(完整版)解排列组合应用题的解法技巧

(完整版)解排列组合应用题的解法技巧
(完整版)解排列组合应用题的解法技巧

解排列组合应用题的解法?技巧

引言:

1、本资料对排列、组合应用题归纳为8种解法、13种技巧

2、解排列组合问题的“16字方针”:分类相加,分步相乘,有序排列,无序组合

一般先选再排,即先组合再排列,先分再排。弄清要完成什么样的事件是前提,解决这类问题通常有三种途径(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素

(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置即采用“先特殊后一般”的解题原则

(3)先不考虑附加条件,计算岀排列或组合数,再减去不符合要求的排列数或组合数前两种方式叫直接

解法,后一种方式叫间接(剔除)解法注:数量不大时可以逐一排出结果。

3、解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且

每次得岀的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得岀的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,

无序组合.

(一)排列组合应用题的解法

排列组合应用题的解题方法既有一般的规律,又有很多特别的技巧,它要求我们要认真地审题,对题目

中的信息进行科学地加工处理。下面通过一些例题来说明几种常见的解法。

一.运用两个基本原理二.特殊元素(位置)优先三.捆绑法四.插入法五.

排除法六.机会均等法七.转化法八.隔板法

一.运用两个基本原理

加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们

都要考虑在记数的时候进行分数或分步处理。

例1: n个人参加某项资格考试,能否通过,有多少种可能的结果?

解法1:用分类记数的原理,没有人通过,有C0种结果;1个人通过,有c n种结果,……;

n个人通过,有C;种结果。所以一共有C: C n C:2n种可能的结果。

解法2 :用分步记数的原理。第一个人有通过与不通过两种可能,第二个人也是这

样,……,第n个人也是这样。所以一共有2n种可能的结果。

例2:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有()

(A) 6 种(B)9 种(C)11 种(D)23 种

解:设四个人分别为甲、乙、丙、丁,各自写的贺年卡分别为a、b、c、d o

第一步,甲取其中一张,有3种等同的方式;

第二步,假设甲取b,则乙的取法可分两类:

(1)乙取a,则接下来丙、丁的取法都是唯一的,

(2)乙取c或d (2种方式),不管哪一种情况,接下来丙、丁的取法也都是唯一的。

根据加法原理和乘法原理,一共有 3 (1 2) 9种分配方式。

二.特殊元素(位置)优先----(优待法)

所谓“优待法”是指在解决排列组合问题时,对于有限制条件的元素(或位置)

要优先考虑?

例3:从0, 1 ,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数

字的五位偶数多少个?

解:个位选0,有P4个,个位不选0且万位不能选0,有C4C8 P83个,所以一共可以得

到F94C4C8P8313776 个偶数。

注0, 2, 4, 6, 8是特殊元素,元素0更为特殊,首位与末位是特殊的位置。

例4: 8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法?

解:先排甲,有P:种排法。再排乙,有P?种排法,再排其余的人,又有P6种排法,所以一共有P4 P51P6614400种排法。

【eg】在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被

5整除的数共有()个.

(解法一)元素优先数字0、1、2、3、4、5中含有0元素,组成四位数时,

0不能放在首位?又所求四位数不能被5整除,因而可以根据是否含有0和5两个元素将所求四位数分成四类:第一类:含0不含5的四位数,共有匸爲:=48(个);第

I J

二类:含5不含0的四位数,共有' 宀=72(个);第三类:含0也含5的四位数,共有??九=48(个);第四类:不合0也不含5的四位数,共有':=24(个)?所以, 符合条件的四位数共有48+72+48+24=192(个).

(解法二)位置优待根据所求四位数对首末两个位置的特殊要求可以分步解

答:第一步:排个位一一个位上的数字只能从1、2、3、4这四个数字中任选一个,共有'种选法;第二步;排首位首位上的数字只能从1、2、3、4这四个数字被个位选掉后剩余的三个数字及数字5中任选一个,共有5种选法;第三步:排中间两位,中间两柱可以从个位和首位排好后剩余的数字四个数字中任选两个,共有

种排法?所以符合条件的四位数共有匚厲打=4x4X4X 3=192(个).

〔注〕这道例题是典型的限制排列组合题. 解题时,若从元素入手(即元素优先),常要分类讨论,分类时要注意堵漏防重;若从位置入手(即位置优待1,常要分步解答,分步时要注意分步完整,各步相连.

三?捆绑法

在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法.

例5: 8人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法?

解:把甲、乙、丙先排好,有P2种排法,把这三个人“捆绑”在一起看成是一个,与

其余5个人相当于6个人排成一排,有P66种排法,所以一共有P22P/=1440种排法。

〔注〕运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题.

四?插空法

不相邻问题是指要求某些元素不能相邻,由其它元素将它们隔开.解决此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法.

例6:排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法?

解:先排5个不是小品的节目,有P55种排法,它们之间以及最后一个节目之后一共有

6个空隙,将3个小品插入进去,有P5种排法,所以一共有P5 P53=7200种排法。

注:捆绑法与插入法一般适用于有如上述限制条件的排列问题

【eg】用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有()个.(用数字作答)

解:由于要求1与2相邻,2与4相邻,可将1、2、4这三个数字捆绑在一起形成一

个大元素,这个大元素的内部中间只能排2,两边排1和4,因此大元素内部共有八种排

法,再把5与6也捆绑成一个大元素,其内部也有*种排法,与数字3 共计三个元素,先

将这三个元素排好,共有A:种排法,再从前面排好的三个元素形成的间隙及两端共四个位置中任选两个,把要求不相邻的数字7和8插入即可,共

有嘉种插法,所以符合条件的八位数共有仏町“;=288(种).

〔注〕运用插空法解决不相邻问题时,要注意欲插入的位置是否包含两端位置. 五?正难则反一一排除法

对于含“至多”或“至少”的排列组合问题,若直接解答多需进行复杂讨论,可以考虑“总体去杂”,即将总体中不符合条件的排列或组合删除掉,从而计算出符合条件的排列组合数的方法.

例7;求以一个长方体的顶点为顶点的四面体的个数。

解:从8个点中取4个点,共有C;种方法,其中取出的4个点共面的有6 6 12种,所以符合条件的四面体的个数为C84 12 58个。

例& 100件产品中有3件是次品,其余都是正品。现在从中取出5件产品,其中含有

次品,有多少种取法?

解:从100件产品中取5件产品,有Cw0种取法,从不含次品的95件中取出5件产品

有C95种取法,所以符合题意的取法有C為C9517347001种。

例9: 8个人站成一排,其中A与B、A与C都不能站在一起,一共有多少种排法?

解:无限制条件有P88种排法。A与B或A与C在一起各有P;P7种排法,A、B、C

三人站在一起且A在中间有P22P6种排法,所以一共有P8 2 P/P7 + P22P56=21600种排法。

【eg】从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有()种.

A . 140种

B . 80种

C . 70 种

D . 35 种

解:在被取出的3台中,不含甲型或不合乙型的抽取方法均不合题意,因此符

J J . 3 I

合题意的抽取方法有’=70(种),故选C.

应该指出的是,上述介绍的各种方法并非绝对的。同一问题有时会有多种解法,这时,要认真思考和分析,灵活选择最佳方法.

〔注〕这种方法适用于反面的情况明确且易于计算的习题

六.机会均等法

例10: 10个人排成一队,其中甲一定要在乙的左边,丙一定要在乙的右边,一共有多少种排法?

解:甲、乙、丙三人排列一共有6种排法,在这6种排法中各种排列顺序在10个人的

1

所有排列中出现的机会是均等的,因此符合题设条件的排法种数为丄P00 604800。

6

例11:用1,4,5,x四个数字组成四位数,所有这些四位数中的数字的总和为288,求x。

解:若x不为0,在每一个数位上1,4,5,x ,出现的机会是均等的。由于一共可以得到24个四位数,所以每一个数字在每一个数位上出现6次,于是得到:

6 4 (1 4 5 x) 288,解得x 2。

若x为0,无解。

七.转化法

例12: —个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法?

解:10级台阶,要求8步走完,并且每步只能走一级或2级。显然,必须有2步中每步走2级,6步中每步走一级。记每次走1级台阶为A,记每次走2级台阶为B,则原问题就相当于在8个格子中选2个填写B。其余的填写A,这是一个组合问题,所以一共有C2 28 种走法。

例13:动点从(0,0)沿水平或竖直方向运动到达(6,8),要使行驶的路程最小,有多少种走法?

解:动点只能向上或向右运动才能使路程最小而且最小的路程为14,把动点运动1个

单位看成是1步,则动点走了14步,于是问题就转化为在14个格子中填写6个“上”和8 个“右”,这也是一个组合的问题,于是得到一共有C:4 3003种走法。

八.隔板法

例14:20个相同的球分给3个人,允许有人可以不取,但必须分完,有多少种分法?

解:将20个球排成一排,一共有21个空隙,将两个隔板插入这些空隙中(两个隔板可

以插在同一空隙中),规定由隔板分成的左、中、右三部分球分别分给3个人,则每一种隔

法对应了一种分法,每一种分法对应了一种隔法,于是分法的总数为C2 210种方法。

注:本题可转化成求方程x y z 20的非负整数解的个数。

【eg】10张参观公园的门票分给5个班,每班至少1张,有几种选法?

解:这里只是票数而已,与顺序无关,故可把10张票看成10个相同的小球放入5个

不同的盒内,每盒至少1球,可先把10球排成一列,再在其中9个间隔中选4个位置插入4块"档板”分成5格(构成5个盒子)有C94种方法。

注:档板分隔模型专门用来解答同种元素的分配问题。

【eg】10个相同的球各分给3个人,每人至少一个,有多少种分发?每人至少两个呢?(答:36 ;15);

分析:显然,直接讨论分配方案复杂而又易错,采用隔板模型法,能化繁为简:取10枚棋子排成一列,在相邻的每两枚棋子形成的9个空隙中选取2个空隙,分别插入1个隔板(共两个隔板),讲10枚棋

2

子分割成3部分,因此名额分配方案的种数与隔板插入的组合数相等为C9 36

如果没人至少两个,可以这样理解:先每人发一本,然后剩下7本每人至少1本按上面的方法有

C6 15种方法。

(二)排列、组合、解题技巧

排列组合问题是高考必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握, 实践证明,备考有效方法是题型与解法归类、识别模式、熟练运用,本文介绍十二类典型排

列组合题的解答策略.

1 ?相邻问题并组法

2 ?相离问题插空法

3 ?定序问题缩倍法

4 ?标号排位问题分步法

5 ?有序分配问题逐分法

6 ?多元问题分类法

7 ?交叉问题集合法 &定位问题优先法9 ?多排问题单排法

10 ?“至少”问题间接法11.选排问题先取后排法12 ?部分合条件问题排除法

13、均匀分配问题-均分法

1 ?相邻问题并组法题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列.

【例1】A、B、C、D、E五人并排站成一排,如果A、B必须相邻且B在A的右边,那么不同的排法种数有

A ? 60 种

B ? 48 种C. 36 种D ? 24 种

分析把A、B视为一人,且B固定在A的右边,则本题相当于

4人全排列,P:= 24种,故选D ?

2. 相离问题插空法

元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定相离的几

个元素插入上述几个元素间的空位和两端.

【例2】七个人并排站成一行,如果甲乙两个必须不相邻,那么不同排法的种数是

A. 1440

B. 3600

C. 4820

D. 4800

分析除甲、乙外,其余5个排列数为P s5种,再用甲、乙去插

6个空位有P;种,不同排法种数是P55P;= 3600种,故选B .

3. 定序问题缩倍法

在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法.

【例3】A、B、C、D、E五个人并排站成一排,如果B必须站A的右边(A、B可不相邻),那么不同的排法种数有

A . 24 种

B . 60 种

C . 90 种

D . 120 种

分析B在A右边与B在A左边排法数相同,所以题设的排法只是

1 5

5个元素全排列数的一半,即2卩? = 60种,故选B .

4. 标号排位问题分步法

把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一个元

素,如此继续下去,依次即可完成.

【例4】将数字1,2, 3, 4填入标号为1,2, 3,4的四个方格里,每格填一个数,贝U 每个方格的标号与所填数字均不相同的填法有

A . 6 种

B . 9 种

C . 11 种

D . 23 种

分析先把1填入方格,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3

X 3 X1 = 9种填法,故选B .

5. 有序分配问题逐分法

有序分配问题是指把元素按要求分成若干组,可用逐步下量分组法.

【例5】有甲、乙、丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选出4

人承担这三项任务,不同的选法总数有

A . 1260 种

B . 2025 种

C . 2520 种

D . 5040 种

分析先从10人中选出2个承担甲项任务,再从剩下8个中选1人承担乙项任务,第三步从另外7 人中选 1 个承担两项任务,不同法共有C10C;C;= 2520种,故选C .

6. 多元问题分类法

元素多,取出的情况也有多种,可按结果要求,分成不相容的几类情况分别计算,最后总计. 【例6】由数字0, 1, 2,3,4, 5组成且没有重复数字的六位数,其中个位数字小于十位数字的共有

A . 210 个

B . 300 个

C . 464 个

D . 600 个

分析按题意,个位数字只可能是0, 1, 2, 3, 4共5种情况,

分别有P?个,P4P1P3个、P3P3P3个、P2P3PS个、P3P3个,合并总计得300 个,故选B .

【例7】从1, 2, 3,…100这100个数中,任取两个数,使它们的乘积能被7整除,

这两个数的取法(不计顺序)共有多少种?

排列组合问题的解法第三计

每周一计第三计——排列组合问题的解法 解决排列组合问题要讲究策略,用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。 (一).特殊元素、特殊位置的“优先安排法” 对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。 例1 : 0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个? 解法一:(元素优先)分两类:第一类,含0:0在个位有 种,0在十位有 种; 第二类,不含0:有1 223A A 种。 故共有( 24A +1123A A )+1223A A =30种。 注:在考虑每一类时,又要优先考虑个位。 解法二:(位置优先)分两类:第一类,0在个位有 种;第二类,0不在个位,先从两个偶数中选一个 放个位,再选一个放百位,最后考虑十位,有 种。 故共有 练习:甲、乙、丙、丁、戊、己六位同学选四人组队参加4*100m 接力赛,其中甲、乙不跑最后一棒,共有多少种不同的安排方法?(此题可有元素优先和位置优先两个角度两种解法,但位置优先则更简单) (二).排除法 对于含有否定词语的问题,还可以从总体中把不符合要求的除去. 例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有543543 2A A A -+=78种. (三).相邻问题“捆绑法” 对于某些元素要求相邻.. 排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。 例3: 5个男生3个女生排成一列,要求女生排一起,共有几种排法? 解:先把3个女生捆绑为一个整体再与其他5个男生全排列。同时,3个女生自身也应 全排列。由乘法原理共有6365A A 种。 (四)。不相邻问题“插空法” 对于某几个元素不相邻的排列问题,可先将其他可相邻元素排好,再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可(注意有时候两端的空隙的插法是不符合题意的) 例4: 5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法? 解:先排无限制条件的男生,女生插在5个男生间的4个空隙,由乘法原理共有 种。 注意:①分清“谁插入谁”的问题。要先排可相邻的元素,再插入不相邻的元素; ②数清可插的位置数;③插入时是以组合形式插入还是以排列形式插入要把握准。 例5: 马路上有编号为1、2、3、…、9的9盏路灯,现要关掉其中的三盏,但不能同时关掉相邻的两盏或三盏,也不能关两端的路灯,则满足要求的关灯方法有几种? 解:由于问题中有6盏亮3盏暗,又两端不可暗,故可在6盏亮的5个间隙中插入3个暗的即可,有3 5 C 种。 (五)。定序问题选位不排 对于某几个元素顺序一定的排列问题,可先在总位置中选出顺序一定元素的位置而不参加排列,然后对其它元素进行排列。 例6: 5人参加百米跑,若无同时到达终点的情况,则甲比乙先到有几种情况? 解:先在5个位置中选2个位置放定序元素(甲、乙)有 种,再排列其它3人有 ,由乘法原理得共有 =60种。 1345240A A =5354A A 25C 3 3 A 25C 3 3A 24 A 1123A A 111233 A A A 2111423330 A A A A +=24A

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有3 4A 由分步计数原理得1 1 3434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5 2 2 522480A A A =种不同的排法 C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

【智博教育原创专题】排列组合的常见题型及其解法大全(包含高中所有的题型)

★绝密 备战2014专题 主编:冷世平

排列组合的常见题型及其解法排列组合问题,通常都是出现在选择题或填空题中,问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口,实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。 ◆处理排列组合应用题的一般步骤为: ①明确要完成的是一件什么事(审题);②有序还是无序;③分步还是分类。 ◆处理排列组合应用题的规律 ⑴两种思路:直接法,间接法;⑵两种途径:元素分析法,位置分析法。 排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。首先,谈谈排列组合综合问题的一般解题规律: ⑴使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。 ⑵排列与组合定义相近,它们的区别在于是否与顺序有关。 ⑶复杂的排列问题常常通过试验、画“树图”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。 ⑷按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。 ⑸处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。 ⑹在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。 总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等;其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。 【策略1】特殊元素(位置)用优先考虑 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 【例1】6人站成一横排,其中甲不站左端也不站右端,有种不同站法。 【分析】解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 【法一】(优先考虑特殊元素)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4种站法;第二步再让其余的5人站在其他5个位置上,有120种站法,故站法共有480种; A种方法;剩下四【法二】(优先考虑特殊位置)先从除甲外的五个元素中任取两个站在两端,有2 5 A种方法,共计有480种。 个人作全排列有4 4 用0,2,3,4,5五个数字,组成没有重复数字的三位数,其中偶数共有个。30 【策略2】相邻问题用捆绑法 将相邻的元素内部进行全排列,绑成一捆,看作一个整体,视为一个元素,与其他元素进行排列。

排列组合方法归纳大全

排列组合方法归纳大全 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为

四.定序问题倍缩空位插入策略 例人排队,其中甲乙丙3人顺序一定共有多少不同的排法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 练习题: 1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 六.环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法练习题:6颗颜色不同的钻石,可穿成几种钻石圈 七.多排问题直排策略 例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是

排列组合解法大全..pdf

排列组合解法大全 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13 C 然后排首位共有14 C 最后排其它位置共有34 A 由分步计数原理得1134 34288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花 盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素, 再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排 好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的 不同顺序共有5456A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如 果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为30 四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进 行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法 种数是:7373 /A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两

超全超全的排列组合的二十种解法

排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。定义的前提条件是m≦n,m与n均为自然数。①从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。②从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。 ③用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色呢。从6种颜色中取出4种进行排列呢。 解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。 A(6,6)=6x5x4x3x2x1=720。 A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。 [计算公式] 排列用符号A(n,m)表示,m≦n。 计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)! 此外规定0!=1,n!表示n(n-1)(n-2) (1) 例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。 组合的定义及其计算公式 1 组合的定义有两种。定义的前提条件是m≦n。 ①从n个不同元素中,任取m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。 ②从n个不同元素中,取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。 ③用例子来理解定义:从4种颜色中,取出2种颜色,能形成多少种组合。 解:C(4,2)=A(4,2)/2!={[4x(4-1)x(4-2)x(4-3)x(4-4+1)]/[2x(2-1)x(2-2+1)]}/[2x(2-1)x(2-2+1)]=[( 4x3x2x1)/2]/2=6。 [计算公式] 组合用符号C(n,m)表示,m≦n。 公式是:C(n,m)=A(n,m)/m! 或C(n,m)=C(n,n-m)。

(完整版)解排列组合应用题的解法技巧

解排列组合应用题的解法?技巧 引言: 1、本资料对排列、组合应用题归纳为8种解法、13种技巧 2、解排列组合问题的“16字方针”:分类相加,分步相乘,有序排列,无序组合 一般先选再排,即先组合再排列,先分再排。弄清要完成什么样的事件是前提,解决这类问题通常有三种途径(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素 (2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置即采用“先特殊后一般”的解题原则 (3)先不考虑附加条件,计算岀排列或组合数,再减去不符合要求的排列数或组合数前两种方式叫直接 解法,后一种方式叫间接(剔除)解法注:数量不大时可以逐一排出结果。 3、解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且 每次得岀的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得岀的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列, 无序组合. (一)排列组合应用题的解法 排列组合应用题的解题方法既有一般的规律,又有很多特别的技巧,它要求我们要认真地审题,对题目 中的信息进行科学地加工处理。下面通过一些例题来说明几种常见的解法。 一.运用两个基本原理二.特殊元素(位置)优先三.捆绑法四.插入法五. 排除法六.机会均等法七.转化法八.隔板法 一.运用两个基本原理 加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们 都要考虑在记数的时候进行分数或分步处理。 例1: n个人参加某项资格考试,能否通过,有多少种可能的结果? 解法1:用分类记数的原理,没有人通过,有C0种结果;1个人通过,有c n种结果,……; n个人通过,有C;种结果。所以一共有C: C n C:2n种可能的结果。 解法2 :用分步记数的原理。第一个人有通过与不通过两种可能,第二个人也是这 样,……,第n个人也是这样。所以一共有2n种可能的结果。 例2:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有() (A) 6 种(B)9 种(C)11 种(D)23 种 解:设四个人分别为甲、乙、丙、丁,各自写的贺年卡分别为a、b、c、d o 第一步,甲取其中一张,有3种等同的方式; 第二步,假设甲取b,则乙的取法可分两类: (1)乙取a,则接下来丙、丁的取法都是唯一的, (2)乙取c或d (2种方式),不管哪一种情况,接下来丙、丁的取法也都是唯一的。 根据加法原理和乘法原理,一共有 3 (1 2) 9种分配方式。

[超全]排列组合二十种经典解法!

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有 1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A

最新排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集,所 有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分类, 又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。 随机分配:(不指定到具体位置)即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘。 5.隔板法: 不可分辨的球即相同元素分组问题

排列组合经典解法

排列组合问题的经典解法 一、重复排列“住店法” 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题。 【例1】8名同学争夺3项冠军,获得冠军的可能性有 ( ) A.38 B.83 C.38A D.38C 【解析】冠军不能重复,但同一个学生可获得多项冠军。把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可住进任意一家“店”,每个客有8种可能,因此共有38种不同的结果。选(A )。 评述:类似问题较多。如:将8封信放入3个邮筒中,有多少种不同的结果?这时8封信是“客”,3个邮筒是“店”,故共有83种结果。要注意这两个问题的区别。 二、特色元素“优先法” 某个(或几个)元素要排在指定位置,可优先将它(们)安排好,后再安排其它元素。 【例2】乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、 三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。 【解析】3名主力的位置确定在一、三、五位中选择,将他们优先安排,有33A 种可能;然后从其 余7名队员选2名安排在第二、四位置,有27A 种排法。因此结果为2733A A =252种。 三、相邻问题“捆绑法” 把相邻的若干特殊元素“捆绑”为一个“大元素”,与其余普通元素全排列,是为“捆绑法”,又称为“大元素法”。不过要注意“大元素”内部还需要进行排列。 【例3】有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。 【解析】将数学书与外文书分别捆在一起与其它3本书一起排,有55A 种排法,再将3本数学书 之间交换有33A 种,2本外文书之间交换有22A 种,故共有223355A A A =1440种排法。 【评述】这里需要说明的是,有一类问题是两个已知元素之间有固定间隔时,也用“捆绑法”解决。 如:7个人排成一排,要求其中甲乙两人之间有且只有一人,问有多少种不同的排法?可将甲乙两人和中间所插一人“捆绑”在一起做“大元素”,但甲乙两人位置可对调,而且中间一人可从其余5 人中任取,故共有1200552215 A A C 种排法。

排列组合的二十种解法(最全的排列组合方法总结)

教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有 2m 种不同的方 法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有3 4A 由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的 排法

排列组合应用题的解法

排列组合应用题的解法 湖北省京山县第五高级中学高二(3) 李敏 排列组合应用题的解题方法既有一般的规律,又有很多特别的技巧,它要求我们要认真地审题,对题目中的信息进行科学地加工处理。下面通过一些例题来说明几种常见的解法。 一、运用两个基本原理 加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们都要考虑在记数的时候进行分类或分步处理。 例1:n个人参加某项资格考试,能否通过,有多少种可能的结果? 分析1:用分类记数的原理:没有人通过,有种结果;1个人通过,有种结果,……;n个人通过,有种结果。所以一共有种可能的结果。 分析2:用分步记数的原理:第一个人有通过与不通过两种可能,第二个人也是这样,……,第n个人也是这样。所以一共有种可能的结果。 二、特殊元素(位置)用优先法 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 例2:6人站成一排,其中甲不站左端也不站右端,有多少种不同站法? 分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 因为甲不能站左右两端,故第一步先让甲排在中间四个位置的任一位置上,有种站法;第二步再让其余的5人站在其他5个位置上,有种站法,故站法共有:=480(种) 三、相邻问题用捆绑法 对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。 例3:5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 分析:把3个女生视为一个元素,与5个男生进行排列,共有种,然后女生内部再进行排列,有种,所以排法共有:=4320(种)。 四、相离问题用插空法 元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。 例4:7人排成一排,甲、乙、丙3人互不相邻有多少种排法?

完整版排列组合的二十种解法最全的排列组合方法总结

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。提高学生解决问题分 析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m i 种不同的方法,在第 2类办法中有m 2种不同的方 法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m i m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有叶种不同的方法,做第2步有m 2种不同的方法,… 做第n 步有m n 种不同的方法,那么完成这件事共有: N mi m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少 类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 . 先排末位共有C ; 然后排首位共有C 1 最后排其它位置共有 A 3 由分步计数原理得C 4C ;A ; 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 ,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若 有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里 多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排 A 3 ,若两种葵花不种在中间,也不种在两端的花盆里,冋有 A 5 A 2 A 2 480种不同的

排列组合方法大全

排列组合方法归纳大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m 1种不同的方法,在第2类办法中有 m种不同的 2 方法,…,在第n类办法中有 m种不同的方法, n 那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m 1种不同的方法,做第2步有 m种不同的方法,…, 2 做第n步有 m种不同的方法,那么完成这件事共 n 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是

分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求, , 以 先排末位共有13 C 然后排首位共有14 C 最后排其它位置共有34A 由分步计数原理得1134 3 4 288C C A 练习题:7种不同的花种在排成一列的花盆里,若 两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 443

例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部 进行自排。由分步计数原理可得共有522 522480 A A A 种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种 解:分两步进行第一步排2个相声和3个独唱共有5 5 A种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6 A不同的方法,由分步计数原理,节目的不同顺序共有 54 56 A A种

(完整word版)数学排列组合常见题型及解法

排列组合常见题型及解法 排列组合问题,通常都是出现在选择题或填空题中,问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口,实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。 一.处理排列组合应用题的一般步骤为: ①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 二.处理排列组合应用题的规律 (1) 两种思路:直接法,间接法。(2)两种途径:元素分析法,位置分析法。 1 重复排列“住店法” 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题。 例1 8名同学争夺3项冠军,获得冠军的可能性有( ) [解析] 冠军不能重复,但同一个学生可获得多项冠军。把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可住进任意一家“店”,每个客有8种可能,因此共有3 8种不同的结果。 [评述]类似问题较多。如:将8封信放入3个邮筒中,有多少种不同的结果?这时8封信是“客”,3个邮筒是“店”,故共有8 3种结果。要注意这两个问题的区别。 2. 特殊元素(位置)用优先法:把有限制条件的元素(位置)称为特殊元素(位置),可优先将它(们)安排好,后再安排其它元素。对于这类问题一般采取特殊元素(位置)优先安排的方法。 例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有种站法;第二步再让 其余的5人站在其他5个位置上,有 种站法,故站法有: =480(种) 解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有种;第二步再让剩余的4个人(含 甲)站在中间4个位置,有 种,故站法共有: (种) 例2(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种(用数字作答)。 [解析]3名主力的位置确定在一、三、五位中选择,将他们优先安排,有33A 种可能;然后从其余7名队员选2名安排在第二、四位置, 有 27A 种排法。因此结果为2 733 A A =252种。 例3 5个“1”与2个“2”可以组成多少个不同的数列? [解析]按一定次序排列的一列数叫做数列。由于7个位置不同,故只要优先选两个位置安排好“2”,剩下的位置填“1”(也可先填“1”再填“2”)。因此,一共可以组成2 22 7C C =21个不同的数列。 3. 相邻问题用捆绑法:对于要求某几个元素必须排在一起的问题,可用“捆绑法”“捆绑”为一个“大元素:与其他元素进行排列,然后相邻元素内部再进行排列。 例1. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 解:把3个女生视为一个元素,与5个男生进行排列,共有种,然后女生内部再进行排列,有 种,所以排法共有: (种)。 例2(1996年上海高考题)有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种(结果用数字表示)。

排列组合常见类型与解法

排列组合的常见题型及其解法 排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。 一. 特殊元素(位置)用优先法 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的 任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法, 故站法共有:A A 415 5?=480(种) 解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两 人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 4 4种,故站法共有:A A 5244480?=(种) 二. 相邻问题用捆绑法 对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。 例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再 进行排列,有A 33种,所以排法共有:A A 6633 4320?=(种)。 三. 相离问题用插空法 元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。 例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法? 解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440?=(种) 四. 定序问题用除法 对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n 个元素进行

相关文档
最新文档