解直角三角形的几种模型

解直角三角形的几种模型
解直角三角形的几种模型

坡度、坡角在实际中的应用

1、如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD(结果果保留根号

).

2、学校校园内有一小山坡AB,经测量,坡角∠ABC=30°,斜坡AB 长为12米。为方便学生行走,决定开挖小山坡,使斜坡BD 的坡比是1:3(即为CD 与BC 的长度之比).A ,D 两点处于同一铅垂线上,求开挖后小山坡下降的高度

AD.

3、如图,小山岗的斜坡AC 的坡度是34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB(结果取整数)

参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°

=0.50).

4、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固。经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF 的坡比

i=1:2.

(1)求加固后坝底增加的宽度AF 的长; (2)求完成这项工程需要土石多少立方米?

专题:解直角三角形的几种模型

类型一:“背靠背”型

5、如图,A、B两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB).经测量,森林保护区中心P点在A城市的北偏东30°方向,B 城市的北偏西45°方向上。已知森林保护区的范围在以P为圆心,50千米为半径的圆形区域内。请问:计划修筑的这条高等级公路会不会穿越森林保护区?为什么?

类型二:“叠合”型

6、如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B. A在一条直线上。请你帮李明同学计算出信号塔CD的高度(结果保留

整数,3≈1.7,2≈1.4 )

类型三:“母抱子”型

7、如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值。测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B. C. A. P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈

0.75)

类型四:“斜截”型

8、某片绿地的形状如图所示,其中∠A=60°,AB⊥BC,AD⊥CD,AB=200m,CD=100m,求AD、BC的长.(精确到1m,3√≈

1.732)

(完整版)初中解直角三角形练习题

解直角三角形练习题 一、 真空题: 1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则sinA= 2、 在Rt △ABC 中,∠C =900,AB =,35cm BC cm = 则SinA= cosA= 3、 Rt △ABC 中,∠C =900,SinA=5 4 ,AB=10,则BC = 4、α是锐角,若sin α=cos150,则α= 若sin53018\=0.8018,则cos36042\= 5、 ∠B 为锐角,且2cosB -1=0则∠B = 6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a =9,b =12,则sinA= sinB= 7、 Rt △ABC 中,∠C =900,tanA=0.5,则cotA= 8、 在Rt △ABC 中,∠C =900,若b a 32=则tanA= 9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是 10、若∠A 为锐角,且tan 2A+2tanA -3=0则∠A = 11、Rt △ABC 中,∠A =600,c=8,则a = ,b = 12、在△ABC 中,若32=c ,b =3,则tanB= ,面积S = 13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC = 14、在△ABC 中,∠B =900,AC 边上的中线BD =5,AB =8,则tanACB=

二、选择题 1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( ) A 、都扩大2倍 B 、都扩大4倍 C 、没有变化 D 、都缩小一半 2、若∠A 为锐角,且cotA <3,则∠A ( ) A 、小于300 B 、大于300 C 、大于450且小于600 D 、大于600 3、在Rt △ABC 中,已知a 边及∠A ,则斜边应为 ( ) A 、asinA B 、 A a sin C 、acosA D 、A a cos 4、等腰三角形底边与底边上的高的比是2:3,则顶角为( ) A 、600 B 、900 C 、1200 D 、1500 5、在△ABC 中,A ,B 为锐角,且有sinA =cosB ,则这个三角形是( ) A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形 6、有一个角是300的直角三角形,斜边为1cm ,则斜边上的高为( ) A 、41cm B 、21cm C 、43cm D 、2 3 cm

相似三角形基本模型及证明

相似三角形基本模型与证明一、基本图形回顾 经典模型

构造相似辅助线——双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 2.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长. 3.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 4.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为 () A. B. C. D.

5.已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一 象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。 求C、D两点的坐标。 构造相似辅助线——A、X字型 6.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。 求证: 7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。 求证: 8.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM.

9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

相似三角形模型分析大全(非常全面-经典)

相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型)(平行) (不平行) (三)母子型 B

(四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型:

二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓展 C B E D A 共享性 G A B E F 一线三等角的变形 一线三直角的变形

第二部分相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OE OA OC? = 2. 例2:已知:如图,△ABC中,点E在中线AD上, ABC DEB∠ = ∠. 求证:(1)DA DE DB? = 2;(2)DAC DCE∠ = ∠. C D E B

例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB

(完整版)初三解直角三角形练习题基础

初三解直角三角形练习题 一、 真空题: 1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则sinA= 2、 在Rt △ABC 中,∠C =900,AB =,35cm BC cm = 则SinA= cosA= 3、 Rt △ABC 中,∠C =900,SinA=5 4 ,AB=10,则BC = 4、α是锐角,若sin α=cos150,则α= 若sin53018\=0.8018,则cos36042\= 5、 ∠B 为锐角,且2cosB -1=0则∠B = 6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a =9,b =12,则sinA= sinB= 7、 Rt △ABC 中,∠C =900,tanA=0.5,则cotA= 8、 在Rt △ABC 中,∠C =900,若b a 32=则tanA= 9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是 10、若∠A 为锐角,且tan 2A+2tanA -3=0则∠A = 11、Rt △ABC 中,∠A =600,c=8,则a = ,b = 12、在△ABC 中,若32=c ,b =3,则tanB= ,面积S = 13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC = 14、在△ABC 中,∠B =900,AC 边上的中线BD =5,AB =8,则tanACB= 二、选择题

1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( ) A 、都扩大2倍 B 、都扩大4倍 C 、没有变化 D 、都缩小一半 2、若∠A 为锐角,且cotA <3,则∠A ( ) A 、小于300 B 、大于300 C 、大于450且小于600 D 、大于600 3、在Rt △ABC 中,已知a 边及∠A ,则斜边应为 ( ) A 、asinA B 、 A a sin C 、acosA D 、A a cos 4、等腰三角形底边与底边上的高的比是2:3,则顶角为( ) A 、600 B 、900 C 、1200 D 、1500 5、在△ABC 中,A ,B 为锐角,且有sinA =cosB ,则这个三角形是( )A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形 6、有一个角是300的直角三角形,斜边为1cm ,则斜边上的高为( ) A 、41cm B 、21cm C 、43cm D 、2 3 cm 三、求下列各式的值 1、sin 2600+cos 2600 2、sin600-2sin300cos300 3. sin300-cos 2450 4. 2cos450+|32 |

相似三角形常用模型及应用

相似三角形模型及应用 相似证明中的基本模型 A 字形 图①A 字型,结论: AD AE DE AB AC BC ==,图②反A 字型,结论:AE AD DE AC AB BC == 图③双A 字型,结论: DF BG EF GC =,图④内含正方形A 字形,结论AH a a AH BC -=(a 为正方形边长) I H G F E D C B A G F E D C B A E D C B A E D C B A 图① 图② 图③ 图④ 8字型 图①8字型,结论: AO BO AB OD CO CD ==,图②反8字型,结论:AO BO AB CO DO CD ==、四点共圆 图③双8字型,结论:AE DF BE CF =,图④A 8字型,结论:111 AB CD EF += 图⑤,结论:EF EG =、AED BEC ABE CDE S S S S ?=?△△△△ E F D C B A F E D C B A O D C B A O D C B A G F E D C B A 图① 图② 图③ 图④ 图⑤ 一线三等角型 结论:出现两个相似三角形

H E D C B A E D C B A E D C B A C 60°F E D C B A F E D C B A 图① 图② 图③ 图④ 角分线定理与射影定理 图①内角分线型,结论: AB BD AC DC =,图②外角分线型,结论:AB BD AC CD = 图③斜射影定理型,结论:2AB BD BC =?, 图④射影定理型,结论:1、2AC AD AB =?,2、2CD AD BD =?,3、2BC BD BA =? D C B D B A C A E D C B A D C B A 梅涅劳斯型常用辅助线 G F E D C B A G F E D C B A G F E D C B A D E F C B A 考点一 相似三角形 【例1】 如图,D 、E 是ABC ?的边AC 、AB 上的点,且AD AC ?=AE AB ?,求证:ADE B ∠=∠. E D C B A 中考满分必做题

解直角三角形-单元测试题(基础题)--含答案

解直角三角形单元测试题 一、选择题: 1、在△ABC中,若三边BC、CA、AB满足 BC:CA:AB=5:12:13,则sinA的值是( ) A. B. C. D. 2、已知∠A为锐角,且sinA≤,则() A.0°≤A≤60° B.60°≤A <90° C.0°<A ≤30° D.30°≤A≤90° 3、在Rt△ABC中,∠C=90°,∠B=60°,那么sinA+cosB的值为() A.1 B. C. D. 4、已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为() A. B. C. D. 5、如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上 的一点,则cos∠APB的值是() A.45° B.1 C. D.无法确定 6、如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到 △AC′B′,则tanB′的值为() A. B. C. D. 7、如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那 么△AEF和△ABC的周长比为() A.1:2 B.1:3 C.1:4 D.1:9 8、如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大 树的方向前进4 m,测得仰角为60°.已知小敏同学身高(AB)为1.6 m,则这棵树的高 度约为(结果精确到0.1 m,≈1.73)( ) A.3.5 m B.3.6 m C.4.3 m D.5.1 m 9、如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处, 测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向 上,则A,B之间的距离是( ) A.10海里 B.(10-10)海里 C.10海里 D.(10-10)海里

初三数学的相似三角形的常见模型

相似三角形常见模型一【知识清单】 【典例剖析】 知识点一:A字型的相似三角形 A字型、反A字型(斜A字型) B(平行) B (不平行)

(1)如图,若BC DE ∥,则ABC ADE ∽△△ (2)如图,如果B AED ∠=∠,或C ADE ∠=∠,则 ACB ADE ∽△△ 1、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. 2、已知在ABC △中,D 是AB 上的点,E 是AC 上的点,连接DE ,可得?=∠+∠180C BDE ,线段BC DE 21=,AE AD 3 2=, 求AC AB 的值。 变式练习: 1、如图,111EE FF MM ∥∥,若AE EF FM MB ===,则 111111:::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 2、如图,AD EF MN BC ∥∥∥,若9AD =,18BC =, F E D C B A B M 1F 1E 1M E F A B C M N A B C D E F

::2:3:4AE EM MB =,则_____EF =,_____MN = 3、(2014?乌鲁木齐)如图,AD ∥BC ,∠D=90°,AD=2,BC=5,DC=8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( ) A 、1个 B 、2个 C 、3个 D 、4个 知识点二:8字型相似三角形 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (1)如图,若CD AB ∥,则DOC AOB ∽△△ (2)如图,若C A ∠=∠,则CDJ ABJ ∽△△ 1、已知,P 为平行四边形ABCD 对角线,AC 上一点,过点 P 的直线与AD ,BC ,CD 的延长线,AB 的延长线分别相 交于点E ,F ,G ,H 求证:PE PH PF PG = P H G F E D C B A

相似三角形的几种模型

相似三角形的几种模型 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

相似三角形的几种模型 一、A 字型 练习: 1.如图,在△ABC 中,∠C=90°,在AB 边上取一点D,使BD=BC ,过D 作DE ⊥AB 交AC 于E ,AC=8,BC=6,求DE 的长。 2.如图,∠C=∠1,则下列各式不成立的是( ) A 、BC BD A B AD = B 、BC BD AC AB = C 、AC AD AD ?=2 D 、BC AD AB ?=2 3.如图,在四边形ABCD 中,AB=AD ,AC 与BD 交于点E ,∠ADB=∠ACB.求证:△ABE ∽△ACB . 二、8字型 1.将一副三角板如图叠放在一起,若OB=2,则OD= 2.已知,如图∠ADE=∠ACB ,BD=8,CE=4,CF=2,求DF 的 长 3.如图,在△ABC 中,∠ACB=90°,点F 在边AC 的延长 线上,且 FD ⊥AB,垂足为点D ,如果AD=6,AB=10,ED=2,那么FD=___. 4.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF ,已知AB=AC=6,BC=8,若以点B ′,F ,C 为顶点的 三角形与△ABC 相似,那么BF 的长度是 三、双垂图: 1.如图,AD 和BE 是锐角△ABC 的两条高,P 是两条高的交点,请你写出图中所有的相似三角形 2.在△ABC 中,D 为AB 边上一点,且∠BCD=∠A,已知BC=22,AB=3, 则BD=

3.如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,AD=9,BD=4, 那么CD= AC= 四、一线三等角 如图,在正方形ABCD中,E为边AD上的点,点F在边CD上,且CF=3FD, ∠BEF=90°求证:△ABE∽△DEF.

初三解直角三角形基本模型复习学习资料

初三解直角三角形基本模型复习

课题解直角三角形模型 教学目标 1. 熟悉特殊的三角函数,理解三角函数表示的意义,学会利用三角函数求线段长度和角 度; 2. 学会解决常考的解直角三角形题型。 重难点学会解决常考的解直角三角形题型 导案学案 教学流程 一、进门考(建议不超过10分钟) 1.(2017?绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学 楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离 AB=30m. (1)求∠BCD的度数. (2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32) 二、基础知识网络总结与巩固 知识回顾:三角函数中常用的特殊函数值。 函数名0°30°45°60°90° sinα0 1 cosα 1 0 tanα0 无穷大 cotα无穷大 1 0 1.解直角三角形的定义:

在直角三角形中,除直角外,共有5个元素,即3条边和2个锐角.由这些元素中的一些已知元素,求出所有未知元素的过程叫做解直角三角形。 2.解直角三角形的常用关系: 在Rt △ABC 中,∠C=90°,则: ①三边关系:a 2+b 2= c 2 ; ②两锐角关系:∠A +∠B= 90°; ③边与角关系:sin A=cos B= a c ,cos A=sin B=b c ,tan A=a b ; ④平方关系:1cos sin 2 2=+A A ⑥倒数关系:tan A ?tan(90°—A)=1 ⑦弦切关系:tan A= A A cos sin 3.解直角三角形的两种基本类型————①已知两边长; ②已知一锐角和一边。 注意:已知两锐角不能解直角三角形。 4.解非直角三角形的方法: 对于非直角三角形,往往要通过作辅助线构造直角三角形来解,作辅助线的一般思路是: ①作垂线构成直角三角形; ②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边。 5.常见的几种图形辅助线: 三、重难点例题启发与方法总结 类型一 背靠背 例1.(2017?恩施州)如图,小明家在学校O 的北偏东60°方向,距离学校80米的A 处,小华家在学校O 的南偏东45°方向的B 处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45) 例2(2017?海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE 的坡度i=1:1(即DB :EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC . (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

解直角三角形提高练习题1(含答案)

解直角三角形练习题1 一. 选择题:(每小题2分,共20分) 1. 在△EFG 中,∠G=90°,EG=6,EF=10,则tanE=( ) A. 43 B. 34 C. 53 D. 3 5 2. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( ) A. 2 1 B. 33 C. 1 D. 3 3. 在△ABC 中,若2 2cos =A ,3tan =B ,则这个三角形一定是( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角 形 D. 等腰三角形 4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式中,错误的是( ) A. EG EF G = sin B. EF EH G = sin C. FG GH G = sin D. FG FH G = sin 5. sin65°与cos26°之间的关系为( ) A. sin65°cos26° C. sin65°=cos26° D. sin65°+cos26°=1 6. 已知30°<α<60°,下列各式正确的是( ) A. B. C. D. 7. 在△ABC 中,∠C=90°,5 2 sin = A ,则sin B 的值是( ) A.32 B.52 C.5 4 D. 5 21 8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是( )米2 A. 150 B.375 C. 9 D. 7 9. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i= 2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( ) A. 7米 B. 9米 C. 12 米 D. 15米 10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( )

专题:相似三角形的几种基本模型及练习

专题:相似三角形的几种基本模型 (1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型”的相似三角形. “A ”字型 “X ”(或8)字型 “A ” 字型 (2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形. A B C D E 1 2A A B B C C D D E E 124 1 2 (3) “母子” (双垂直)型 射影定理: 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。 “母子” (双垂直)型 “旋转型” (4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形. (5)一线“三等角”型 “K ” 字(三垂直)型 (6)“半角”型 图1 :△ABC 是等腰直角三角形,∠MAN= 1 2∠BAC ,结论:△ABN ∽△MAN ∽△MCA ; 1 A E B C B E A C D 1 2B D 图2 图1 旋转 N M 60° 120° B A 45° D C B A

应用 1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3 B .4 C .5 D .6 2.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABD D .不存在 图3 图4 图5 3.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对。 A.4 对 B. 5对 C.6对 D. 7对 4.如图6,在△ABC 中,D ,E 分别是AB ,AC 上的点,在下列条件下:①∠AED =∠B ;②AD ∶AC =AE ∶AB ;③DE ∶BC =AD ∶AC .能判定△ADE 与△ACB 相似的是 ( )A .①② B .①③ C .①②③ D .① 5.如图7,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ; ③ AD AE =AB AC .其中正确的有 ( ) A .3个 B .2个 C .1个 D .0个 6.如图8,添加一个条件:_____________________________,使得△ADE ∽△ACB .(写出一个即可) 7.如图9,在四边形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若△ABE 与△ECD 相似,则CE =___________. 图6 图7 图8 图9 8.如图10,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是 ( ) A .∠BAD =∠CAE B .∠B =∠D C.B C DE =AC AE D.AB A D =AC AE 9.如图11,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =1 4CD ,下列结论:①∠BAE =30°, ②△ABE ∽△AEF ,③AE ⊥EF , ④△ADF ∽△ECF .其中正确的个数为 个。 图10 图11 A B C D E

相似三角形模型分析大全

. 第一部分相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型)(平行) (不平行) (三)母子型 B (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景

. (五)一线三直角型: (六)双垂型: 二、相似三角形判定的变化模型

旋转型:由A 字型旋转得到。 8字 型 拓展 C B E D A 共享性 G A B C E F 一线三等角的变形 一线三直角的变形 第二部分 相似三角形典型例题讲解 母子型相似三角形 例1、已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠.

例2、已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于 E 、 F . 求证:EG EF BE ?=2 . 点评:本题考查了等腰三角形的性质、等腰三角形三线合一定理、平行线的性质、相似三角形的判定和性质.关键是能根据所证连接CE 相关练习: 1、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .

求证:OE OA OC ?=2 . 2、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 3、已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.

解直角三角形练习题(一)及答案

解直角三角形 一、选择题 1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长 线上的D ′处,那么tan ∠BAD ′等于( ) (A).1 (B).2 (C). 2 2 (D).22 2、如果α是锐角,且5 4 cos = α,那么αsin 的值是( ). (A ) 259 (B ) 54 (C )53 (D )25 16 3、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ). (A ) 513 (B ) 1213 (C )10 13 (D )512 4、. 以下不能构成三角形三边长的数组是 ( ) (A )(1,3,2) (B )(3,4,5) (C )(3,4,5) (D )(32,42,52) 5、在Rt △ABC 中,∠C =90°,下列式子中正确的是( ). (A )B A sin sin = (B )B A cos sin = (C )B A tan tan = (D )B A cot cot = 6、在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且5 3 cos =α, AB = 4, 则AD 的长为( ). (A )3 (B ) 316 (C )320 (D )5 16 7、某市在“旧城改造”中计划在一 块如图所示的三角形空地上种植某种草皮以美 化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元 8、已知α为锐角,tan (90°-α)=3,则α的度数为( ) (A )30° (B )45° (C )60° (D )75° 9、在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( ) (A )13 5 (B )1312 (C )125 (D )512 A B C D E ?15020米30米

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

解直角三角形的基本类型及其解法公式

解直角三角形的基本类型及其解法公式(总结) 1、解直角三角形的类型与解法 已知、解法 三角 类型 已 知 条 件 解 法 步 骤 Rt △ABC B c a A b C 两 边 两直角边(如a ,b ) 由tan A =a b ,求∠A ;∠B =90°-A , c = 2 2b a + 斜边,一直角边(如c ,a ) 由Sin A =a c ,求∠A ;∠B =90°-A ,b =22a -c 一 边 一 角 一角边 和 一锐角 锐角,邻边 (如∠A ,b ) ∠B =90°-A ,a =b ·Sin A ,c =b cosA cosA 锐角,对边 (如∠A ,a ) ∠B =90°-A ,b =a tanA ,c =a sinA 斜边,锐角(如c ,∠A ) ∠B =90°-A ,a =c ·Sin A , b =c ·cos A 2、测量物体的高度的常见模型 1)利用水平距离测量物体高度 数学模型 所用工具 应测数据 数量关系 根据 原理 侧倾器 皮尺 α、β、 水平距离a tan α=1 x ι ,tan β=2x ι ι=a ·tan α·tan βtan α+tan β 直角 三角 形的 边角 关系 tan α= x a +ι tan β= x ι ι=a ·tan α·tan β tan β-tan α 2)测量底部可以到达的物体的高度 数学模型 所用工具 应测数据 数量关系 根据 原理 皮尺 镜子 目高a 1 水平距离a 2 3a h =2 1a a ,h =231a a a 反射 定律 β α a x 1 x 2 ι α β x a ι 镜子 1a 2a 3a h

相似三角形基本模型——A字型、旋转型相似

课题:相似三角形基本模型——A字型、旋转型相似 教学目标: 1、通过习题引入,了解“A字型、旋转型”的特征与其中两个三角形相似的条件,并掌握其中两个相似三角形的性质; 2、利用“A字型、旋转型”中两个三角的相似性解决一些计算、证明等简单问题; 3、在“A字型、旋转型”变化的过程中经历图形动态思考,积累做“A字型、旋转型”相似解题的特点与经验。 教学重点难点: 1、在已知图形中观察关键特征——“A字型、旋转型”; 2、在“A字型、旋转型”图的两个三角形中,探索其相似条件。 教学过程: 一、复习与回顾: 相似三角形的性质和判定定理; 二、引入 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。而识别(或构造)A字型、8字型、母子相似型、旋转型等基本图形是解证题的关键。 三、新课讲解: (一)、模型分析有一个公共角(图①、图②)或角有公共部分(图③,∠BAC与∠DAE有公共部分∠DAF),此时需要找另一对角相等,另外若题中未明确相似三角形对应顶点,则需要分类讨论,如图③中可找条件∠D=∠C或∠D=∠B. (二)、基础巩固 1、若△ABC∽△ADE,你可以得出什么结论(图1) 2、D、E分别是△ABC边AB、AC上的点,请你添加一个条件,使△ADE与△ABC相似。(图2) (三)、例题探究:

(四)课堂练习: 三、课堂小结: 我们今天这堂课收获了什么呢 (1)学习了A型相似; (2)学会从复杂图形中分解出基本图形。 (3)数学思想:方程思想,转化思想,分类讨论思想四、作业布置: 中考新航线251页

(完整word版)初三解直角三角形基本模型复习

课题解直角三角形模型 教学目标 1. 熟悉特殊的三角函数,理解三角函数表示的意义,学会利用三角函数求线段长度和角度; 2. 学会解决常考的解直角三角形题型。 重难点学会解决常考的解直角三角形题型 导案学案 教学流程 一、进门考(建议不超过10分钟) 1.(2017?绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼 顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m. (1)求∠BCD的度数. (2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32) 二、基础知识网络总结与巩固 知识回顾:三角函数中常用的特殊函数值。 函数名0°30°45°60°90° sinα0 1 cosα 1 0 tanα0 无穷大 cotα无穷大 1 0

1.解直角三角形的定义: 在直角三角形中,除直角外,共有5个元素,即3条边和2个锐角.由这些元素中的一些已知元素,求出所有未知元素的过程叫做解直角三角形。 2.解直角三角形的常用关系: 在Rt △ABC 中,∠C=90°,则: ①三边关系:a 2+b 2= c 2 ; ②两锐角关系:∠A +∠B= 90°; ③边与角关系:sin A=cos B= a c ,cos A=sin B= b c ,tan A=a b ; ④平方关系:1cos sin 2 2 =+A A ⑥倒数关系:tan A ?tan(90°—A)=1 ⑦弦切关系:tan A= A A cos sin 3.解直角三角形的两种基本类型————①已知两边长; ②已知一锐角和一边。 注意:已知两锐角不能解直角三角形。 4.解非直角三角形的方法: 对于非直角三角形,往往要通过作辅助线构造直角三角形来解,作辅助线的一般思路是: ①作垂线构成直角三角形; ②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边。 5.常见的几种图形辅助线: 三、重难点例题启发与方法总结 类型一 背靠背 例1.(2017?恩施州)如图,小明家在学校O 的北偏东60°方向,距离学校80米的A 处,小华家在学校O 的南偏东45°方向的B 处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)

相似三角形几种基本模型

相似三角形基本模型 经典模型 “平行旋转型” 图形梳理: AEF 旋转到AE‘F’ C B A AEF 旋转到AE‘F’ F'C B B C AEF 旋转到 AE‘F’ A B C AEF 旋转到AE‘F’ 特殊情况:B 、'E 、'F 共线

AEF 旋转到AE‘F’C B A A B C E F E' F'AEF 旋转到AE‘F’ C ,'E ,'F 共线 AEF 旋转到AE‘F’ C B A AEF 旋转到AE‘F’ C B A 母子型 已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 相似三角形常见的图形 1、下面我们来看一看相似三角形的几种基本图形: (1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图) (2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。(有“反A 共角型”、 “反A 共角共边型”、 “蝶型”) A E A D E 4 1 B (3) D B (2) D

(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”“三垂直型”) (4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。 (5)母子型 已知∠ACB=90°,AB⊥CD,则△CBD∽△ABC∽△ACD. 2、几种基本图形的具体应用: (1)若DE∥BC(A型和X型)则△ADE∽△ABC (2)射影定理若CD为Rt△ABC斜边上的高(双直角图形) 则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=AD·AB,CD2=AD·BD,BC2=BD·AB ; (3)满足1、AC2=AD·AB,2、∠ACD=∠B,3、∠ACB=∠ADC,都可判定△ADC∽△ACB. (4)当AD AE AC 或AD·AB=AC·AE时,△ ADE∽△ACB. B E A C D 1 2 B B C(D )

相似三角形模型分析大全(精)

第一部分相似三角形知识要点大全 知识点1..相似图形的含义 把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形) 解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到. (2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同. (3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.例1.放大镜中的正方形与原正方形具有怎样的关系呢? 分析:要注意镜中的正方形与原正方形的形状没有改变. 解:是相似图形。因为它们的形状相同,大小不一定相同. 例2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________(填序号). 解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥. 知识点2.比例线段 对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a c b d =(或 a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段. 解读:(1)四条线段a,b,c,d成比例,记作a c b d =(或a:b=c:d),不能写成其他形式,即比例线段 有顺序性. (2)在比例式a c b d =(或a:b=c:d)中,比例的项为a,b,c,d,其中a,d为比例外项,b,c为比例内项,d 是第四比例项. (3)如果比例内项是相同的线段,即a b b c =或a:b=b:c,那么线段b叫做线段和的比例中项。 (4)通常四条线段a,b,c,d的单位应一致,但有时为了计算方便,a和b统一为一个单位,c和d统一为另一个单位也可以,因为整体表示两个比相等. 例3.已知线段a=2cm, b=6mm, 求a b . 分析:求a b 即求与长度的比,与的单位不同,先统一单位,再求比. 例4.已知a,b,c,d成比例,且a=6cm,b=3dm,d=3 2 dm,求c的长度. 分析:由a,b,c,d成比例,写出比例式a:b=c:d,再把所给各线段a,b,,d统一单位后代入求c. 知识点3.相似多边形的性质 相似多边形的性质:相似多边形的对应角相等,对应边的比相等. 解读:(1)正确理解相似多边形的定义,明确“对应”关系. (2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性. 例5.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是多少? 分析:四边形ABCD与四边形A1B1C1D1相似,且它们的相似比为对应的最大边长的比,即为1 3 ,再根据相似

完整word版初三解直角三角形基本模型复习.docx

课题解直角三角形模型 教学目标 1.熟悉特殊的三角函数,理解三角函数表示的意义,学会利用三角函数求线段长度和角度; 2.学会解决常考的解直角三角形题型。 重难点学会解决常考的解直角三角形题型 导案学案 教学流程 一、进门考(建议不超过10 分钟) 1. ( 2017?绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口 C 测得教学楼 顶部 D的仰角为18°,教学楼底部B的俯角为 20°,量得实验楼与教学楼之间的距离AB=30m. ( 1)求∠ BCD的度数. ( 2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20 °≈ 0.36 , tan18 °≈ 0.32 ) 二、基础知识网络总结与巩固 知识回顾:三角函数中常用的特殊函数值。 函数名0°30°45°60°90° sin α01 cos α10 tan α0无穷大 cot α无穷大10

1.解直角三角形的定义: 在直角三角形中,除直角外,共有 5 个元素,即 3 条边和 2 个锐角.由这些元素中的一些已知元素,求出所有未知元素的过程叫做解直角三角形。 2.解直角三角形的常用关系: 在 Rt △ ABC中,∠ C=90°,则:① 三边关系: a2+ b2= c 2;②两锐角关 系:∠ A+∠ B= 90 °; ③边与角关系: sin A=cos B=a , cos A=sin B= b , tan A=a ; c c b ④平方关系: sin 2 A cos2 A1 ⑥倒数关系: tan A? tan(90°—A)=1 ⑦弦切关系: tan A=sin A cos A 3. 解直角三角形的两种基本类型————①已知两边长;②已知一锐角和一边。 注意:已知两锐角不能解直角三角形。 4.解非直角三角形的方法: 对于非直角三角形,往往要通过作辅助线构造直角三角形来解,作辅助线的一般思路是: ①作垂线构成直角三角形; ②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边。 5.常见的几种图形辅助线: 三、重难点例题启发与方法总结 类型一背靠背 例 1. ( 2017?恩施州)如图,小明家在学校 O的北偏东 60°方向,距离学校 80 米的 A 处,小华家在学校 O的南偏东 45°方向的 B 处,小华家在小明家的正南方向,求小华家到学校的距 离.(结果精确到 1 米,参考数据:≈ 1.41,≈ 1.73,≈ 2.45)

相关文档
最新文档