their moving load. The main stress is front suspension design,Training emphasis from the former car models,and models Absorber calculations, flexible choice of components and models and forms ofstabilizer bar design data.First of all, I have a different form of a suspension of the advantages and disadvantagescompared to the previous suspension of the car and then set form Eastar on suspension.Then design around Eastar suspension components. First, the spring-loaded design terms,to be absorber calculation models, a horizontal stabilizer bar final calculation. stabilizer bar. Keyword : Suspension, Macpherson ,Design

汽车钢板弹簧悬架设计方案

汽车钢板弹簧悬架设计 (1)、钢板弹簧种类 汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦还起系统阻尼作用。由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹簧在汽车上得到广泛应用。目前汽车使用的钢板弹簧常见的有以下几种。 ①通多片钢板弹簧,如图1-a所示,这种弹簧主要用在载货汽车和大型客车上,弹簧弹性特性如图2-a所不,呈线性特性。 变形 载荷变形 载荷变形载荷 图1 图2 ②少片变截面钢板弹簧,如图1-b所不,为减少弹簧质量,弹簧厚度沿长度方向制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a。这种弹簧主要用于轻型货车及大、中型载货汽车前悬架。 ③两级变刚度复式钢板弹簧,如图1-c 所示,这种弹簧主要用于大、中型载货汽车后悬架。弹性特性如图2-b 所示,为两级变刚度特性,开始时仅主簧起作用,当载荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。 ④渐变刚度钢板弹簧,如图1-d 所示,这种弹簧多用于轻型载货汽车与厢式客车后悬架。副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特性,如图2-c 所示。

多片钢板弹簧 钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。并要求弹簧尺寸规格满足弹簧的强度要求。 3.1钢板弹簧设计的已知参数 1)弹簧负荷 通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量,得到在每副弹簧上的承载质量。一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。 2)弹簧伸直长度 根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。 ①由于弹簧刚度与弹簧长度的三次方成反比,因此从改善汽车平顺性角度看,希望弹簧长度长些好。 ②在弹簧刚度相同情况下,长的弹簧在车轮上下跳动时,弹簧两卷耳孔距离变化相对较小,对前悬架来说,主销后倾角变化小,有利于汽车行驶稳定性。 ③增加弹簧长度可以降低弹簧工作应力和应力幅,从而提高弹簧使用寿命。 ④增加弹簧长度可以选用簧片厚的弹簧,从而减少弹簧片数,并且簧片厚的弹簧对提高主片卷耳强度有利。 3)悬架静挠度 汽车簧载质量与其质量组成的振动系统固有频率是评价汽车行驶平顺性的重要参数。悬架设计时根据汽车平顺性要求,应给出汽车空、满载时前、后悬架频率范围。如果知道频率,就可以求出悬架静挠度值c δ。选取悬架静挠度值时,希望后悬架静挠度值2c δ小于前悬架静挠度值1c δ,并且两值最好接近,一般推荐:

汽车设计(悬架部分)

前言 本小组程设计的课题是悬架的设计。在选择车型时我们参考以下几个要求:可靠,坚固,耐用,使用成本较低,油耗处于国内中等水平,为当前主流技术水平,车型新颖等等。所以,悬架的设计宜选用成熟技术,零部件,彻底的贯彻“三化”原则,较为合理的成本控制。选择参考车型为日产NV200。 悬架是现代汽车的重要组成部分之一。因而悬架设计成功与否,极大的影响汽车的操纵稳定性和平顺性,对整车性能有着重要的影响。在汽车市场竞争日益加剧的今天,人们对汽车的性能的认识更多的靠更为直接的感观感受,而这种感官感受都是由汽车悬架传递给驾驶者的,人们对汽车悬架的设计也是越来越重视。 因此,对汽车操纵稳定性﹑平顺性的提升成为了各大汽车厂商的共识。与此关系密切的悬架系统也被不断改进,主动半主动悬架等具有反馈的电控系统在高端车辆上的应用日趋广泛。无论定位高端市场,还是普通家庭的经济型轿车,没有哪个厂家敢忽视悬架系统及其在整车中的作用。这一切,都是因为悬架系统对乘员的主观感受密切联系。悬架系统的优劣,乘员在车上可以马上感受到。 现在悬架的设计也是国内汽车厂商一个重要提升的方向。以前对汽车的要求相对较低,国人更注重外观和汽车配置方面的要求,因此对汽车悬架的概念及要求并没有很高的要求。随着现在人们对汽车操纵稳定性﹑平顺性越来越重视,人们不仅需要一辆好看配置高的车,更需要一辆好开乘坐舒适的车。因此现在国内出现很多汽车厂商将新汽车的悬架设计及调校交给国外一些有实力汽车厂商,这也实实在在的提升了自身车型的市场竞争力,不过从另一方面也反映出国内悬架设计及调校所存在的问题,也使我们知道悬架设计的重要性,从而让我们对汽车悬架设计更加重视。 悬架从无到有,是人们对汽车稳定性﹑平顺性不断追求下诞生。悬架从简单到复杂,是人们对更高的汽车稳定性﹑平顺性和操纵稳定性的不断追求。所以对悬架设计的重视,就能使整车性能得以提升,从而提高车型的竞争力,赢得更好的表现。 而悬架设计涉及到部件与整体的关系。一句话:整体离不开部件,部件也成不了整体。整体可以提供部件提供不了的功能,反过来部件又对整体有着重要影响。 正因为悬架在现代汽车上的重要重要作用,应该重视汽车悬架的设计。只有认真,严谨的设计才能确保其与整车的完美匹配。而要做到这一点,就必须,查阅大量相关书籍,图册,行业和国家标准。 这些是对我们这些将来要从事汽车设计,制造工作的工科出身的大学生的必须经历的一个必不可少的训练。没有经过严格的训练的洗礼,是不可能具备这种专业精神和素质的。通过这样的设计让我们对汽车整体及局部有更好更深的认识,使我们在今后的学习及工作道路上有更好的适应性,从而提高自身实力。

轿车悬架系统设计

摘要 随着汽车工业技术的发展对汽车的行驶平顺性,操纵稳定性以及乘坐舒适性和安全性的要求越来越高,汽车行驶平顺性又与悬架密切相关。因此,对悬架系统的设计具有一定的实际意义。 本次设计主要研究的是比亚迪F3轿车的前、后悬架系统的硬件选择设计,计算出悬架的刚度、静挠度和动挠度。通过阻尼系数和最大卸荷力确定了减振器的主要尺寸。最后进行了横向稳定杆的设计。本设计在轿车前后悬架的选型中均采用独立悬架。其中前悬架采用当前家庭轿车前悬流行的麦弗逊悬架,后悬则采用拖曳臂式悬架。前、后悬架的减振器均采用双向作用式筒式减振器。这种结构的设计,有效的提高了乘座的舒适性和驾驶稳定性。、采用CAXA软件分别绘制前后悬架的装配图和零件图。 关键词:家庭轿车;悬架;平顺性;弹性元件

Abstract With the development of the automobile industry of motor vehicles on ride comfort, handling and stability as well as comfort and safety of the increasingly demanding, Vehicle Ride also closely related with the suspension. Therefore, the design of the suspension system has a practical significance. The main design of the study is BYD F3 car before and after the suspension system of choice of hardware design, calculate the suspension stiffness, static and dynamic deflection deflection. By damping and unloading of the largest absorber identified the main dimensions. Finally, the design of the horizontal Wending Gan. The design of the car before and after the suspension are used in the selection of independent suspension. Suspension of them adopted before the current family sedan before hanging popular McPherson suspension, was suspended after a drag arm suspension. Before and after the suspension of the shock absorber have adopted a two-way role-Shock Absorber. The design of this structure, effectively raising theof comfort and driving stability. By CAXA software were drawn before and after the suspension of the assembly and parts plans. Key words: family sedan; suspension; ride; flexible components

悬架的设计计算.doc

3.1 弹簧刚度 弹簧刚度计算公式为: 前螺旋弹簧为近似圆柱螺旋弹簧:前 n 8D Gd 3 14 1 1= Cs (1) 1 后螺旋弹簧为圆柱螺旋弹簧:后 n 8D Gd 3 24 2 2= Cs (2) 式中:G 为弹性剪切模量79000N/mm 2 d 为螺旋弹簧簧丝直径, 前螺旋弹簧簧丝直径d 1=11.5mm , 后螺旋弹簧簧丝直径d 2=12mm ; 1D 为前螺旋弹簧中径,D 1=133.5mm 。 D 2为后螺旋弹簧中径,D 2=118mm 。 n 为弹簧有效圈数。根据《汽车设计》(刘惟信)介绍的方法,判断前螺旋弹簧有效圈数为4.25圈,即n 前=4.25;后螺旋弹簧有效圈数为5.5圈,即 n 后=5.5。 前螺旋弹簧刚度: =18.93 N/mm 后螺旋弹簧刚度: 后 n 8D Gd 324 2 2= Cs =22.6N/mm 螺旋弹簧刚度试验值: 前螺旋弹簧刚度:18.8N/mm ; 1 螺旋弹簧刚度计算公式,参考《汽车工程手册》设计篇 3 1 41 116n Gd D Cs 前=

后螺旋弹簧刚度:22.78N/mm 。 前螺旋弹簧刚度和后螺旋弹簧刚度计算值与试验值基本相符。G08设计车型轴荷与参考样车的前轴荷相差<2.0%,后轴荷相差<0.8%。设计车型直接选用参考样车的弹簧刚度,刚度为: Cs=18.8 N/mm; 1 Cs=22.6 N/mm。 2 3.5 减震器参数的确定 汽车的悬架中安装减振装置的作用是衰减车身的振动保证整车的行驶平顺性和操纵稳定性。下面仅考虑由减振器引起的振动衰减,Array不考虑其他方面的影响,以方便对减振器参数的计算。 汽车车身和车轮振动时,减振器内的液体在流经阻尼孔时的摩擦

悬架用减振器设计指南设计

悬架用减振器设计指南 一、功用、结构: 1、功用 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种. 导向机构的作用是传递力和力矩,同时兼起导向作用.在汽车的行驶过程当中,能够控制车轮的运动轨迹。 汽车悬架系统中弹性元件的作用是使车辆在行驶时由于不平路面产生的 振动得到缓冲,减少车身的加速度从而减少有关零件的动负荷和动应力。如 果只有弹性元件,则汽车在受到一次冲击后振动会持续下去。但汽车是在连 续不平的路面上行驶的,由于连续不平产生的连续冲击必然使汽车振动加剧, 甚至发生共振,反而使车身的动负荷增加。所以悬架中的阻尼必须与弹性元 件特性相匹配。 2、产品结构定义 ①减振器总成一般由:防尘罩、油封、导向座、阀系、储油缸筒、工作缸筒、活塞杆构成。 ②奇瑞现有的减振器总成形式:

二、设计目的及要求: 1、相关术语 *减振器 利用液体在流经阻尼孔时孔壁与油液间的摩擦和液体分子间的摩擦形成对振动的阻尼力,将振动能量转化为热能,进而达到衰减汽车振动,改善汽车行驶平顺性,提高汽车的操纵性和稳定性的一种装置。 *阻尼特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与位移(S)的关系为阻尼特性。在多种速度下所构成的曲线(F-S)称示功图。 *速度特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与速度(V)的关系为速度特性。在多种速度下所构成的曲线(F-V)称速度特性图。 *温度特性 减振器在规定速度下,并在多种温度的条件下,所测得的阻力(F)随温度(t)的变化关系为温度特性。其所构成的曲线(F-t)称温度特性图。 *耐久特性 减振器在规定的工况下,在规定的运转次数后,其特性的变化称为耐久特性。 *气体反弹力 对于充气减振器,活塞杆从最大极限长度位置下压到减振器行程中心时,气体作用于活塞杆上的力为气体反弹力。 *摩擦力

轿车悬架系设计指南设计

轿车悬架系设计指南 (华福林编写) 1.概言 一辆性能优良的轿车,几乎所有的整车性能,譬如:动力性、制动性、操纵稳定性、平顺性、舒适性、经济性、通过性及安全性,都与底盘设计的优劣息息相关。所谓汽车底盘,一般指车身(含内外饰件)以外的所有零部件总成装配成的平台而言,而汽车设计业内人士则还需将发动机、车架及它们相配套的零部件总成排除在外。因此,汽车设计部门往往将《底盘》定义在两大系统之内,即:1.传动系统:含离合器、变速器、分动器、传动轴、前后驱动桥(包括主减速器、差速器、半轴等)。 2.行路系统:含前轴(包括车轮及轮毂)系、转向系、制动系、悬架系等。 经验丰富的驾驶员在对一辆新车试车后,除对其动力性、经济性评价外,该车的操纵稳定性、平顺性也是他们津津乐道的话题。诸如车辆高速行驶下“发不发飘”、“摆不摆头”、“跑不跑偏”等等。以下仅就个人近50年汽车设计的经验,围绕轿车悬架结构因素对性能影响的简明讨论,供缺乏悬架设计经验的设计师参考。 2.汽车的悬架系 2-1 悬架系是汽车的重要部分。它是将车身(含车架)与车桥(轴)弹性联结的部件,主要功能是: 2-1-1 缓解由于路面不平引起的振动和冲击,保证良好的平顺性。 2-1-2 衰减车身和车桥(或车轮)的振动。

2-1-3 传递车轮和车身(含车架)之间的各种力(垂直力、纵向力和横向力)和力矩(制动力矩和反作用力矩)。 2-1-3 保证汽车行驶时的稳定性。 2-2 汽车悬架通常由弹性元件、导向机构和减震器组成。 2-2-1弹性元件(含各类弹簧)用来传递垂直力和缓解冲击;当汽车横向角刚度较小时,还需装横向稳定器(横向稳定杆)以减小车身的横向 滚动角(侧倾角)。 2-2-2导向机构用来控制车轮相对于车身的运动特性,以保证必要的稳定性,同时传递除垂直力以外的力和力矩。 2-2-3减震器仅用来衰减车身和车桥(或车轮)的振动振幅,它并不能改变悬架的“硬软”程度。 2-3 悬架结构一般分为两大类:独立悬架和整体桥悬架(非独立悬架)。 2-3-1独立悬架分为3个类型,如图4所示 1)麦克菲尔逊支柱型:亦称滑柱式或简称柱式,如图1所示。结构简 单,质量轻,占有空间小,适合发动机前置前轮驱动的布置。 2) 双摆臂型,如图2所示。为了获取最佳的前轮定位及其运动几何学, 通常上、下摆臂具有不同的长度和安装角。该结构经常被中型以 上的轿车、皮卡及轻型越野车上采用。 3) 斜三角单摆臂(A型斜摆臂)如图3所示。长适用于轿车后独立悬 架,以获取较理想的外倾及轮距变化。例如在丰田、奔驰轿车系列 上采用。

汽车车架设计指南

目录 第三章车架 1 车架的主要功能 (3) 2 车架的类型 (3) 2.1 主要类型 (3) 2.2 车架的主要结构件 (4) 3 车架的功能设计要求 (8) 4 车架的设计和计算 (8) 4.1 车架的主要载荷 (8) 4.2 车架的主要设计内容 (9) 4.3 车架的设计计算举例 (10) 5 车架的工艺介绍 (12) 5.1 副车架的制造 (12) 5.2 总成检验 (13) 5.3 质量保证 (13) 5.4 生产技术新动向 (13) 6 车架常用材料的选择 (14)

第三章车架

1 车架的主要功能 车架是整个汽车的基体,汽车上绝大多数部件和总成都是通过车架来固定其位置的。如:发动机、传动系统、悬架、转向、驾驶室、货箱和有关操纵机构。车架的功用是支撑连接汽车的各零部件,并承受来自车内外的各种载荷,是整改底盘的骨架。 2 车架的类型 2.1 主要类型 目前,汽车车架的结构形式基本上有三种:边梁式车架、中梁式车架(或称脊骨式车架)和综合式车架。其中以边梁式车架应用最广。 边梁式车架由两根位于两边的纵梁和若干根横梁组成,用铆接法或焊接法将纵梁与横梁连接成坚固的刚性构架。下图的车架就属于此类型,如下图1。通常用低合金钢板冲压而成,断面形状一般为槽形,也有的做成Z字形或箱形断面。其结构特点是便于安装驾驶室、车厢及一些特种装备和布置其它总成,有利于改装变型车和发展多品种汽车。被广泛采用在载货汽车,皮卡和大多数的越野汽车上。近代轿车为了保证良好的整车性能,尽量降低中心和有利于前后悬架的布置,把结构需要放在第一位,兼顾车架加工工艺性,所以车架形状设计的比较复杂而实用。 图1车架 中梁式车架只有一根位于中央贯穿前后的纵梁,因此亦称为脊骨式车架,中梁的断面可以做成管型或箱型。

螺旋弹簧设计

螺旋弹簧设计 一、 弹簧设计参数 (1)弹簧丝直径d :制造弹簧的钢丝直径。 (2)弹簧外径o D :弹簧的最大外径。 (3)弹簧内径i D :弹簧的最小外径。 (4)弹簧中径D :弹簧的平均直径。计算公式:()/2o i i D D D D d =+=+ (5)弹簧节距p :除支撑圈外,弹簧相邻两圈对应点在中径上的轴向距离。 (6)有效圈数n :弹簧能保持相同节距的圈数。 (7)支撑圈数s n :为了使弹簧在工作时受力均匀,保证轴线垂直端面、制造时,常将弹簧两端并紧。并紧的圈数仅起支撑作用,称为支撑圈。一般有 1.5T 、2T 、2.5T ,常用的是2T 。 (8)总圈数t n :有效圈数与支撑圈的和,t s n n n =+。 (9)螺旋方向:有左右旋之分,常用右旋。 二、 弹簧其它参数 (1)旋绕比C 〈弹簧指数〉 D C d = 为了使弹簧本身较为稳定,不致颤动和过软,C 值不能太大;但为避免卷绕时弹簧丝受到强烈弯曲,C 值不应过小。 常用旋绕比C 值 (2)计算补偿系数K 4144 C K C -=- (3)长细比b 弹簧自由长度与弹簧中径之比,0H b D =。

三、 弹簧正向设计流程 1. 弹簧丝直径d d ≥式中: C :旋绕比; K :计算补偿系数,4144 C K C -=-; max F :弹簧所受最大的力,max max s F k λ=; s k :弹簧的刚度。现代悬架设计过程中,弹性元件的刚度通常不等于悬架系统等效 刚度。当悬架系统存在杠杆比时,弹性元件的刚度近似等于悬架系统等效刚度与杠杆比平方的乘积,即2s k k i =?; i :悬架等效刚度作用力的力臂/弹性元件(弹簧)作用力的力臂; max λ:弹簧受力时的最大压缩量,等于弹簧处于平衡位置时的压缩量t s m g x k = 与车轮上跳至极限时的弹簧压缩量之和; []τ:弹簧材料的许用应力。 2. 弹簧工作圈数(有效圈数)n 对于压缩弹簧,弹簧的工作圈数38s Gd n C k = 。 式中: G :切变模量。 3. 弹簧节距p 选取螺旋角α,由arctan p D απ=可得节距p 。 对于压缩螺旋弹簧,推荐5~9α=??。 4. 弹簧自由长度0H 弹簧自由长度:0 1.5H np d =+。

独立悬架导向机构的设计

汽车悬架--独立悬架导向机构的设计 第五节独立悬架导向机构的设计 一、设计要求 对前轮独立悬架导向机构的要求是: 1)悬架上载荷变化时,保证轮距变化不超过±4.Omm,轮距变化大会引起轮胎早期磨损。 2)悬架上载荷变化时,前轮定位参数要有合理的变化特性,车轮不应产生纵向加速度。 3)汽车转弯行驶时,应使车身侧倾角小。在0.4g侧向加速度作用下,车身侧倾角不大于6°~7°,并使车轮与车身的倾斜同向,以增强不足转向效应。 4)汽车制动时,应使车身有抗前俯作用;加速时,有抗后仰作用。 对后轮独止:悬架导向机构的要求是: 1)悬架上的载荷变化时,轮距无显著变化。 2)汽车转弯行驶时,应使车身侧倾角小,并使车轮与车身的倾斜反向,以减小过多转向效应。 此外,导向机构还应有够强度,并可靠地传递除垂直力以外的各种力和力矩。 目前,汽车上广泛采用上、下臂不等长的双横臂式独立悬架(主要用于前悬架)和滑柱摆臂(麦弗逊)式独立悬架。下面以这两种悬架为例,分别讨论独立悬架导向机构参数的选择方法,分析导向机构参数对前轮定位参数和轮距的影响。 二、导向机构的布置参数 1.侧倾中心 双横臂式独立悬架的侧倾中心由如图6—24所示方式得出。将横臂内外转动点的连线延长,以便得到极点P,并同时获得P点的高度。将P点与车轮接地点N连接,即可在汽车轴线上获得侧倾中心W。当横臂相互平行时(图6—25),P点位于无穷远处。作出与其平行的通过N点的平行线,同样可获得侧倾中心W。 双横臂式独立悬架的侧倾中心的高度hw通过下式计算得出 滑柱摆臂式独立悬架的侧倾中心由如图6—26所示方式得出。从悬架与车身的固定连接点E 作活塞杆运动方向的垂直线并将下横臂线延长。两条线的交点即为P点。 滑柱摆臂式悬架的弹簧减振器柱EG布置得越垂直,下横臂GD布置得越接近水平,则侧倾小心W就越接近地面,从而使得在车轮上跳时车轮外倾角的变化很不理想。如加长下横臂,则可改善运动学特性。 麦弗逊式独立悬架侧倾中心的高度hw可通过下式计算 式中 2.侧倾中心 在独立悬架中,前后侧倾中心连线称为侧倾轴线。侧倾轴线应大致与地面平行,且尽可能离地面高些。平行是为了使得在曲线行驶时前、后轴上的轮荷变化接近相等,从而保证中

车架设计指南

上汽集团奇瑞汽车有限公司 奇瑞汽车有限公司 底盘部设计指南 编制: 审核: 批准:

上汽集团奇瑞汽车有限公司 1、架的主要功能: 车架是整个汽车的基体,汽车上绝大多数部件和总成都是通过车架来固定其位置的。如:发动机、传动系统、悬架、转向、驾驶室、货箱和有关操纵机构。车架的功用是支撑连接汽车的各零部件,并承受来自车内外的各种载荷。 2、车架的类型: 2.1 主要类型 目前,汽车车架的结构形式基本上有三种:边梁式车架、中梁式车架(或称脊骨式车架)和综合式车架。其中以边梁式车架应用最广。 边梁式车架由两根位于两边的纵梁和若干根横梁组成,用铆接法或焊接法将纵梁与横梁连接成坚固的刚性构架。通常用低合金钢板冲压而成,断面形状一般为槽形,也有的做成Z字形或箱形断面。其结构特点是便于安装驾驶室、车厢及一些特种装备和布置其它总成,有利于改装变型车和发展多品种汽车。被广泛采用在载货汽车和大多数的特种汽车上。近代轿车为了保证良好的整车性能,尽量降低中心和有利于前后悬架的布置,把结构需要放在第一位,兼顾车架加工工艺性,所以车架形状设计的比较复杂而实用。 中梁式车架只有一根位于中央贯穿前后的纵梁,因此亦称为脊骨式车架,中梁的断面可以做成管型或箱型。这种结构的车架有较大的扭转刚度。使车轮有较大的运动空间,便于布置等优点因此被采用在某些轿车和货车上。 综合式车架比较复杂,应用比较广,一般轿车上使用。 2.2车架的几种结构 车架主要有以下结构形式: 1.箱横梁和发动机支撑梁 横梁总成支撑发动机、水箱、保证车身的扭转刚度 发动机支撑梁和水箱横梁均有钢板冲压焊接而成,发动机支撑梁为封闭断面。 发动机支撑梁与车身连接处通常装有橡胶缓冲块。 材料:支撑梁上下体材料常采用为SAPH440其它BH340 表面处理为电泳。

悬架系统设计步骤分解

悬架系统设计步骤 在此主要是分析竞争车型的底盘布置。底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。在此基础上,线束、管路、减振器、发动机悬置等才能继续下去 悬架选择 对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。 常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。 扭转梁式悬架 优点: 1.与车身连接简单,易于装配。 2.结构简单,部件少,易分装。 3.垂直方向尺寸紧凑。 4.底板平整,有利于油箱和后备胎的布置。 5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用, 若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。 6.两侧车轮运转不均衡时外倾具有良好的回复作用。 7.在车身摇摆时具有较好的前束控制能力。 8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。 9.通过障碍的轴距具有相当好的加大能力,通过性好。 10.如果采用连续焊接的话,强度较好。 缺点: 1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。 2.不能很好地协调轮迹。 3.整车动态性能对轴荷从空载到满载的变化比较敏感。 4.但这种悬架在侧向力作用时,呈过度转向趋势。另外,扭转梁因强度关系,允 许承受的载荷受到限制。 扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。 拖曳臂式悬架 优点: 1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大) 和下底板备胎及油箱的布置。 2.与车身的连接简单,易于装配。 3.结构简单,零件少且易于分装; 4.由于没有衬套,滞后作用小。 5.可考虑后驱。 缺点: 1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生 不利的影响。 2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外 倾的回复能力,但这导致轮罩间宽度尺寸的减小。)

扭杆悬架设计

4.3扭杆悬架设计 作为悬架弹性元件的一种——扭杆弹簧的两端分别与车架(车身)和导向臂连接。工作时扭杆弹簧受扭转力矩作用。扭杆弹簧在汽车上可以纵置、横置或介于上述两者之间。因扭杆弹簧单位质量储能量比钢板弹簧大许多,所以扭杆弹簧悬架质量小(簧下质量得以减少),目前在轻型客车、货车上得到比较广泛的应用。除此之外,扭杆弹簧还有工作可靠、保养维修容易等优点。 扭杆弹簧可以按照断面形状或弹性元件数量的不同来分类。按照断面形状不同,扭杆弹簧分为圆形、管形、片形等几种。按照弹性元件数量不同,扭杆可分为单杆式(图4—12a、b)或组合式两种。组合式扭杆又有并联(图4—12c、d)和串联(图4—12e)两种。端部做成花键的圆形断面扭杆,因工艺性良好和装配容易而得到广泛应用,与管形扭杆比较材料利用不够合理是它的缺点。管形断面扭杆有制造工艺比较复杂的缺点,但它也有材料利用合理和能够用来制作组合式扭杆的优点。片形断面扭杆在一片断了以后仍能工作,所以工作可靠性好,除此之外还有工艺性良好、弹性好、扭角大等优点。片形断面扭杆的材料利用不够合理。组合式扭杆能缩短弹性元件的长度,有利于在汽车上布置。采用圆断面组合式扭杆时,可以用2、4或6根组合形成的组合式扭杆。 图4—12 扭杆断面形状及端部结构 a)圆形断面扭杆,端部为花键 b)圆形断面扭杆,端部为六角形c)片形组合式扭杆 d)圆形组合式扭杆e)串联组合式扭杆 下面以汽车上常用的圆形断面扭杆为例,介绍扭杆弹簧的设计要点。 设计前应当根据对汽车平顺性的要求,先行选定悬架的刚度c。设计扭杆弹簧需要确定的主要尺寸有扭杆直径d和扭杆长度L(图4—13)。

汽车悬架系统设计毕业设计和分析

轿车动力总成悬置系统优化设计研究 摘要 随着社会的日益进步和科学技术的不断发展,人们对汽车舒适性的要求也越来越高,良好的平顺性和低噪声是现代汽车的一个重要标志。NVH已经成为衡量汽车质量水平的重要指标之一。而动力总成是汽车最重要的振源之一。如何合理设计动力总成悬置系统能明显降低汽车动力总成和车体的振动已经成为一个重要的课题。 本课题研究的目的是在现有动力总成悬置系统的基础上,优化动力总成悬置系统参数,达到提高整车平顺性和降低噪声的目的。 对动力总成悬置系统进行优化仿真,通过比较优化前的性能可知,优化后悬置系统隔振性能明显改善。 关键词:动力总成;悬置系统;优化

Investigation on Optimization Design of Plant Mounting System of a Passenger Car Abstract With the increasing social progress and the continuous development of science and technology, people on the requirements of automotive comfort become more sophisticated and good ride comfort and low noise is an important sign of the modern automobile. NVH levels have become an important measure of vehicle quality indicator. The vehicle powertrain is one of the most important vibration source. How to design mounting system can significantly reduce the vehicle powertrain and body vibration has become an important issue. This study is aimed at existing powertrain mounting system, based on parameters optimization of powertrain mounting system, to improve vehicle ride comfort and reduce noise. On the optimization of powertrain mounting system simulation, the performance by comparing the known before the optimization, the optimized mounting system significantly improved. Key words: Powertrain;Mounting system;Optimization

标志206中级轿车悬架系统的设计

摘要 本次设计的主要内容是:标致206汽车的前、后悬架系统的结构设计。其前悬架采用目前比较流行的麦弗逊式独立悬架,后悬架采用拖曳臂式独立悬架。减震器为液力双向作用筒式减震器。本说明书还包括前、后悬架性能和结构特点的介绍,悬架参数的确定,减震器设计及计算过程,螺旋弹簧设计及设计过程,悬架刚度和挠度的计算以及各零部件包括连接处的选择。并用MATLAB软件编程平顺性的分析,论证了该系统设计方案的正确性和可行性。 在对样车悬架进行平顺性分析中,建立了两自由度的平顺性分析模型,分别绘制车身加速度幅频特性曲线、相对动载幅频特性曲线、弹簧动挠度幅频特性曲线分析了悬架参数对汽车平顺性的影响。因此,这次设计的悬架系统具有良好的行使平顺性。 关键词:悬架设计;独立悬架;平顺性;自由度

Abstract The project mainly includes the designs of the front and suspension system of the Peugeot 206Automobiles.The independent McPherson suspension in common use is adopted in the front suspension system,The rear suspension is Independent Suspension Arm drag The shock absorber with two-direction hydraulic-cylinder is applied here. This papers introduced the structure characteristics of the front and rear suspension, determined the suspension parameters, designed and calculated the shock absorbers and coil spring, etc. Furthermore, a program for ride performance computation is compiled by using MATLAB software. In the suspension analysis of the sample car, a model with two degree of freedoms is established. Some curves for ride quality analysis are carried out. From the calculated curves, some topics on how the suspension parameters effect on the ride comfort are discussed. Therefore, a conclusion can be drawn that the current designed suspension system has a good ride performance. Key word:Suspension fork design; Independent suspension fork; Smoothness; Degrees of freedom

麦弗逊悬架设计

轿车前悬架设计 姓名:学院: 指导老师:学号:

目录 一?设计任务 1.1整车性能参数 1.2具体设计任务 二?悬架的结构形式分析 2.1对悬架提出的设计要求有 2.2悬架分类 2.1.1非独立悬架的结构特点以及优缺点 2.1.2独立悬架的结构特点以及优缺点 2.1.3独立悬架的分类 2.1.4捷达轿车前悬架的选择 三?悬架主要参数的确定 3.1悬架的静挠度 f c 3.2悬架的动挠度 f d 3.3悬架的弹性特性 3.4悬架侧倾角刚度及其在前?后轴的分配四?弹性元件的设计 4.1弹簧参数的计算选择 4.2空载时的刚度 4.3满载时计算刚度 4.4螺旋弹簧的选择及校核 五?麦弗逊式独立悬架导向机构的设计5.1对前轮独立悬架导向机构的设计要求 5.2对后轮轮独立悬架导向机构的设计要求 5.3麦弗逊式独立悬架导向机构的布置参数 5.3.1侧倾中心 5.3.2侧倾轴线 5.3.3纵倾中心 5.3.4抗制动纵倾性(抗制动前俯角) 5.4麦弗逊式独立悬架导向机构设计 5.4.1导向机构受力分析 六?减振器 6.1分类 6.2相对阻尼系数

6.3减振器阻尼系数δ的确定 6.3.1减振器阻尼系数s cm ψδ2= 6.3.2麦弗逊式独立悬架减振器如图6.3.2.1所示,按照如图安装时,其阻尼系数δ 6.3.3阻尼系数δ的确定 6.4最大卸荷力o F 的确定 6.4.1卸荷速度x ν的确定 6.4.2最大卸荷力o F 的确定 6.5筒式减振器工作缸直径D 的确定 七?悬架结构元件 7.1三角形下控制臂长度GB=362mm 7.2减振器长度 7.3螺旋弹簧的长度,自由高度0H 八?悬架结构元件的尺寸 8.1三角形下控制臂 8.2减振器 8.3固定架 九?悬架装配图 十?参考文献

悬架用减振器设计指南(完整资料).doc

【最新整理,下载后即可编辑】 悬架用减振器设计指南 一、功用、结构: 1、功用 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命. 目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种. 导向机构的作用是传递力和力矩,同时兼起导向作用.在汽车的行驶过程当中,能够控制车轮的运动轨迹。 汽车悬架系统中弹性元件的作用是使车辆在行驶时由于不平路面产生的振动得到缓冲,减少车身的加速度从而减少有关零件的动负荷和动应力。如果只有弹性元件,则汽车在受到一次冲击后振动会持续下去。但汽车是在连续不平的路面上行驶的,由于连续不平产生的连续冲击必然使汽车振动加剧,甚至发生共振,反而使车身的动负荷增加。所以悬架中的阻尼必须与弹性元件特性相匹配。 2、产品结构定义 ①减振器总成一般由:防尘罩、油封、导向座、阀系、储油缸筒、工作缸筒、活塞杆构成。

②奇瑞现有的减振器总成形式: 二、设计目的及要求: 1、相关术语 *减振器 利用液体在流经阻尼孔时孔壁与油液间的摩擦和液体分子间的摩擦形成对振动的阻尼力,将振动能量转化为热能,进而达到衰减汽车振动,改善汽车行驶平顺性,提高汽车的操纵性和稳定性的一种装置。 *阻尼特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与位移(S)的关系为阻尼特性。在多种速度下所构成的曲线(F-S)称示功图。 *速度特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与速度(V)的关系为速度特性。在多种速度下所构成的曲线(F-V)称速度特性图。

相关文档
最新文档