三角函数总结经典例题

三角函数总结经典例题
三角函数总结经典例题

第三章 三角函数

3.1任意角三角函数

一、知识导学

1.角:角可以看成由一条射线绕着端点从一个位置旋转到另一个位置所形成的几何图形.角的三要素是:顶点、始边、终边.角可以任意大小,按旋转的方向分类有正角、负角、零角. 2.弧度制:任一已知角α的弧度数的绝对值r

l

=

α,其中l 是以α作为圆心角时所对圆弧的长,r 为圆的半径.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.用“弧度”做单位来度量角的制度叫做弧度制.

3.弧度与角度的换算:rad π2360=ο

;rad 1745.01801≈=π

ο

;1ο

ο

30.57180≈??

? ??=πrad .用弧度为单位表示角的

大小时,弧度(rad )可以省略不写.度()ο

不可省略.

4.弧长公式、扇形面积公式:,r l α=

2||2

1

21r lr S α=

=扇形,其中l 为弧长,r 为圆的半径.圆的周长、面积公式是弧长公式和扇形面积公式中当πα2=时的情形.

5.任意角的三角函数定义:设α是一个任意大小的角,角α终边上任意一点P 的坐标是()y x ,,它与原点的距离是

)0(>r r ,那么角α的正弦、余弦、正切、余切、正割、余割分别是

y

r

x r y x x y r x r y ======

ααααααcsc ,sec ,cot ,tan ,cos ,sin .这六个函数统称为三角函数. 三角函数

定义域 x y sin =

R x y cos = R

x y tan = ?

?????∈+≠Z k k x x ,2π

π

x y cot =

{}Z k k x x ∈≠,π

x y sec =

?

?????∈+≠Z k k x x ,2π

π

x y csc =

{}Z k k x x ∈≠,π

7.三角函数值的符号:各三角函数值在第个象限的符号如图所示(各象限注明的函数为正,其余为负值)

可以简记为“一全、二正、三切、四余”为正. 二、疑难知识导析

1.在直角坐标系内讨论角

(1)角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就称这个角是第几象限角(或说这个角属于第几象限).它的前提是“角的顶点为原点,角的始边为x 轴的非负半轴.否则不能如此判断某角为第几象限.若角的终边落在坐标轴上,就说这个角不属于任何象限. (2)与α角终边相同的角的集合表示.

{}

Z k k ∈+?=,360

αββο

,其中α为任意角.终边相同的角不一定相等,相等的角终边一定相同,终边相同的角有无

数多个,它们相差ο

360整数倍. 2.值得注意的几种范围角的表示法

“0ο~ο

90间的角”指ο

ο

900<≤θ;“第一象限角”可表示为{}

Z k k k ∈+?<

οοο

θθ;

“小于90ο的角”可表示为

{}ο

90<θθ.

3.在弧度的定义中

r

l

与所取圆的半径无关,仅与角的大小有关. 4.确定三角函数的定义域时,主要应抓住分母为零时比值无意义这一关键.当终边在坐标轴上时点P 坐标中必有一个为0.

5.根据三角函数的定义可知:(1)一个角的三角函数值只与这个角的终边位置有关,即角α与)(360Z k k ∈?=ο

β的同名三角函数值相等;(2)r y r x ≤≤,,故有1sin ,1cos ≤≤αα,这是三角函数中最基本的一组不等关系. 6.在计算或化简三角函数关系式时,常常需要对角的范围以及相应三角函数值的正负情况进行讨论.因此,在解答此类问题时要注意:(1)角的范围是什么?(2)对应角的三角函数值是正还是负?(3)与此相关的定义、性质或公式有哪些?

三、经典例题导讲

[例1] 若A 、B 、C 是ABC ?的三个内角,且)2

(π≠<

①.C A sin sin < ②.C A cot cot < ③.C A tan tan < ④.C A cos cos <

A .1 B.2 C.3 D.4

正解:法1C A <Θ在ABC ?中,在大角对大边,A C a c sin sin ,>∴>Θ

法2 考虑特殊情形,A 为锐角,C 为钝角,故排除B 、C 、D ,所以选A . [例2]已知βα,角的终边关于y 轴对称,则α与β的关系为 . 正解:∵βα,角的终边关于y 轴对称 ∴

)(,2

2

Z k k ∈+=

+ππ

β

α即)(,2z k k ∈+=+ππβα

说明:(1)若βα,角的终边关于x 轴对称,则α与β的关系为)(,2Z k k ∈=+πβα

(2)若βα,角的终边关于原点轴对称,则α与β的关系为)(,)12(Z k k ∈++=πβα (3)若βα,角的终边在同一条直线上,则α与β的关系为)(,Z k k ∈+=παβ [例4]已知角α的终边经过)0)(3,4(≠-a a a P ,求ααααcot ,tan ,cos ,sin 的值. 正解:若0>a ,则a r 5=,且角α在第二象限

3

434cot ,4343tan ,5454cos ,5353sin -=-=-=-=-=-===

∴a a a a a a a a αααα 若0

3

4

34cot ,4343tan ,5454cos ,5353sin -=-=-=-==--=-=-=∴a a a a a a a a αααα

[例5] (1)已知α为第三象限角,则2

α

是第 象限角,α2是第 象限角;

(2)若4-=α,则α是第 象限角.

解:(1)αΘ是第三象限角,即Z k k k ∈+<<+,2

3

22ππαππ

Z k k k ∈+<<+∴,4

3

22ππαππ,Z k k k ∈+<<+,34224ππαππ

当k 为偶数时,2α

为第二象限角

当k 为奇数时,2α

为第四象限角

而α2的终边落在第一、二象限或y 轴的非负半轴上.

(2)因为ππ

-<-<-

42

3,所以α为第二象限角. 点评:α为第一、二象限角时,2α为第一、三象限角,α为第三、四象限角时,2

α

为第二、四象限角,但是它们在

以象限角平分线为界的不同区域.

.

[例7]已知α是第三象限角,化简

α

α

ααsin 1sin 1sin 1sin 1+---+。

解:原式=α

ααα2

222sin 1)sin 1(sin 1)sin 1(----+=αα

αααcos sin 2cos sin 1sin 1=+-+ 又α是第三象限角,0cos <∴α 所以,原式=αα

α

tan 2cos sin 2-=-

点评:三角函数化简一般要求是:(1)尽可能不含分母;(2)尽可能不含根式;(3)尽可能 使三角函数名称最少;(4)尽可能求出三角函数式的值.本题的关健是如何应用基本关系式脱去根式,进行化简. [例8] 若角α满足条件0sin cos ,02sin <-<ααα,则α在第( )象限 A.一 B.二 C.三 D.四 解:αααααααααα????<>????<

?<-<0

cos 0

sin sin cos 0cos sin 0sin cos 02sin 角在第二象限.故选B.

四、典型习题导练

1.已知钝角α的终边经过点()θθ4sin ,2sin P ,且5.0cos =θ,则α的值为 )

A .??

?

??-

21arctan B .()1arctan - C .2

1

arctan

-π D .43π

2.角α的终边与角β的终边关于y 轴对称,则β为( )

A.-α

B.л-α

C.(2k л+1)л-α(k ∈Z)

D.k л-α(k ∈Z )

3.若sin αtg α≥0,k ∈Z ,则角α的集合为( )

A .[2k π-

2π,2k π +2π] B.( 2k π-2π,2k π+2π) C.( 2k π-2π,2k π+2

π

)∪}{ππ-k 2 D.以上都不对

4.当0<x <π时,则方程cos (πcosx)=0的解集为( )

A. ?????

?65,6ππ B.??

?

???32,3ππ C.????

??3π D.??????32π 6.已知x ∈(0,

2

π

),则下面四式: 中正确命题的序号是 . ①sinx <x <tgx ②sin(cosx)<cosx <cos(sinx) ③sin 3x+cos 3x <1 ④cos(sinx)<sin(cosx)<cosx

7.有以下四组角:(1)k π+π2;(2)k π-π2;(3)2k π±π2;(4)-k π+π

2(k ∈z)其中终边相同的是( )

A.(1)和(2)

B.(1)、(2)和(3)

C.(1)、(2)和(4)

D.(1)、(2)、(3)和(4)

8.若角α的终边过点(sin30°,-cos30°),则sin α等于( )

A. 12

B.- 12

C.-32

D.-3

3 9.函数y=1)3

cos(2--

π

πx 的定义域是______,值域是______.

3.2三角函数基本关系式与诱导公式

一、知识导学

1.同角三角函数的基本关系式

平方关系:1cos sin 2

2

=+αα;商数关系:α

α

αcos sin tan =

;倒数关系:1cot tan =?αα 同角三角函数的基本关系式可用图表示

(1)三个阴影部分三角形上底边平方和等于1的平方; (2)对角为倒数关系;

(3)每个三角函数为相邻两函数的积. 角 函数

正弦

余弦

记忆口诀 απ+k 2 αsin αcos

函数名不变 符号看象限

απ+ -αsin -αcos α- -αsin αcos απ- αsin -αcos απ-2 -αsin αcos

απ

-2

αcos

αsin

απ

+2

αcos

αsin

函数名不变 符号看象限

απ

-23 -αcos -αsin

απ

+2

3 -αcos

αsin

诱导公式可将“负角正化,大角小化,钝角锐化”. 3.诱导公式解决常见题型

(1)求值:已知一个角的某个三角函数,求这个角其他三角函数;

(2)化简:要求是能求值则求值,次数、种类尽量少,尽量化去根式,尽可能不含分母. 二、疑难知识导析

1.三角变换的常见技巧

“1”的代换;ααcos sin +,ααcos sin -,ααcos sin ?三个式子,据方程思想知一可求其二(因为其间隐

含着平方关系式1cos sin

22

=+αα);

2.在进行三角函数化简和三角等式证明时,细心观察题目的特征,灵活恰当地选用公式,一般思路是将切割化弦.尽

量化同名,同次,同角;

3.已知角α的某个三角函数值,求角α的其余5种三角函数值时,要注意公式的合理选择.在利用同角公式中的平方关系并要开方时,要根据角的范围来确定符号,常要对角的范围进行讨论.解决此类问题时,要细心求证角的范围. 三、典型例题导讲 [例1]已知=∈=+θπθθθcot 05

1

cos sin ),则,(,__________ 正解: ),

,(,πθθθ05

1

cos sin ∈=

+ 两边同时平方,有联立,

与5

1

cos sin 02512cos sin =+<-=?θθθθ 求出,

,5

3cos 54sin -==θθ∴43

cot -=θ [例2]若sinA=asinB,cosA=bcosB,A 、B 为锐角且a >1,0<b <1,求tanA 的值 正解:由??

?== ②

①B b A B a A cos cos sin sin ①2+②2得a 2sin 2B+b 2cos 2B=1

∴cos 2B=2221b a a -- ∴sin 2B=2

221b

a b -- ∴tan 2B=1122

--a b

∵B 为锐角 ∴tan B=1

122

--a b

②①得tan A=b a tan B =1

122

--a b b a [例4]已知tan 2

α

=2,求

(1)tan()4

π

α+

的值; (2)

6sin cos 3sin 2cos αα

αα

+-的值.

解:(1)∵ tan

2α=2, ∴ 22tan

2242tan 1431tan 2

α

αα?=

==---; 所以tan tan

tan 14tan()41tan 1tan tan 4π

απααπαα+++==--=411347

13

-+=-+; (2)由(I), tan α=-34, 所以6sin cos 3sin 2cos αααα+-=6tan 13tan 2αα+-=46()1

7346

3()23

-+=--.

点评:本题设计简洁明了,入手容易,但对两角和与差的三角函数、同角间的基本关系式要求熟练应用,运算准确. [例5]化简:)()4

1

4cos()414sin(

z n n n ∈-++--απαπ

正解:原式)]4

(

cos[)]4

(

sin[απ

παπ

π-+++-=n n

(1)当)(12z k k n ∈+=,时 原式)]4

(

2sin[απ

ππ+-+=k +)]4

(

2cos[απ

ππ-++k

)4sin(απ+=)4cos(απ--)4cos(απ-=)4

cos(απ

--=0

(2)当)(2z k k n ∈=,时 原式)]4

(

2sin[απ

π+-=k +)]4

(

2cos[απ

π-+k

)]4

sin(

απ

+-=+)4cos(απ

-=0

[例6]若316sin =???

??-απ,则??

?

??+απ232cos =( ) A .97-

B .31-

C .31

D .9

7

正解:??

?

??+απ232cos =)]23(cos[αππ--

=—)23

cos(απ-=—1+2)6

(

sin 2

απ

-=—97

.故选A.

四、典型习题导练

1. 当0<x <л时,则方程cos (лcosx)=0的解集为( )

A. ??????65,6лл

B.??

????32

,3лл C.??????3л D.?

?????32л 2.在ABC ?中,已知C B

A sin 2

tan

=+,给出以下四个论断: ① 1cot tan =?B A

② 2sin sin 0≤

+

③ 1cos sin 22=+B A

④ C B A 222sin cos cos =+

其中正确的是 A .①③

B.②④

C.①④

D.②③

3.设02x π≤≤,sin cos x x =-,则

A. 0x π≤≤

B.

744x π

π≤≤

C. 544x ππ≤≤

D. 322x ππ

≤≤

4.曲线)4

cos()4sin(2ππ-+=x x y 和直线21

=y 在y 轴右侧的交点按横坐标从小到大依

次记为P 1,P 2,P 3,…,则|P 2P 4|等于( ) A .π B .2π C .3π D .4π

5.已知函数f (x )=2sin x cos x +cos2x .

(1) 求f (

)的值; (2) 设α∈(0,π),f (2

α),求sin α的值.

6.已知在△ABC 中,sinA (sinB +cosB )-sinC =0,

sinB +cos2C =0,求角A 、B 、C 的大小.

3.3三角函数的恒等变换

一、知识导学

1.两角和、差、倍、半公式

(1) 两角和与差的三角函数公式

βαβαβαcos cos sin sin )sin(±=± βαβαβαsin sin cos cos )cos(μ=± β

αβ

αβαtan tan 1tan tan )tan(μ±=

±

(2) 二倍角公式

αααcos sin 22sin = ααααα2222

sin 211cos 2sin cos

2cos -=-=-=

α

α

α2

tan 1tan 22tan -=

(3) 半角公式

2cos 12sin

2

αα

-=

, 2cos 12cos 2αα+= , αααcos 1cos 12tan 2+-= α

α

αααsin cos 1cos 1sin 2tan -=+=

2.恒等变形主要是运用三角公式对式子进行等价变形,常见于化简求值和恒等式证明.恒等式证明就是利用公式消除

等式两边的差异,有目的地化繁为简,使左右相等,常用方法为:(1)从一边开始证得它等于另一边,一般由繁到简;(2)证明左右两边都等于同一个式子(或数值). 二、疑难知识导析

1.两角和与差的三角函数公式的内涵是揭示同名不同角的三角函数的运算规律,常用于解决求值、化简和证明题.

2.倍角公式的内涵是揭示具有倍数关系的两个角的三角函数的运算规律.如αααcos sin 22sin =成立的条件是“α是任意角,αα是2的2倍角”,精髓体现在角的“倍数”关系上.

3.公式使用过程中(1)要注意观察差异,寻找联系,实现转化,要熟悉公式的正用逆用和变形使用,也要注意公式成立的条件.例)tan tan 1)(tan(tan tan βαβαβαμ±=±、22cos 1sin

2

αα-=

、2

2cos 1cos 2

αα+=等. 4. 三角公式由角的拆、凑很灵活.如)()(2βαβαα-++=、ββαα-+=)(、

2

2

β

αβ

αβ+-

+=

)2

(

)2

(2

βα

β

αβ

α+--

=-等,注意到倍角的相对性.

5.化为三角函数式,常见的思路为化“三同”即同名、同角、同次,切割化弦、特殊值与特殊角的三角函数互化等.

6. 三角恒等式的证明包括无条件恒等式和有条件恒等式

(1)无条件恒等式证明,要认真分析等式两边三角函数的特点,角度和函数关系,找出差异寻找突破口.

(2)有条件的等式证明,常常四寻找条件与需证式的区别与联系,对条件或须证式进行变形.采用消去法或基本量法等求证.

三、典型例题导讲

[例1] 在?ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( )

A .

6

π

B .

3

π

C .

6π或π6

5

D .

3π或3

正解:A

[例2] 已知tan α tan β是方程x 2

+33x+4=0的两根,若α,β∈(-2

,2π

π),则α+β=( )

A .

3

π

B .

3π或-π3

2 C .-

3π或π3

2

D .-π3

2

正解:D.

[例3] △ABC 中,已知cosA=13

5

,sinB=53,则cosC 的值为( )

A.6516

B.6556

C.6516或6556

D.65

16

-

正解:A

[例4] 已知53sin +-=

m m θ,5

24cos +-=m m θ(πθπ

<<2),则=θtan ( )

A 、324--m m

B 、m m 243--±

C 、125-

D 、12

543--或

正解:C

四、典型习题导练

1.已知集合M=}{

R x x x y y ∈+=,cos sin ,N=}{R x x x y y ∈=,cos sin π则MUN 等于( ) A .M B.N C.ф D.}{

22≤≤-y y

2.若sin α+cos α=2,则tan α+cot α=( )

A.1

B.2

C.-1

D.-2 3.已知

2л<α<л<,sin α=54,则cos 2

α

的值为( )

A.

25或-55 B.- 55 C. 5

5 D.以上都不对

4.已知θ=

5л,则`34an 3an 334an 3t θ

θθθt t t an ++= . 5.计算sin 10лsin 10

13л

= .

6.已知tanA·tanB=tanA+tanB+1,则cos(A+B)的值是( ) A .22-

B .

2

2

C .22±

D .21

±

7.已知角A 是△ABC 的一个内角,且3

2

cos sin =+A A ,则△ABC 是( )

A .锐角三角形

B .钝角三角形

C .直角三角形

D .形状不确定

3.4三角函数的图像与性质

一、知识导学

1.三角函数线.设角α的终边与单位圆交于点P ,过点P 做x PM ⊥轴于M ,过点)0,1(A 做单位圆的切线,与角α的终边或终边的反向延长线相交于点T ,则有向线段AP OM MP ,,分别叫做角α的正弦线,余弦线,正切线.

2.三角函数的图像

(1)x y x y x y x y cot ,tan ,cos ,sin ====四种图像 (2)函数)sin(?ω+=x A y 的图像 ①“五点作图法” ②图像变化规律

3.三角函数的定义域、值域及周期

4.三角函数的奇偶性和单调性 二、疑难知识导析

1.)sin(?ω+=x A y +)0,0(>≠ωA B 中,ω,,B A 及?,对正弦函数x y sin =图像的影响,应记住图像变换是对自变量而言.

如:x y 2sin =向右平移

6π个单位,应得)6(2sin π-=x y ,而不是)6

2sin(π+=x y 2.用“五点法”作)sin(?ω+=x A y )0,0(>≠ωA 图时,将?ω+x 看作整体,取2,0π,ππ

π2,2

3,

来求相应的x 值及对应的y 值,再描点作图.

3.,cos ,sin x y x y ==)sin(?ω+=x A y 的图像既是中心对称图形,又是轴对称图形.而x y tan =图像只是中心对称图形,掌握对称中心和对称轴的求法及位置特征,充分利用特征求出中)sin(?ω+=x A y )0,0(>≠ωA 的各个参数.

4.三角函数的定义域是研究其它一切性质的前提.求定义域实质上是解简单的三角不等式(组).要考虑到分母不为零,偶次根式被开方数不小于零,对数的真数大于零、底数大于零且不等于1,同时还要考虑到函数本身的定义域.可用三角函数图像或三角函数线解不等式(组).

5.求三角函数的值域是常见题型.一类是x b x a y cos sin +=型,这要变形成)sin(22?++=

x b a y ;二是含有

三角函数复合函数,可利用换元、配方等方法转换成一元二次函数在定区间上的值域.

6.)sin(?ω+=x A y )0,0(>>ωA 单调性的确定,基本方法是将?ω+x 看作整体,如求增区间可由

2

2ππ-

k ≤?ω+x ≤)(2

2z k k ∈+

π

π解出x 的范围.若x 的系数为负数,通常先通过诱导公式处理.

7.利用单调性比较函数值的大小.往往先利用对称型或周期性转化成同一单调区间上的两个同名函数.

三、典型例题导讲

[例1] 为了得到函数??

?

?

?-

=62sin πx y 的图像,可以将函数x y 2cos =的图像( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3

π 正解:B

[例2]下列四个函数y=tan2x ,y=cos2x ,y=sin4x ,y=cot(x+4π),其中以点(4π

,0)为中心对称的三角函数有( )个. A .1

B .2

C .3

D .4

正解:D

[例3]函数]),0[)(26

sin(2ππ

∈-=x x y 为增函数的区间是 ( )

A. ]3

,

0[π B. ]12

7,

12

[

π

π

C. ]6

5,

3

[

ππ

D. ],6

5[

ππ

正解: C

3.5解三角形及三角函数的应用 一、知识导学

1.解三角形的的常用定理:

(1) 内角和定理:π=++C B A 结合诱导公式可减少角的个数.

(2) 正弦定理:

R C c

B b A a 2sin sin sin ===(R 指△AB

C 外接圆的半径) )sin 2

1

sin 21sin 21(B ac A bc C ab S ===

(3) 余弦定理: 222cos 2c C ab b a =-+及其变形. (4) 勾股定理: 2

22c b a ABC Rt =+?中 三、经典例题导讲

[例1]已知方程01342

=+++a ax x (a 为大于1的常数)的两根为αtan ,βtan ,

且α、∈β ??-

2π,??

?

2π,则2tan βα+的值是_________________.

正解:1>a Θ ∴a 4tan tan -=+βα0<,o a >+=?13tan tan βα

∴βαtan ,tan 是方程01342

=+++a ax x 的两个负根

又??? ??-

∈2,2,ππβα ???

??-∈∴0,2,πβα 即??

? ??-∈+0,22πβα 由tan

()βα+=

βαβαtan tan 1tan tan ?-+=()1314+--a a =34可得.22

tan -=+β

α

[例2]函数f(x)=

x

x x

x cos sin 1cos sin ++的值域为______________.

正解:???

?

?--????????---2122,11,2122

[例4] ?-??+??40cos 270tan 10sin 310cos 20cot = 解:?-??+??40cos 270tan 10sin 310cos 20cot

=0

0000040cos 270cos 70sin 10sin 320sin 10cos 20cot -+ =00

00040cos 220

sin 20cos 10sin 310cos 20cos -+

0000000

00000

2cos 402cos 20(cos10sin 30sin10cos30)2cos 40sin 202cos 20sin 402sin 20cos 40sin 202

=-+=--=

= [例3] 在锐角△ABC 中,A <B <C,且B=60°,

)2cos 1)(2cos 1(C A ++=

2

1

3-,求证:a+.22c b = 解:∵B=60° ∴A+C=120° cos(A+C)=-

2

1 又由已知C A 2

2cos 2cos 2?=

2

1

3- ∵锐角△ABC 中,cosA >0,cosC >0, ∴cosAcosC=

413- sinAsinC=41

3+ ∴cos(C -A)=

2

3

即C -A=30° ∴A=45° B=60° C=75°

∴a+2b=2R(sin45°+2sin60°)=2·2R

4

6

2+=2·2Rsin75°=2c

四、典型习题导练

1.在Rt △ABC 中,C=90°,则sinAcos2(45°-

2B )-sin 2A cos 2

A A.有最大值41和最小值0 B.有最大值4

1

但无最小值

C.即无最大值也无最小值

D.有最大值2

1

但无最小值

2.要得到y=sin2x 的图像,只需将y=cos(2x-4

л

)的图像 ( ) A.向右平移8л B.向左平移8л C.向右平移4л D.向左平移4

л

4.在△ABC 中,sin 2sin 2sin 2C B A =8

1

,则△ABC 的形状为 .

5.直角三角形的周长为定值2l ,则斜边的最小值是 .

6.在?ABC a b c 中,、、分别是角A 、B 、C 的对边,设a c b A C +=-=23

,π

,求sinB 的值.

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

中考数学压轴题专题锐角三角函数的经典综合题

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈) 【答案】AB 的长约为0.6m . 【解析】 【分析】 作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】 解:作BF CE ⊥于F , 在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=, 3.85CF BC cos BCF ?∠≈=, 在Rt ADE ?E 中,3 1.73tan 3 AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣= 由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】 考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(223. 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3Rt △ABC 中,求得33,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ?=6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30 CE AA ==3 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴33∴3 ∴tan ∠A 'A D= tan ∠'A DC='A E DE 503235

上海高一反三角函数典型例题

反三角函数典型例题 例1:在下列四个式子中,有意义的为__________: 解:(4)有意义。 (1)(2)arcsin 4 π ;(3)sin(arcsin 2);(4)arcsin(sin 2)。 点评:arcsin x ——x [1,1]∈-。 例2:求下列反正弦函数值 (1)= 解:3 π (2)arcsin 0= 解:0 (3)1arcsin()2-= 解:6π- (4)arcsin1= 解:2 π 点评:熟练记忆:0,1 2 ±、,,1±的反正弦值。 思考:1sin(arcsin )24 π +该如何求? 例3:用反正弦函数值的形式表示下列各式中的x (1)sin x = ,x [,]22ππ ∈- 解:x = 变式:x [,]2 π ∈π? 解:x [,]2π ∈π时,π-x [0,]2 π∈,sin(π-x)=sinx ∴π-x =,则x =π- 变式:x [0,]∈π? 解:x =x =π-(2)1sin x 4=-,x [,]22ππ∈- 解:1 x arcsin 4 =- 变式:1 sin x 4=-,3x [,2]2π∈π 解:3x [,2]2π∈π时,2π-x [0,]2 π∈,sin(2π-x)=-sinx =1 4 ∴2π-x =arcsin 14,则x =2π-arcsin 1 4 点评:当x [,]22ππ ∈-时,x arcsin a =;而当x [,]22ππ?-,可以将角转化到区间[,]22 ππ-上,

再用诱导公式处理对应角之三角比值即可。 练习: (1)sin x = ,x [,]22ππ ∈- 解:x 3π= (2)sin x =,x [0,]∈π 解:x arcsin =x =π-(3)3sin x 5=-,3x [,]22ππ∈ 解:3 x arcsin 5 =π+ 例4:求函数y 2arcsin(52x)=-的定义域和值域。 解:由152x 1-≤-≤,则x [2,3]∈,arcsin(52x)[,]22ππ-∈-,则y [,]∈-ππ。 变式:y sin x arcsin x =+ 解:x [1,1]∈-,y [sin1,sin1]22 ππ ∈--+ 思考:当3x [,]44 ππ ∈-时,求函数y arcsin(cos x)=的值域。 解:当3x [, ]44ππ∈-时t cos x [=∈,而y arcsin t =为增函数,则y [,]42 ππ∈-。 例5:求下列函数的反函数 (1) y sin x =,x [,]2 π∈π 解:y [0,1]∈,x [,0]2 π-π∈-且sin(x )sin x y -π=-=-,则x arcsin(y)-π=-, 则x arcsin y =π-,则反函数是1f (x)arcsin x -=π-,x [0,1]∈。 (2) y arcsin x =,x [0,1]∈ 解:y [0,]2π∈,x sin y =,则反函数是1f (x)sin x -=,x [0,]2 π∈。

锐角三角函数经典总结

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记 作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A = sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

反三角函数典型例题

精品文档 5 5 (1) sin x 解: (2) sin x [0,] 解: (3) sin x 处] 解: 3 ?胚或 arcs in 或 x 3 .3 arcsin .3 arcsin - 3 反三角函数典型例题 例2:求下列反正弦函数值 1 sin( arcs in )该如何求? 2 4 用反正弦函数值的形式表示下列各式中的 变式:x [一,]? 2 解: x [2,] 时,n —x 【°,2], sin( n — x) =sinx = £ ? n — x = arcsin —3 ,贝U x = n — arcsin — 3 5 5 解: x = arcsin — 3 或 x = n — arcsin —3 5 例1:在下列四个式子中,有意义的为 解:(4)有意 义。 (1) arcs in . 2 ; (2) arcsin _ ; (3) 点评:arcsinx 4 1,1]。 sin( arcs in 2) ; ( 4) arcsin(sin2)。 (1) arcsin - 2 (2) arcsin0 解:0 (3) arcsin(-) 2 点评: 1 熟练记忆:0,- 2 解:- 6 2, (4) arcs ini 1的反正弦值。 思考: (1)sinx £,x [ -,^] 解: .43 x = arcs in 5 变式:x [0, ]? ⑵ sin x - 4 变式:si nx 2 2 x [—,2 ] 2 解: .1 arcs in 4 3 解:x [ ,2 2 ]时,2 - x [0,2], 1 sin( 2 n — x) = — sinx =— 4 2 n — x = 1 山 arcs in ,贝U x = 2 n — arcs in — 点评:当 x [ 2, 2 ] 时, x arcsina ;而当 处理对应角之三角比值即可。 [舊],可以将角转化到区间[ 形]上,再用诱导公式 练习:

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

(完整word版)反三角函数典型例题.docx

反三角函数典型例题 例 1:在下列四个式子中,有意义的为 __________: 解:( 4)有意义。 ( 1) arcsin 2 ;( 2) arcsin ;( 3) sin(arcsin 2) ;( 4) arcsin(sin 2) 。 4 点评: arcsin x —— x [ 1,1]。 例 2:求下列反正弦函数值 ( 1) arcsin 3 解: ( 2) arcsin0 解: 0 2 3 ( 3) arcsin( 1) 解: (4) arcsin1 解: 2 6 2 点评:熟练记忆: 0, 1 2 3 、 , , 的反正弦值。 2 2 2 1 思考: sin(arcsin 1 4) 该如何求? 2 例 3:用反正弦函数值的形式表示下列各式中的 x (1) sin x 3 , x [ , ] 3 5 解: x = arcsin 2 2 5 变式: x [ , ] ? 2 解: x [ , ] 时, π- x [0, 3 ] , sin(π- x)= sinx = 2 2 5 ∴ π- x = arcsin 3 ,则 x =π- arcsin 3 5 5 变式: x [0, ] ? 解: x =arcsin 3 或 x = π-arcsin 3 5 5 (2) sin x 1 , x [ , ] 解: x arcsin 1 4 2 2 4 变式: sin x 1 , x [ 3 ,2 ] 4 2 解: x [ 3 ] 时, 2π- x [0, ] , sin(2π- x)=- sinx = 1 ,2 4 2 2 ∴ 2π- x = arcsin 1 ,则 x =2π- arcsin 1 4 4 点评: 当 x [ , ] 时, x arcsina ;而当 x [ , ] ,可以将角转化到区间 [ , ] 上,再用诱导公式 2 2 2 2 2 2 处理对应角之三角比值即可。 练习: (1) sin x 3 [ , ] 解: x , x 3 2 2 2 (2) sin x 3 [0, ] 解: x arcsin 3 3 , x 或 x arcsin 3 3 3 (3) sin x 3 , x [ , 3 ] 解: x arcsin 3

反三角函数及最简三角方程.docx

标准实用 反三角函数及最简三角方程 一、知识回顾: 1、反三角函数: 概念:把正弦函数y sin x , x,时的反函数,成为反正弦函数,记作 22 y arcsin x . y sin x( x R) ,不存在反函数. 含义: arcsin x 表示一个角;角,;sin x . 22 反余弦、反正切函数同理,性质如下表. 名称函数式定义域值域奇偶性单调性 反正弦函数y arcsin x1,1 增, 2奇函数增函数 2 y arccosx arccos( x)arccosx 反余弦函数1,1 减0,减函数 非奇非偶 反正切函数y arctanx R增, 2奇函数增函数 2 y arc cot x arc cot( x)arc cot x 反余切函数R减0,减函数 非奇非偶 其中: ().符号 arcsin x 可以理解为-, ] 上的一个角弧度,也可以理解为 1[ 2 () 2 区间[- , ] 上的一个实数;同样符号 arccos x 可以理解为 [0 ,π 上的一个角2 ] 2

(弧度 ),也可以理解为区间 [0 ,π]上的一个实数; (2). y =arcsin x 等价于 sin y=x, y∈ [-,], y= arccos x 等价于 cos y 22 =x, x ∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; (3).恒等式 sin(arcsin x)=x, x∈ [- 1, 1] , cos(arccos x)=x, x∈ [-1, 1], tan(arctanx)=x,x ∈ R arcsin(sin x) = x, x ∈ [ -,], arccos(cos x) = x, x ∈ [0, 22 π],arctan(tanx)=x, x∈(-,)的运用的条件; 22 (4).恒等式 arcsin x+arccos x=, arctan x+arccot x=的应用。 22 2、最简单的三角方程 方程方程的解集 a1x | x2k arcsin a, k Z sin x a a1x | x k 1 k arcsin a, k Z a1x | x2k arccos a, k Z cos x a a1x | x2k arccos a, k Z tan x a x | x k arctana, k Z cot x a x | x k arc cot a, k Z 其中: (1 ).含有未知数的三角函数的方程叫做三角方程。解三角方程就是确定三 角方程是否有解,如果有解,求出三角方程的解集; (2).解最简单的三角方程是解简单的三角方程的基础,要在理解三角方程的

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

完整版锐角三角函数练习题及答案.doc

锐角三角函数 1 .把 Rt △ABC 各边的长度都扩大 3 倍得 Rt △A′B′C′,那么锐角 A , A ′的余弦值的关系为() A .cosA=cosA ′B. cosA=3cosA ′C. 3cosA=cosA ′ D .不能确定 2 .如图 1 ,已知 P 是射线 OB 上的任意一点, PM ⊥ OA 于 M ,且 PM :OM= 3 : 4 ,则 cos α的值等于() A .3 B. 4 C. 4 D . 3 4 3 5 5 图 1 图 2 图 3 图 4 图 5 3 .在△ABC 中,∠C=90 °,∠A ,∠B,∠C 的对边分别是a, b , c,则下列各项中正确的是() A .a=c ·sin B B. a=c ·cosB C.a=c ·tanB D.以上均不正确 4 .在 Rt △ABC 中,∠C=90 °,cosA= 2 ,则 tanB 等于()3 A .3 B. 5 C. 2 5 D . 5 5 3 5 2 5 .在 Rt △ABC 中,∠C=90 °,AC=5 ,AB=13 ,则 sinA=______ , cosA=______ , ?tanA=_______ . 6 .如图 2 ,在△ABC 中,∠C=90 °,BC: AC=1 : 2 ,则 sinA=_______ ,cosA=______ , tanB=______ . 7 .如图 3 ,在 Rt △ABC 中,∠C=90 °,b=20 , c=20 2 ,则∠B 的度数为 _______. 8 .如图 4 ,在△CDE 中,∠E=90 °,DE=6 , CD=10 ,求∠D 的三个三角函数值. 9 7 .已知:α是锐角, tan α=,则sinα=_____,cosα=_______. 24 10 .在 Rt △ABC 中,两边的长分别为 3 和 4 ,求最小角的正弦值为 10 .如图 5 ,角α的顶点在直角坐标系的原点,一边在x 轴上, ?另一边经过点 P( 2 ,2 3),求角α的三个三角 函数值. 12 .如图,在△ ABC 中,∠ABC=90 °,BD ⊥ AC 于 D,∠CBD= α,AB=3 ,?BC=4 ,?求 sin α,cos α,tan α的值. 解直角三角形 一、填空题 3 1.已知 cosA=,且∠B=900-∠A,则sinB=__________. 2

人教版初中数学锐角三角函数的经典测试题及答案解析

人教版初中数学锐角三角函数的经典测试题及答案解析 一、选择题 1.如图,在Rt ABC V 中,90ACB ∠=?,3tan 4B = ,CD 为AB 边上的中线,CE 平分ACB ∠,则AE AD 的值( ) A .35 B .34 C .45 D .67 【答案】D 【解析】 【分析】 根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE =37 AB ,再由点D 为AB 中点得AD = 12AB ,进而可求得AE AD 的值. 【详解】 解:∵CE 平分ACB ∠, ∴点E 到ACB ∠的两边距离相等, 设点E 到ACB ∠的两边距离位h , 则S △ACE =12AC·h ,S △BCE =12 BC·h , ∴S △ACE :S △BCE = 12AC·h :12 BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE , ∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=?,3tan 4B = , ∴AC :BC =3:4, ∴AE :BE =3:4 ∴AE =37 AB , ∵CD 为AB 边上的中线, ∴AD =12 AB ,

∴3 6 7 17 2 AB AE AD AB ==, 故选:D. 【点睛】 本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC 是解决本题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC上找一点B,取145 ABD ∠=o,500 BD m =,55 D ∠=o,要使A,C,E成一直线,那么开挖点E离点D的距离是() A.500sin55m o B.500cos55m o C.500tan55m o D. 500 cos55 m o 【答案】B 【解析】 【分析】 根据已知利用∠D的余弦函数表示即可. 【详解】 在Rt△BDE中,cosD= DE BD , ∴DE=BD?cosD=500cos55°. 故选B. 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.3.在半径为1的O e中,弦AB、AC32,则BAC ∠为()度.A.75B.15或30C.75或15D.15或45 【答案】C 【解析】 【分析】 根据题意画出草图,因为C点位置待定,所以分情况讨论求解. 【详解】 利用垂径定理可知: 32 AE.

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

推荐-反三角函数的概念和运算·典型例题 精品

反三角函数的概念和运算·典型例题 【例1】回答下列问题: (3)π-arcsinx是什么范围内的角? (2)∵0≤arccosx≤π,3∈〔0,π〕∴arccosx=3有解x=cos3而 (4)∵cos(arccosx)=xx∈〔-1,1〕 [ ]

由选择题的唯一性知应选C. 【说明】本题考查对反正弦函数的概念的理解.题目给的θ∈ 要灵活运用诱导公式加以变形,使得角进入主值区间且函数值可用已知表示,不能顾此失彼.解法二用的是排除法.

【分析】由于已知函数的定义域不在反正弦函数的主值区间内,因此不能直接用反正弦函数表示,要先用诱导公式解决角. 由y=2sinx=2sin(π-x) [ ] (1994年全国高考试题,难度0.50)

故已知函数的值域应选B. 【说明】本题采用由函数的内层到外层逐步解决的方法.最易出错的地方是sinx的取值范围,观察正弦函数的图象,采用数形结合进行 【例5】求函数y=arccos(x2-x)的单调减区间. 【分析】注意到已知函数是由函数u=x2-x和函数y=arccosu复合而成的,因此要先求定义域,再根据求复合函数单调区间的规律来解决. [ ] A.y=arcsin(sin2x) B.y=2arcsin(sinx) C.y=sin(arcsin2x) D.y=2sin(arcsinx) 【分析】此题要从选项入手,主要考察反三角函数基本关系式成立的条件,可采用逐项验证的方法. 解:由基本关系式sin(arcsinx)=xx∈〔-1,1〕C.和D.的定义域

∴y=2arcsin(sinx)=2x选B..否定A. 数,它可以是角的弧度数,也可以是三角函数的值,要正确理解.【例7】求下列各式的值 原式=cos(α-β)=cosαcosβ+sinαsinβ

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

初三锐角三角函数知识点总结典型例题练习

三角函数专项复习 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大, A 90B 90∠-?=∠?=∠+∠得由B A 对 边 C

7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 8、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做 坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向)。 :i h l =h l α

锐角三角函数经典总结

锐角三角函数经典总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做 A ∠的正弦,记作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A =sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

新初中数学锐角三角函数的经典测试题及答案

新初中数学锐角三角函数的经典测试题及答案 一、选择题 1.如图,在Rt ABC V 中,90ACB ∠=?,3 tan 4 B =,CD 为AB 边上的中线,CE 平分ACB ∠,则 AE AD 的值( ) A . 35 B . 34 C . 45 D . 67 【答案】D 【解析】 【分析】 根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE = 3 7 AB ,再由点D 为AB 中点得AD = 12AB ,进而可求得AE AD 的值. 【详解】 解:∵CE 平分ACB ∠, ∴点E 到ACB ∠的两边距离相等, 设点E 到ACB ∠的两边距离位h , 则S △ACE = 12AC·h ,S △BCE =12 BC·h , ∴S △ACE :S △BCE = 12AC·h :1 2 BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE , ∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=?,3tan 4 B =, ∴A C :BC =3:4, ∴AE :BE =3:4 ∴AE = 3 7 AB , ∵CD 为AB 边上的中线, ∴AD = 1 2 AB ,

∴ 3 6 717 2 AB AE AD AB ==, 故选:D . 【点睛】 本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE :BE =AC :BC 是解决本题的关键. 2.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( ) A .1000sin α米 B .1000tan α米 C . 1000 tan α 米 D . 1000 sin α 米 【答案】C 【解析】 【分析】 在Rt △ABC 中,∠CAB=90°,∠B=α,AC=1000米,根据tan AC AB α=,即可解决问题. 【详解】 解:在Rt ABC ?中,∵90CAB ∠=o ,B α∠=,1000AC =米, ∴tan AC AB α=, ∴1000 tan tan AC AB αα = =米. 故选:C . 【点睛】 本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平,再一次折叠纸片,使点A 落在EF 上的点A′处,并使折痕经过点B ,得到折痕BM ,若矩形纸片的宽AB=4,则折痕BM 的长为( )

相关文档
最新文档