辐射抗扰度测试方案-EMS测试系统

辐射抗扰度测试方案-EMS测试系统

辐射抗扰度测试方案-EMS测试系统

电台、固定或移动式无线电发射台、手持移动电话等都可能成为电磁场辐射源,干扰电子设备的正常工作。射频辐射抗扰度试验通过模拟一定强度的电磁辐射环境,考察被试设备的电磁场辐射抗扰度能力。一般试验频率为80MHz~1GHz/3GHz,测试场强在1V/m~10V/m 之间,测试需要在标准半电波暗室环境或开阔场中进行。

测试设备:射频信号源、功率放大器、双通道功率计、定向耦合器、射频开关、场强表、高增益天线、OIEMC测试软件及其他专用配件等。

测试配置:

辐射杂散整改(RSE)

电磁兼容整改分析之辐射杂散 辐射杂散(简称RSE)是指当移动台与非辐射性纯阻负载相连接或者在接收机状态时,由移动台产生或放大的通过移动台机壳、电源、控制设备、音频各电缆辐射的工作频率外上的发射。在目前的国际标准中“辐射杂散”基本都将其划分在了射频项目(RF)里面,而国内标准(以YD1032为典型)则将其划分在 电磁兼容(EMC)的测试内容内。 相信接触过无线发射产品认证的朋友都对辐射杂散比较了解,也许还会带点感情色彩认为这个项目比较讨厌,因为无论是在做国内或国际认证中,任何的无线发射产品都逃不掉此项测试要求。从设计及整改角度来讲,对工程人员来说辐射杂散的整改也是其最为头痛的工作内容之一,尤其针对高功率发射产品,如2G,3G设备跟是如此。本文根据摩尔实验室(MORLAB)日常工作经验,以典型的手机产品为例,在此抛砖引玉与大家一起分享一下手机在辐射杂散方面的整改心得。 一.测试场地的布局: 标准辐射杂散的布局如下,其中图一为原理图,图二为摩尔实验室辐射杂散的实景图。 图一:辐射杂散实验布置图

图二:辐射杂散实景图 二.辐射杂散的测试方法: 辐射杂散骚扰的功率点是通过“置换测试法”来确定的。用电波暗室先进行预校正(由信号源和基准天线组成)再置换移动台来进行发射,通过测试接收机得到相同的功率后,则此时预校正器的发射功率就是EUT(被测物)辐射杂散骚扰的功率电平。 三.辐射杂散的指标: 根据不同的产品所对应的标准,辐射杂散的相关指标要求也有所差别,但大体可归纳如下: 发射机的辐射杂散测试要求: 频率限值适用范围 30MHz – 1GHz 1GHz –4GHz, -36dBm -30dBm 欧盟及中国各 类标准 30MHz – 10th-13dBm 美洲

快速瞬变抗扰度测试

笃实务实 立信守信 敬业精业 创新求新 南京磐能电力科技股份有限公司——配网事业部 1 快速瞬变抗扰度测试 测试型号: 测试人员: 测试日期: 测试要求:对各回路进行试验:脉冲群周期为300ms ,测试时间每次60s ,重复频率为5KHz 脉冲群持续时间为15ms 及重复频率为100KHz 脉冲群持续时间为0.75ms 分别进行测试;试验期间允许出现短时通信中断和液晶显示瞬时闪屏,试验结束后能恢复通信。终端不能出现复位、死机、硬件损坏等现象。 测试记录表 序号 测试项目 测试对象 测试方法及要求 测试记录 结果 1 交流电源回路 L :±4kV ; N :±4kV ; PE :±4kV ; L 、N :±4kV ; L 、PE :±4kV ; N 、PE :±4kV ; L 、N 、PE :±4kV ; 5KHz 、15ms 100KHz 、0.75ms 测试期间:终端运行无复位、死机现象; 测试期间:终端通讯无误报、中断现象; 测试结束:模拟量改变量不大于±1%; 测试结束:遥信变位10次,均显示正确; 测试结束:遥控操作10次,均动作正确; 2 交流电压回路 PT 对地:±4kV ; 5KHz 、15ms 及 100KHz 、0.75ms 测试期间:终端运行无复位、死机现象; 测试期间:终端通讯无误报、中断现象; 测试结束:模拟量改变量不大于±1%; 测试结束:遥信变位10次,均显示正确; 测试结束:遥控操作10次,均动作正确; 3 交流电流回路 CT 对地:±4kV ; 5KHz 、15ms 及 100KHz 、0.75ms 测试期间:终端运行无复位、死机现象; 测试期间:终端通讯无误报、中断现象; 测试结束:模拟量改变量不大于±1%; 测试结束:遥信变位10次,均显示正确; 测试结束:遥控操作10次,均动作正确; 4 遥信输入回路 开入对地:±4kV ; 5KHz 、15ms 及 100KHz 、0.75ms 测试期间:终端运行无复位、死机现象; 测试期间:终端通讯无误报、中断现象; 测试结束:模拟量改变量不大于±1%;

(完整版)射频指标测试介绍

目录 1GSM部分 (1) 1.1常用频段介绍 (1) 1.2 发射(transmitter )指标 (2) 1.2.1发射功率 (2) 122 发射频谱(Output RF spectrum) (4) 1.2.2.1调制频谱 (4) 1.2.2.2开关频谱 (5) 1.2.3 杂散(spurious emission) (5) 1.2.4 频率误差(Frequency Error) (6) 1.2.5 相位误差( Phase Error) (6) 1.2.6功率时间模板(PVT) 7 1.2 接收(receiver) 指标 (8) 1.2.1接收误码率(BER (8) 2 WCDMA (9) 2.1常用频段介绍 (9) 2.2 发射(Transmitter )指标 (9) 2.3 接收(receiver) 指标 (15) 3 CDMA2000 (15) 3.1常用频段介绍 (15) 3.2 发射(transmitter )指标 (16) 3.3 接收(receiver) 指标 (19) 4 TD-SCDMA 部分 (20) 4.1常用频段介绍 (20) 4.2 发射(transmitter )指标 (20) 4.3 接收指标( Receiver) (26) 1GS M部分 1.1常用频段介绍

1.2 发射(transmitter)指标 1.2.1发射功率 定义:发射机载波功率是指在一个突发脉冲的有用信息比特时间上内,基站传送 到手机天线或收集及其天线发射的功率的平均值。 测量目的:测量发射机的载波输出功率是否符合GSM规范的指标。如果发射功 率在相应的级别达不到指标要求,会造成很难打出电话的毛病,即离基站近时容易打出而离基站远时打出困难,往往表现出发射时总是提示用户重拨号码。如果 发射功率在相应的级别超出指标的要求,则会造成邻道干扰。 测试方法: 手机发射部分由发射信号形成电路、功率放大电路、功率控制电路三个单元组成。 GSM频段分为124个信道,功率级别为5----33dBm,即卩LEVEL5--LEVEL19共15 个级别;DCS频段分为373个信道(512----885),功率级别为0----30dBm,即LEVEL0---LEVEL15共15个级别;每个信道有15个功率等级,测试时选上、中、下三个信道对每个功率等级进行测试,每个功率等级以2dBm增减。 功率控制:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站 近时发射功率小。具体过程如下:手机中的数据存储器存放有功率级别表,当手 机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的 功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。 测试指标: DCS1 800 Power con trol Nomi nal Output Toleranee (dB) for con diti ons

常用的抗扰度试验标准

常用的抗扰度试验标准 钱振宇 摘要:详细地介绍了几种抗扰度试验的目的、方法、严酷度等级及要求。 关键词:抗扰度试验,标准,电磁兼容,电源管理 我国电磁兼容认证工作已经起动,第一批实施电磁兼容的产品类别及所含内容也已基本确定,它们是声音和电视广播接收机及有关设备,信息技术设备,家用和类似用途电动、电热器具,电动工具及类似电器、电源、照明电器、车辆机动船和火花点火发动机的驱动装置、金融及贸易结算电子设备、安防电子产品、声音和电视信号的电缆分配系统设备与部件,低压电器。尽管产品不同,引用的产品族测试标准也不同,但其中抗扰度的试验内容基本相同,它们是静电放电、射频辐射电磁场、脉冲群、浪涌、射频场引起的传导干扰和电压跌落等6项。为了帮助读者对这些标准的理解,作者试图从试验目的、仪器特性要求、基本配置情况、标准试验方法和对标准的评述等方面入手,用比较简洁的文字介绍这些试验,以加深对标准的理解。 1IEC61000-4-2(GB/T17626.2)静电放电抗干扰试验 1.1静电放电的起因 静电放电的起因有多种,但IEC61000-4-2(GB/T17626.2)主要描述在低湿度情况下,通过摩擦等因素,使人体积累了静电。当带有静电的人与设备接触时,就可能产生静电放电。 1.2试验目的 试验单个设备或系统的抗静电干扰的能力。它模拟: (1)操作人员或物体在接触设备时的放电。

(2)人或物体对邻近物体的放电。 静电放电可能产生的如下后果: (1)直接通过能量交换引起半导体器件的损坏。 (2)放电所引起的电场与磁场变化,造成设备的误动作。 1.3静电放电的模拟 图1和图2分别给出了静电放电发生器的基本线路和放电电流的波形。 图1静电放电发生器 图2静电放电的电流波形 图1中高压真空继电器是目前唯一的能够产生重复与高速的放电波形的器件(放电开关)。图2是标准放电电流波形,图中Im表示电流峰值,上升时间tr=(0.7~1)ns。放电线路中的储能电容CS代表人体电容,现公认150pF比较合适。放电电阻Rd为330Ω,用以代表

杂散

电磁兼容整改分析之辐射杂散 2009-11-27 16:11:34 来源:摩尔实验室浏览次数:1839 文字大小:【大】【中】【小】关键字:电磁兼容整改辐射杂散EMC测试 辐射杂散(简称RSE)是指当移动台与非辐射性纯阻负载相连接或者在接收机状态时,由移动台产生或放大的通过移动台机壳、电源、控制设备、音频各电缆辐射的工作频率外上的发射。在目前的国际标准中“辐射杂散”基本都将其划分在了射频项目(RF)里面,而国内标准(以YD1032为典型)则将其划分在电磁兼容(E MC)的测试内容内。 相信接触过无线发射产品认证的朋友都对辐射杂散比较了解,也许还会带点感情色彩认为这个项目比较讨厌,因为无论是在做国内或国际认证中,任何的无线发射产品都逃不掉此项测试要求。从设计及整改角度来讲,对工程人员来说辐射杂散的整改也是其最为头痛的工作内容之一,尤其针对高功率发射产品,如2G,3G设备跟是如此。本文根据摩尔实验室(MORLAB)日常工作经验,以典型的手机产品为例,在此抛砖引玉与大家一起分享一下手机在辐射杂散方面的整改心得。 一.测试场地的布局: 标准辐射杂散的布局如下,其中图一为原理图,图二为摩尔实验室辐射杂散的实景图。 图一:辐射杂散实验布置图

图二:辐射杂散实景图 二.辐射杂散的测试方法: 辐射杂散骚扰的功率点是通过“置换测试法”来确定的。用电波暗室先进行预校正(由信号源和基准天线组成)再置换移动台来进行发射,通过测试接收机得到相同的功率后,则此时预校正器的发射功率就是EUT(被测物)辐射杂散骚扰的功率电平。 三.辐射杂散的指标: 根据不同的产品所对应的标准,辐射杂散的相关指标要求也有所差别,但大体可归纳如下: 发射机的辐射杂散测试要求:

TDD-LTE-杂散干扰

1.1.1杂散干扰 1.1.1.1杂散干扰定义 由于发射机中的功放、混频器和滤波器等非线性器件在工作频带以外很宽的范围内产生辐射信号分量,包括热噪声、谐波、寄生辐射、频率转换产物和互调产物等落入受害系统接收频段内,导致受害接收机的底噪抬升,造成灵敏度损失,称之为杂散干扰。 1.1.1.2OMC频域特征 LTE杂散干扰小区PRB波形特点:PRB特征波形前高后低,呈现整体下降的趋势,如下图: 1.1.1.3干扰排查流程 步骤一、基站的数据库的核查 确定是否有共站的DCS1800M基站、OFDM基站等信息,以及相关的天线型号、设备类型以及天面安装规划图,初步确定杂散干扰源。如果有共站的DCS1800M基站、OFDM 基站,那么它们是杂散干扰源的可能性很强。 步骤二、杂散干扰源的现场排查确定 确定有共站的DCS1800M基站、OFDM基站信息后,可以安排进行现场勘查。确认是否共站的DCS1800M基站、OFDM基站安装隔离度是否存在问题,还可以通过现场关闭共站的DCS1800M基站、OFDM基站电源、加装施扰基站带通滤波器的方法,观察杂散干扰是否消失,最终确定杂散干扰源。 步骤五、整改方案的确定及实施 工程、网优、厂家、设计院联合会审、确定整改方案并实施,网优评估实施效果。 1.1.1.4干扰整治措施 LTE系统的杂散干扰,主要是F频段的设备受到的杂散干扰。目前淮安现场发现的

杂散干扰源,主要是共站DCS1800M产生的杂散干扰,另外也有少量共站OFDM基站产生的杂散干扰。 1.1.1.4.1DCS1800杂散干扰案例—更换滤波器 问题描述:城东花园1根据PRB统计为干扰小区,其PRB特征波形存在明显的前高后低的杂散干扰特征,如下: 问题分析:根据基站数据核查,城东花园1为2通道LTE基站设备,并且存在共站的DCS1800设备,城东花园1与DCS1800M小区配置成合路共天馈系统;为确认城东花园1的杂散干扰是否来自1800M小区,现场对1800M小区进行了现场闭站处理,观察干扰是否消失。关闭DCS小区后(闭站时间为15::45~16:15),城东花园1杂散的干扰波形消失,确认杂散干扰来自1800M小区。 解决验证:由于不能通过调整水平隔离、垂直隔离及方位角调整进行有效隔离,我们采用在城东花园1小区共天馈的DCS1800M的1小区上加装滤波器,虑除1800M带外杂散,如下: 对城东花园1共站1800M小区加装滤波器后,杂散干扰得到抑制。

杂散发射的测试及抑制方法.

关于杂散发射 Auhq 2005-06-15 杂散发射可以理解为谐波分量,比如GSM900的2次谐波分量在1.8G,3次谐波分量在2.7G, 等等。杂散发射的测量通常在0-6GHz之间测量,在1GHz到4GHz处应小于30dBm,GSM 规范里有相应的规定。 杂散发射在两种模式下测量,一种是传导模式,一种是辐射模式。而每一种模式下又分为信 道模式(Traffic)和空闲模式(Idle),通常信道模式的值会大于空闲模式。 标准 以下四张表是在四种模式下GSM标准规定的杂散发射功率限值: 功率电平(dBm) 频率范围 GSM 900MHz DCS 1800MHz 100KHz~1GHz -36 -36 1GHz~12.75GHz -30 1000MHz ~1710MHz -30 1710MHz ~1785MHz -36 1785MHz ~12.75GHz -30 图表 1 传导型杂散发射,MS被分配一个信道(Traffic,通常是62信道,902.4MHz)频率范围功率电平(dBm) 100KHz~880MHz -57 880MHz~915MHz -59 915MHz~1000MHz -57 1000MHz ~1710MHz -47 1710MHz ~1785MHz -53 1785MHz ~12.75GHz -47 图表 2 传导型杂散发射,MS处于空闲模式(Idle)

功率电平(dBm) 频率范围 GSM 900MHz DCS 1800MHz 30MHz~1GHz -36 -36 1GHz~4GHz -30 1000MHz ~1710MHz -30 1710MHz ~1785MHz -36 1785MHz ~4GHz -30 图表 3 辐射型杂散发射,MS被分配一个信道(Traffic,通常是62信道,902.4MHz)频率范围功率电平(dBm) 30MHz~880MHz -57 880MHz~915MHz -59 915MHz~1000MHz -57 1000MHz ~1710MHz -47 1710MHz ~1785MHz -53 1785MHz ~4GHz -47 图表 4 辐射型杂散发射,MS处于空闲模式(Idle) 杂散发射的产生通常有以下几个方面: 1.电路Layout过程中EMC考虑不够(主要指射频部分); 2.天线失配; 3.PA不正常工作; 4.结构设计造成的杂散过大。 抑制杂散发射的方法: 1.用柔性铜皮将射频电路部分全部包裹起来; 2.换不同的天线形式; 3.将结构件上尽可能多的地方贴上柔性铜皮。 以上处理方法中有一点要特别注意,就是包裹铜皮时要将天线露出来,因为杂散发射测试时 是远场测试,必须要手机发射,在微波暗室里几米外无线接收,特别是信道模式,如果铜皮 将天线都包住了,信号无法发射出来,就无法连接注册了。 杂散发射在谐波阶数越高的地方越不容易抑制。

五种高精度ADC中杂散问题分析及应对方法

五种高精度ADC中杂散问题分析及应对方法 虽然目前的高分辨率SAR ADC和Σ-ΔADC可提供高分辨率和低噪声,但系统设计师们可能难以实现数据手册上的额定SNR性能。而要达到最佳SFDR,也就是在系统信号链中实现无杂散的干净噪底,可能就更加困难了。杂散信号可能源于ADC周围的不合理电路,也有可能是因恶劣工作环境下出现的外部干扰而导致。 针对高分辨率、精密ADC应用中的杂散问题,本文将介绍几种判断其根本原因的方法,并提出相应的解决方案。这些技术和方法将有助于提高终端系统的EMC能力和可靠性。本文将针对五种不同的应用情况阐述用于降低杂散的特定设计解决方案: 1、由控制器板上的DC-DC电源辐射而导致的杂散问题。 2、由AC-DC适配器噪声通过外部基准源而导致的杂散问题。 3、由模拟输入电缆而导致的杂散问题。 4、由模拟输入电缆上的耦合干扰而导致的杂散问题。 5、由室内照明设备导致的杂散问题。 6、杂散与SFDR 众所周知,无杂散动态范围(SFDR)表示可从大干扰信号分辨出的最小功率信号。对于目前的高分辨率、精密ADC,SFDR一般主要由基波频率与目标基波频率的第二或第三谐波之间的动态范围构成。然而,由于系统其他方面的因素,可能会导致杂散产生并限制系统的性能。 这些杂散可分为输入频率相关杂散和固定频率杂散。输入频率相关杂散与谐波或非线性特性有关。本文将重点分析由电源、外部基准源、数字连接、外部干扰等造成的固定频率杂散。根据应用情况,可降低或完全避免这些类型的杂散,以助于实现最佳的信号链性能。由ADC周围DC-DC电源而导致的杂散问题 由于DC-DC开关稳压器会产生较高的纹波噪声,通常建议将LDO作为在精密测量系统中为精密ADC生成低噪声电源轨的解决方案。固定频率或脉宽调制开关稳压器会产生开关纹波,该纹波一般位于几万至几兆赫兹固定频率处。固定频率噪声可能会通过ADC的

LTE杂散及部分接收项测试

LTE 复杂项测试指导书

修订记录Revision record

摘要: 本文详细描述了LTE复杂项测试方法,结合协议,包括了各个指标测试的目的、影响、测试配置、协议要求、组网环境等内容,能够帮助刚刚上手学习LTE射频测试的同事,很快掌握LTE的复杂项目测试方法。 缩略语清单:

发射机指标 一、发射机杂散(6.6.3.1) 1. 指标含义 杂散是指发射机产生的一些有害的、无用的辐射信号,包括谐波辐射、互调产物及变频产物等。 2. 测试目的 衡量UE对频段外的频谱干扰,它会成为其他频段的干扰信号,为了评估出这种干扰信号的强度大小,看会对其他频段产生多大的干扰,是否满足协议要求,所以进行该项测试。 3. 测试配置 杂散测试的范围是距离中心工作频率BW/2+Δf OOB +MBW/2以外的频段,该频段以内的频谱测量由ACLR 和频谱模板两个指标进行测量,这样,从9k到12.75M的频带内我们都进行了频谱覆盖测试。 Table 6.6.3.1.3-1: Δf OOB boundary between E-UTRA channel and spurious emission domain Δf OOB 是指:距离信道边缘的频率间隔,是边缘,不是距离上行发射中心频点的频率间隔

Table 6.6.3.1.4.1-1: Test Configuration Table 4. 协议要求 Table 6.6.3.1.3-2: Spurious emissions limits 5. 环境及组网

测试仪表配置: ●综合测试仪R&S CMW500 ●频谱分析仪R&S FSQ ●带阻滤波器主要作用是衰减工作频带内的发射信号,降低输入到频谱分析仪的 混频器的输入端口信号强度,防止输入到频谱仪中的信号过大,导致频谱仪过载 (overload,频谱仪动态范围不够),进而失真导致结果出错;同时防止输入到频 谱仪中的信号强度大,将频谱仪的底噪抬高将杂散信号淹没,导致的测试结果不正 确;还可以防止大的发射信号与频谱仪产生交调,引入额外的频谱杂散分量,影响 测试结果的真实性。 ●衰减器10dB,DC TO 10G (Agilent),降低从手机发射出来的功率和提 高阻抗匹配。 ●功分器 ●屏蔽盒 综测仪 CMW500 10dB 6. 测试步骤 1.按照上图搭建测试环境。 2.在CMW 500上按照Table 6.6. 3.1. 4.1-1,设置RB数目和调制方式,并让UE以最大发射功率 发射。 3.使用频谱仪进行杂散测试 1)根据不同的测试频段,设置起始与终止频率,并设置相应的RBW 和VBW。

需要辐射骚扰RE 和辐射抗扰度RS 测试的产品及标准列表

需要辐射骚扰RE 和辐射抗扰度RS 测试的产品及标准列表 With the frequency of electronic control circuitry or oscillator frequency is higher and higher, more and more products need radiated disturbance and radiated immunity test, and the frequency range required by radiated disturbance and radiated immunity test is higher and higher. Now nearly all electrical products are required to perform radiated disturbance and radiated immunity test. Please see table 1 for details: Country/ Region Products Standards* Test Item Note Europe HA appliances EN 55014-1 RE √ EN 55014-2 RS √ EN 60335-1 RS √E-toy EN 55014-1 RE √ EN 55014-2 RS √Lighting equipment EN 55015 RE √ EN 61547 RS √IT equipment EN 55022 RE √ EN 55024 RS √AV equipment EN 55013 RE √ EN 55020 RS √ISM equipment EN 55011 RE √ EN 55014-2 RS √Industrial,commercial equipment EN 61000-6-1 RE √ EN 61000-6-3 EN 61000-6-2 RS √ EN 61000-6-4 Medical electrical equipment EN 60601-1-2 RE √ RS √Automatic electrical controls EN 60730-1 RE √ RS √Electronic switches EN 60669-2-1 RE √ RS √Marine navigational equipment EN 60945 RE √ RS √Measurement equipment EN 61326-1 RE √ RS √Adjustable speed power drives EN 61800-3 RE √ RS √Radio communication ETSI EN 300 series RE √ equipment (wireless product) ETSI EN 301 489 RE √ series RS √Component in vehicle, trailers EN 55025 RE √ EMF for HA EN 62233 - - EMF for lighting EN 62493 RE √ All appliances-Harmonic current EN 61000-3-2 - - EN 61000-3-12 All appliances-Flicker EN 61000-3-3 - - EN 61000-3-11 USA Radio devices FCC part 15 RE √ISM equipment FCC part 18 RE √Canada ISM equipment ICES-001 RE √

电压跌落、短时中断和电压变化的抗扰度测试

电压跌落、短时中断和电压变化的抗扰度试验 分享到:4 电压跌落、短时中断和电压变化的抗扰度试验 IEC61000-4-11(GB/T17626.11)1.干扰的起因 电压瞬时跌落、短时中断是由电网、变电设施的故障或负荷突然出现大的变化所引起的。在某些情况下会出现两次或更多次连续的跌落或中断。电压变化是由连接到电网的负荷连续变化引起的。 这些现象本质上是随机的,其特征表现为偏离额定电压并持续一段时间。电压瞬时跌落和短时中断不总是突发的,因为与供电网络相连的旋转电机和保护元件有一定的反作用时间。如果大的电源网络断开(一个工厂的局部或一个地区中的较大范围),电压将由于有很多旋转电机连接到电网上使之逐步降低。因为这些旋转电机短期内将作为发电机运行,并向电网输送电力,这就产生了电压渐变。作为大多数数据处理设备,一般都有内置的断电检测装置,以便在电源电压恢复以后,设备按正确方式起动。但有些断电检测装置对于电源电压的逐渐降低却不能快速作出反应,结果导致加在集成电路上的直流电压,在断电检测装置触发以前已降低到最低运行电压水平之下,由此造成了数据的丢失或改变。这样,当电源电压恢复的时候,这个数据处理设备就不能正常再起动。 2.试验目的

IEC61000-4-11标准规定了不同类型的试验来模拟电压的突变效应,以便建立一种评价电气和电子设备在经受这种变化时的抗扰性通用准则。其中对电压渐变作为一种型式试验,根据产品或有关标准的规定,用在特殊的和认为合理的情况下。 3.三个专门的术语 (1)电压瞬时跌落指在电气系统的某一点,电压突变下降,在经历了半个周期到几秒钟的短暂持续期后,又恢复正常。 (2)短时中断指供电电压消失一段时间,一般不超过1min。短时中断可认为是100%的幅值瞬时跌落。 (3)电压渐变指供电电压逐渐变得高于或低于额定电压,变化的持续时间相对周期来说,可长可短。

辐射抗扰度测试

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 辐射抗扰度测试 辐射抗扰度测试指导老师:陈洁作者:胡力元11721297 时间:2011年12月16号 1/ 50

主要内容1.抗扰度测量 2.抗扰度试验准则和一般测量方法 3.电磁兼容测试场地 4.辐射敏感度的测量 5.辐射抗扰度测试实质 6.测试案例分析 7.参考文献

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 1.抗扰度测量抗扰度是指装置、设备或系统面临电磁骚扰不降低运行的能力。 设备的抗扰度测试又称为设备的敏感度测试(EMS),目的是测试设备承受各种电磁骚扰的能力。 当设备由于受到骚扰影响而性能下降时其性能判据可分为4级。 (1)EUT工作完全正常(2)EUT工作指标或功能出现非期望偏离,但当骚扰去除后可自行恢复。 (3)EUT工作指标或功能出现非期望偏离,骚扰源去除后不能自行恢复,必须依靠操作人员介入,例如“复位”方可恢复(4)EUT 的元器件损坏、数据丢失、软件故障等。 3/ 50

1.抗扰度测量在测量中,所关心的是一些敏感设备在遇到辐射或传导干扰的影响是,敏感设备的工作状态会发生怎么样的变化。 在试验中,通过测试设备将这些干扰模拟出来,再通过一些测试附加件,例如天线或传导注入所用的耦合部件等,讲上述干扰施加给EUT。 EUT的工作状况根据其特点选择合适的方式进行监测。 敏感性测量关注的是 EUT刚呈现性能降低时,外部施加干扰量的描述;抗干扰度关注的是即将出现性能降低时,外部施加干扰量的描述。

FCC_Part15_RE_Fail问题改善2015.12.1

1.RE_TEST(Radiated emission limits) 在361.8,723.6MHz 2.依据PCB布局,芯片手册,天线原理追踪原因如下: (1)电源部分; (2)芯片(ADM2582E)PCB布局; 3.测试验证及解决方案 (1)验证是否是AP辐射超限: 抽样1.测试数据如下:

抽样2.测试数据如下: 抽样3.测试数据如下:

测试过程中,AP烧录出厂程序,接通电源利用天线进行测试无线接收,可以测试到抽样的三个AP在362MHZ附近产生了杂散信号, 断开电源即AP不工作时测试不到上述强度的杂散信号。 (2) ①电源部分影响及解决方案 直流48V供电测试 AC-DC_48V测试 上述测试分别采用直流和AC-DC_48V电源分别给AP供电,用频谱仪外接天线,在AP电路板周围逐步移动,频谱仪设置参数不变情况下,AP没有辐射杂散信号。

直流48通过经N1给AP供电测试 AC-DC_48V通过N1给AP供电测试直流48V及AC-DC_48V两种方式都给N1供电,再经网线给AP供电,测试过程中都能在362MHz附件收到杂散信号。 ②芯片周围布局影响验证及解决方案 排除电源(用直流电供电)影响基础上,验证芯片布局影响:用频谱仪外接天线,在AP电路板周围逐步移动,频谱仪设置参数不变情况下,在芯片ADM2582布局区域,接收到杂散信号,和FCC-part15测试到频点一致。 @362MHZ频点杂散信号 在芯片ADM2582区域进行屏蔽处理后再进行接收测试,取样的两块儿AP已经得到改善即杂散已经被衰减掉。测试数据如下:

芯片屏蔽后测试数据 该方法在找EMI 源头非常有效,这一点在后来整改中也验证了这一推断。解决方法自然也有多种途径。 2015.12

辐射骚扰测试及整改方法

浅谈手机辐射骚扰抗扰度测试(RS)及整改方法 近年来,随着人们生活水平的提高和信息技术的飞速发展,广大消费者对手机性能的要求也越来越高。因此,对于手机制造商以及设计公司来说,只有不断提升手机的性能水平,才能满足日益增长的市场需求。 提高手机的性能水平,我们就必须关注手机的测试中,一项重要的测试项目:辐射骚扰抗扰度测试(R S)。辐射骚扰抗扰度测试(RS)的测试目的是检验手机抗外界辐射骚扰的能力,从而提高手机应对外界骚扰的能力,使手机更加稳定的工作。在手机的CE标准(EN301 489-1和EN301 489-7)和国家进网的标准(YD-1032)中,对辐射骚扰抗扰度测试(RS)都是极为严格的。在这里我们将对手机辐射骚扰抗扰度测试(RS)及测试中的一些整改措施做如下介绍: (一)试验方法和等级: 表1 试验等级 1)手机RS测试的试验等级一般为表1中等级2,即场强3V/M。作为试验设备,要用1KHz的正弦波对未调制信号进行80%的条幅调制来模拟实际情况。 2)频率扫描步长应为瞬时频率的1%。 3)试验应在80MHZ-1GHZ整个频率范围内进行,但发信机,收信机或作为收发信机一部分的收信机 的免测频段除外。 4)实验时,手机应放置于一个0.8M高的绝缘试验台上。

5)如果受试设备的进、出线没有规定,则使用非屏蔽平行导线。从受试设备引出的连线暴露在电磁场 中的距离为1M。 6)受试设备的连线应平行于均匀域布置,以使其处于较敏感的位置。 (二)性能判据: 试验时,应建立并保持通信连接。如果收信机或作为收发信机一部分的收信机在离散频率点的相应是窄带相应,那么此相应忽略不计。试验频率应记录在报告中 1) 对EUT,当通过一个CF为1KHZ,BW为200HZ的音频BPF测量是,上行和下行语音输出电平应至少比记录的参考电平低35dB。试验后,EUT应正常工作,没有用户控制功能的丧失或存储数据的丢 失,并且保持通信连接。 2) 试验时,EUT下行链路的RXQUAL的值应不超过3. 空闲模式下也要进行测试。 以上是相关的标准要求,但是为了提供手机的性能一些大的手机生产厂商把测试等级加强,如诺基亚把试验等级为场强提高到10V/M,并且试验频率在80MHZ-2GHZ的范围内进行。这就提高了手机的性能, 加强了客户对诺基亚的信任。 (三)容易出现的问题: 1)手机在测试过成中出现断话,只有重新建立通话才能测试。(如果此问题反复出现说明手机设计有 比较严重的问题,一般需要更改手机内部的电路板) 2)上行和下行语音输出电平超出记录的参考电平35dB。 3)下行链路的RXQUAL的值超过3. (四)整改方法: 辐射骚扰抗扰度测试(RS)的测试除了和手机本身有很大关系外,和充电器及电池也有很大关系。因为骚扰信号可能通过充电器和电池耦合到手机的内部从而影响手机的性能。整改方法如下:

射频电磁场辐射抗扰度试验介绍-肖保明

射频电磁场辐射抗扰度试验介绍 国网南京自动化研究院国家电网公司自动化设备电磁兼容实验室 肖保明 1 目的与应用场合 1.1 概述 本标准主要介绍国际标准IEC61000-4-3:2006,对应国家标准GB/T17626.3:2006《电磁兼容试验和测量技术射频电磁场辐射抗扰度》的试验方法。 1.2 目的和应用场合 本标准所涉及的主要骚扰源是来自80MHz~2000MHz以上频率范围内射频辐射源产生的电磁场。比如电台、电视台、固定或移动式无线电发射台以及各种工业辐射源产生的电磁场(目前该标准的上限频率已经提高到6000MHz,这与目前使用的无线通讯设备的频率有关,很多无线通讯设备使用2.4GHz或者5.6GHz频率)。在该电磁场中运行的电气、电子设备会受到该电磁场的作用,从而影响设备的正常运行。所以,本标准的目的主要是建立一个评估射频电磁场辐射抗扰度性能的公共参考,为有关产品的专业技术委员会或用户和制造商提供一个基本参考。 2 常见术语 2.1 电波暗室 安装吸波材料用以降低内表面电波反射的屏蔽室 2.2 半电波暗室 除地面安装反射接地平板外,其余内表面全部安装吸波材料的屏蔽室。 2.3 天线 将射频信号源功率发射到空间或者接收空间电磁能量并转化为电信号的装置。 2.4 远场 由天线发生的功率密度近似地随距离的平方呈反比关系的电磁场区域。 2.5 场强 场强用于远场测量,测量可以是电场分量或磁场分量,可以V/m,A/m或W/m2表示。 2.6 极化 辐射电磁场电场向量的方向。 2.7 扫描 连续或步进扫过一段频率范围。 3 试验等级及选择 一般试验等级 试验等级

◆保护抵抗数字无线电话射频辐射的试验等级。 试验等级 发射机/接收机所发射的电平为典型的低电平。 2类:中等电磁辐射环境。使用低功率便携式发射接收机(典型额定值小于1W),但限定在设备附近使用,是一种典型的商业环境。 3类:严酷电磁发射环境。便携式发射接收机(典型额定值2W或更大),可接近设备使用,但距离小于1m。设备附近有大功率广播发射机和工、科、医设备,是一种 典型的工业环境。 ×类:×是由协商或产品规范和产品标准规定的开放等级。 4 试验设备 4.1 信号发生器 ◆能覆盖标准中所规定的频段范围,具备幅度和调制功能,能手动或自动扫描,扫描 点的驻留时间以及测试的频率-步长可以编程控制。 ◆具备幅度调制功能(内调制或外调制),调制度80%±5%,调制频率为1kHz±10% 的正弦波 ◆信号发生器输出阻抗为50Ω ◆信号发生器任何杂散谱线应至少比载波电平低15dB 4.2 功率放大器 ◆能够放大未调制和已调制的射频信号,给天线提供所需要的场强。 ◆能覆盖标准中所规定的频段范围。 ◆放大器产生的谐波和失真电平比载波电平至少低15dB 4.3 场强辐射装置 ◆能够覆盖标准所规定的频带范围 ◆发射天线,在80M Hz~1000MHz频带内可采用一个全频段的复合天线或者采用组合天 线(双锥天线和对数周期天线)。1000MHz以上频带内可采用喇叭天线。 ◆TEM Cell或GTEM Cell

无线网络规划全员大比武试题含答案

技术支援部技术大比武试题 考试科目:无线网络规划 注意事项: A.本试卷为2002年04月大比武试题,考试时间为240分钟,闭卷考试。 B.应考人员在答题前,请将姓名、工号、所在具体部门、职务认真准确地 填写在答题纸的折线内,不得在试卷上答题,所有答题在答题纸上完成。 C.应考人员应严格遵守考场纪律,服从监考人员的监督和管理,凡考场舞 弊不听劝阻或警告者,监考人员有权终止其考试资格,没收试卷,以0 分处理,并报上级部门予以处分。 D.考试结束,应考人员应停止答卷,离开考场。监考人员收卷后,对答卷 进行装订、密封,送交有关部门进行评判,试卷、答题纸不得带离考场。

第一部分无线网络规划 一、填空题(每空0.5分,共30分)(包含如下知识点:无线知识、规划、算法、仪器、数据设定、勘测、整改) 1.1、无线知识 1、一个TDMA帧由8个时隙组成,时长 4.615或120/26 ms。 2、GPRS分组信道采用52 复帧结构,每个复帧中包含12个无线块。 3、SGSN和MSC之间的接口叫Gs 接口,GGSN和外部的internet网之间的接口叫Gi 接口。 4、GPRS中路由区是位置区的子集,一般来说在一个位置区下可以划分为一个到多个路由区。路由区标识RAI由LAI+RAC (MCC+MNC+LAC+RAC)构成。 5、杂散辐射是指除发射机以外接收机由于有有源器件的存在而在其他频率上的辐射。 6、由于天馈的互易性,对于上下行的影响是相同的。同时GSM上下行频差不大,无线传播特性基本相同,人体损耗和功率余量应该基本相同。在使用塔放情况下当上下行基本平衡时的简化平衡方程为: 基站机顶功率-移动台接收灵敏度=移动台功率+分集增益+塔放带来的增益-基站接收灵敏度 7、在超距离通信中,需要考虑地球曲率半径对电磁波传播的影响。 8、CDMA 1X技术的码片速率为1.2288Mcps。 9、CDMA 1X的时间分集是采用符号交织,检错纠错编码等方法。 10、CDMA 1X的频率分集是通过将信号能量在宽频带中扩展实现的。CDMA将信号扩展到整个1.23M上。 11、CDMA 1X的空间分集采用在基站采用双接收天线;在手机和基站采用RAKE 接收,合并不同传输延时的信号;软切换的时候,移动台和多个基站同时联系,从中选出最好的帧送给手机。 12、CDMA中的切换类型有软切换、更软切换、硬切换。

射频辐射电磁场抗扰度试验

电磁兼容测试项目 ——射频辐射电磁场抗扰度试验测试标准 1.射频辐射电磁场抗扰度试验的由来 射频辐射电磁场干扰是人们最早考虑的电磁干扰,早在1934年,国际电工委员委(IEC)就成立了国际无线电干扰标准化特别委员会(CISPR),主要研究骚扰对通信和广播接收效果的影响,并因此制定了一些产品族的电磁兼容标准,旨在限制这些设备的电磁骚扰的发射,以便实施对通信和广播的保护。真正把射频辐射电磁场作为对电子设备抗干扰能力的考核而写进电磁兼容抗扰度标准,是在1984年IEC的TC65委员会(研究工业过程测量与控制装置的专业委员会)出版的IEC801-3标准中,它首次把射频辐射电磁场与静电放电等并列在一起,作为对电子设备抗扰度试验中最主要的几种试验方法。 射频辐射电磁场抗扰度试验的国家标准为GB/T17626.3(等同于国际标准IEC61000-4-3)。 2.试验等级 (1)一般试验等级 下表频率范围为80MHz~1000MHz内的优先选择试验等级。 表中给出的是未经调制的信号场强,在正式试验时要用1kHz的正弦波对未调制信号进行深度为80%的幅度调制。 对产品标准化技术委员会来说,可在IEC61000-4-3和IEC61000-4-6(对应于我国国家标准GB/T17626.3和GB/T17626.6)之间选择比80MHz略高或略低的频率作为过渡频率。这里IEC61000-4-6(GB/T17626.6)标准为电气和电子产品规定了频率在80MHz以下的辐射电磁场对线路感应所引起的传导干扰试验。 (2)针对数字无线电话的射频辐射而设定的试验等级 下表给出频率范围为800MHz~960MHz,及1.4GHz~2.0GHz的优先试验等级。

射频杂散的测试环境搭建及测试方法说明

射频杂散的测试方法 传导杂散骚扰(Conduct Spurious Emissions), 发信机的杂散辐射是指:发信机正常工作时,除了发射出工作频段有用的射频外,还有其他的非有用的射频信号,这些无用信号会对其他的设备产生不良的干扰。 目的:检测手机天线端的离散辐射功率是否符合GSM规范及国家行业标准。国标对杂散的要求是全频段的,鉴于手机的特殊性,最高的杂散点会出现在发射频点的二次三次等多次谐波上,所以本测试把重点集中在这些频点的测试上。 测试要求 使用设备: 所用设备:RATT工具待测机器射频线衰减器滤波器(VHF-1300+,VHF-2700+)频谱分析仪HP8596E 标准信号源Agilent83712B,综合测试仪CMU200

图1 1.3G高通滤波器和2.7G高通滤波器 图2 衰减器图3 频谱分析仪及标准信号源 方法一:使用功分器与综测仪测试 这里使用了一个10db的定向耦合器来作为功率采样, 图9 10db定向耦合器 1,测试实际连线框图如下:

滤波器需要根据测试的频段,来进行选择。测试GSM900频段时,选用VHF-1300+(1.3G 高通滤波器)测试DCS1800频段时选用VHF-2700+(2.7G 高通滤波器) 测试步骤: 2,测试通道的线损测试方法 线损的测试可以用网络分析仪,也可以用信号源和频谱测试仪来进行点频测试。这里采用信号源和频谱仪的测试方法: 图12 测量线损

测试线损时注意: 耦合器空的一端需要加一个50欧的负载 需要包含衰减器和电缆一起测试 耦合器的直通端是提供给CMU200检测输出功率用的,线损只要测试工作频率10db口的线损测量需要连接相应的高通滤波器一起测试,主要测试相应的二次和三次谐波点的损耗。 注意定向耦合器是有方向的,所以信号源要接输入口 3,测试步骤 按测试的框图搭建测试环境,如下图: 图10 功分器及综测仪测量二次谐波 图11 实际连接图 综测仪安测试的线损设置好补偿, 首先通过综测仪与手机建立呼叫,调整到该频段的中间信道,设置使手机以最大功率发射,通过综测仪监视手机输出功率确实符合要求。 设置频谱仪测试测量需要测试的频点(二次谐波点或三次谐波点),采用最大保持的方式来捕捉杂散的功率值,

相关文档
最新文档