解析几何 圆锥曲线的方程与性质 教学案

解析几何 圆锥曲线的方程与性质 教学案
解析几何 圆锥曲线的方程与性质 教学案

第2讲圆锥曲线的方程与性质(小题)

热点一圆锥曲线的定义与标准方程

1.圆锥曲线的定义

(1)椭圆:|PF1|+|PF2|=2a(0<2a>|F1F2|).

(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).

(3)抛物线:|PF|=|PM|,点F不在定直线l上,PM⊥l于点M.

2.求圆锥曲线标准方程“先定型,后计算”

所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.

例1(1)(2019·桂林、崇左联考)过双曲线x2-y2

3=1的右支上一点P分别向圆C1:(x+2)

2+y2=4

和圆C2:(x-2)2+y2=1作切线,切点分别为M,N,则|PM|2-|PN|2的最小值为()

A.5

B.4

C.3

D.2

(2)(2019·云南师大附中模拟)已知抛物线C:y2=2px(p>0),O是坐标原点,点P是抛物线C在第一象限内的一点,若点P到y轴的距离等于点P到抛物线C的焦点的距离的一半,则直线OP 的斜率为()

A.1

2 B.

1

3 C.2 D.3

跟踪演练1(1)已知以圆C:(x-1)2+y2=4的圆心为焦点的抛物线C1与圆C在第一象限交于A 点,B点是抛物线C2:x2=8y上任意一点,BM与直线y=-2垂直,垂足为M,则|BM|-|AB|的最大值为()

A.1

B.2

C.-1

D.8

(2)已知椭圆C:x2

a2+

y2

b2=1(a>b>0)的左、右焦点分别为F1,F2,左、右顶点分别为M,N,过

F 2的直线l 交C 于A ,B 两点(异于M ,N ),△AF 1B 的周长为43,且直线AM 与AN 的斜率之积为-2

3,则C 的方程为( )

A.x 212+y 2

8=1 B.x 212+y 2

4=1 C.x 23+y 2

2

=1 D.x 23

+y 2

=1 热点二 圆锥曲线的几何性质 1.椭圆、双曲线中a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =c

a =

1-????b a 2

. (2)在双曲线中:c 2=a 2+b 2,离心率为e =c

a

1+????b a 2

. 2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b

a x .注意离心率e 与渐近线的斜率的关系.

例2 (1)(2019·内江模拟)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =3

4x ,则双曲线的

离心率为( ) A.43 B.53 C.5

4

D.2 (2)(2019·乐山、峨眉山联考)已知抛物线y =14x 2的焦点F 是椭圆y 2a 2+x 2b 2=1(a >b >0)的一个焦点,

且该抛物线的准线与椭圆相交于A ,B 两点,若△FAB 是正三角形,则椭圆的离心率为( ) A.3-1 B.2-1 C.

33 D.2

2

跟踪演练2 (1)(2019·四川双流中学模拟)已知M 为双曲线C :x 2a 2-y 2

b 2=1(a >0,b >0)的右支上一

点,A ,F 分别为双曲线C 的左顶点和右焦点,线段FA 的垂直平分线过点M ,∠MFA =60°,则双曲线C 的离心率为( ) A. 5 B.2 C.3 D.4

(2)(2019·济南模拟)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线交椭

圆于A ,B 两点,且AF 1→·AF 2→=0,AF 2→=2F 2B →

,则椭圆E 的离心率为( ) A.23 B.34 C.53 D.74

热点三 圆锥曲线与圆、直线的综合问题 圆锥曲线与圆、直线的综合问题的注意点 (1)注意使用圆锥曲线的定义;

(2)引入参数,注意构建直线与圆锥曲线的方程组; (3)注意用好平面几何性质;

(4)涉及中点弦问题时,也可用“点差法”求解.

例3(1)(2019·桂林、崇左联考)以抛物线C:y2=2px(p>0)的顶点为圆心的圆交抛物线C于A,B两点,交C的准线于D,E两点.已知|AB|=26,|DE|=210,则p=________.

跟踪演练3(1)已知椭圆x2

a2+

y2

b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为

B,以线段F1A为直径的圆交线段F1B的延长线于点P,若F2B∥AP,则该椭圆的离心率是()

A.

3

3 B.

2

3 C.

3

2 D.

2

2

.

(2)(2019·内江、眉山等六市模拟)设点P是抛物线C:y2=4x上的动点,Q是C的准线上的动点,直线l过Q且与OQ(O为坐标原点)垂直,则点P到l的距离的最小值的取值范围是()

A.(0,1)

B.(0,1]

C.[0,1]

D.(0,2]

真题体验

1.(2019·全国Ⅰ,理,10)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( ) A.x 22+y 2

=1 B.x 23+y 2

2=1 C.x 24+y 2

3

=1 D.x 25+y 2

4

=1 2.(2018·全国Ⅱ,理,12)已知F 1,F 2是椭圆C :x 2a 2+y 2

b 2=1(a >b >0)的左、右焦点,A 是C 的左顶

点,点P 在过A 且斜率为3

6

的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )

A.23

B.12

C.13

D.14

3.(2019·全国Ⅰ,理,16)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过

F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →

=0,则C 的离心率为________.

押题预测

1.双曲线x2

a2-

y2

b2=1(a>0,b>0)的一条渐近线与直线x-2y+1=0平行,则双曲线的离心率为()

A. 5

B.

5

2 C.

3

2 D. 3

2.已知抛物线C:y2=2x,过原点作两条互相垂直的直线分别交C于A,B两点(A,B均不与坐标原点重合),则抛物线的焦点F到直线AB距离的最大值为()

A.2

B.3

C.3

2 D.4

3.已知双曲线C:x2

a2-y2

b2=1(a>0,b>0)的左、右焦点分别为F1,F2,抛物线y

2=2px(p>0)与双

曲线C有相同的焦点.设P为抛物线与双曲线C的一个交点,cos∠PF1F2=5

7,则双曲线C的离

心率为()

A.2或 3

B.2或3

C.2或 3

D.2或3

A组专题通关

1.(2019·曲靖模拟)已知双曲线过点(2,3),渐近线方程为y=±3x,则双曲线的标准方程是()

A.7x2

16-

y2

12=1 B.

y2

3-

x2

2=1

C.x2-y2

3=1 D.

3y2

23-

x2

23=1

2.(2019·乐山调研)已知抛物线y2=ax上的点M(1,m)到其焦点的距离为2,则该抛物线的标准方程为()

A.y2=2x

B.y2=4x

C.y2=3x

D.y2=5x

3.已知双曲线C:x2

a2-

y2

b2=1(a>0,b>0),F是双曲线C的右焦点,A是双曲线C的右顶点,过F

作x轴的垂线,交双曲线于M,N两点.若tan∠MAN=-3

4,则双曲线C的离心率为()

A.3

B.2

C.4

3 D. 2

4.(2019·曲靖模拟)抛物线y2=2x上一点M到它的焦点F的距离为5

2,O为坐标原点,则△MFO

的面积为()

A.

2

2 B.

2

4 C.

1

2 D.

1

4

5.(2019·绵阳诊断)抛物线C:y2=42x的焦点为F,P是抛物线上一点,过P作y轴的垂线,垂足为Q,若|PF|=42,则△PQF的面积为()

A.3

B.4 2

C.3 6

D.6 3

6.设双曲线mx2+ny2=1的一个焦点与抛物线y=1

8x

2的焦点相同,离心率为2,则抛物线的焦点

到双曲线的一条渐近线的距离为() A.2 B. 3 C.2 2 D.2 3

7.(2019·南宁二中模拟)已知F 是双曲线C :x 2a 2-y 2

b 2=1(a >0,b >0)的右焦点,过点F 向C 的一条

渐近线引垂线,垂足为A ,交另一条渐近线于点B ,若FB →=2AF →

,则C 的离心率是( ) A. 2 B.

143 C.233

D.2 8.(2019·云南师大附属中学模拟)直线l 与双曲线x 2-y 2

2=1交于A ,B 两点,以AB 为直径的圆C

的方程为x 2+y 2+2x +4y +m =0,则m 等于( ) A.-3 B.3 C.5-2 2 D.2 2

9.(2019·六安联考)已知直线l :x +y =3与x 轴,y 轴分别交于点A ,B ,点P 在椭圆x 22+y 2

=1上

运动,则△PAB 面积的最大值为( ) A.6 B.3(3+2)2

C.

3(3-3)

2

D.

3(3+3)

2

10.设F 为抛物线y 2=2px (p >0)的焦点,斜率为k (k >0)的直线过F 且交抛物线于A ,B 两点,若|FA |=3|FB |,则直线AB 的斜率为( ) A.1

2

B.1

C. 2

D. 3 11.(2019·乐山调研)设双曲线C :x 2a 2-y 2

b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作倾

斜角为60°的直线与y 轴和双曲线的右支交于A ,B 两点,若点A 平分线段F 1B ,则该双曲线的离心率是( )

A. 3

B.2+ 3

C.2

D.2+1

12.已知抛物线C :y 2=4x 的焦点为F ,过点M (4,0)的直线与抛物线C 交于A ,B 两点,则△ABF 的面积的最小值为( ) A.8 B.12 C.16 D.24

13.(2019·全国Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若

△MF 1F 2为等腰三角形,则M 的坐标为________.

14.已知椭圆C 1:x 24+y 2=1和双曲线C 2:x 2

m 2-y 2=1(m >0).经过C 1的左顶点A 和上顶点B 的直线

与C 2的渐近线在第一象限的交点为P ,且|AB |=|BP |,则椭圆C 1的离心率e 1=______;双曲线C 2的离心率e 2=________.

15.(2019·峨眉山适应性考试)过抛物线y 2=4x 的焦点F 作直线l ,与抛物线交于A ,B 两点,与准线交于C 点,若FC →=4FB →,则|AB →

|=______.

16.设F 1,F 2分别是椭圆C :x 2a 2+y 2

b

2=1(a >b >0)的左、右焦点,B 为椭圆的下顶点,P 为过点F 1,

F 2,B 的圆与椭圆C 的一个交点,且PF 1⊥F 1F 2,则b

a

的值为________.

B 组 能力提高

17.设双曲线C :x 2a 2-y 2

b 2=1(a >0,b >0)的右焦点为F ,O 为坐标原点,若双曲线及其渐近线上各存

在一点Q ,P ,使得四边形OPFQ 为矩形,则其离心率为( ) A. 3 B.2 C. 5 D. 6

18.过双曲线x 2a 2-y 2

b 2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,D 为虚

轴的一个端点,且△ABD 为钝角三角形,则此双曲线离心率的取值范围为__________.

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

解析几何-- 圆锥曲线的概念及性质

4.2 解析几何-- 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2 -2y 2 =1,则它的右焦点坐标为 ( ) A. ????22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为????6 2 ,0. 答案:C 2.(2010·天津)已知双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个 焦点在抛物线y 2 =24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2 108-y 2 36=1 D.x 2 27-y 2 9 =1 解析:∵渐近线方程是y =3x ,∴b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=() A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴PA∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形. 又在Rt△AFF′中,FF′=4, ∴F A=8,∴P A=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为() A.圆B.椭圆C.双曲线D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆 顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,BA P A DC PC ,从而 PC=2P A.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2),则A(-5,0),C(5,0),设P(x,y),得(x-5)2+y2=2(x+5)2+y2 化简得x2+y2+50 3 x+25=0,显然,P点的轨迹为圆.

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

解析几何与平面几何选讲

1.已知△ABC的顶点B、C在椭圆x2/4+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( ) A.2B.6 C.8D.12 2.抛物线上的点到直线距离的最小值是() A.B.C.D. 3.已知以椭圆的右焦点F为圆心,a为半径的圆与椭圆的右准线交于不同的两 点,则该椭圆的离心率的取值范围是() A.B.C.D. 4.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,过点F2向∠F1PF2的外角平分线作垂线,垂足为 M,则点M的轨迹是() A.圆B.椭圆C.直线D.双曲线的一支 5.如图,已知点B是椭圆的短轴位于x轴下方的端点,过B 作斜率为1的直线交 椭圆于点M,点P在y轴上,且PM//x轴,,若点P的坐标为(0,t),则t的取值范围 是() A.0

①AD+AE=AB+BC+CA; ②AF·AG=AD·AE ③△AFB ~△ADG 其中正确结论的序号是 A.①②B.②③C.①③D.①②③ 7. 如图2,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD 相交与点F,则AF的长 为____________。 8.如图,已知圆中两条弦与相交于点,是延长线上一点,且 若与圆相切,则线段的长为__________. 9.已知点,动点满足条件.记动点的轨迹 为.则的方 程是____________. 10. 矩形的两条对角线相交于点,边所在直线的方程为

,点在边所在直线上. (I)求边所在直线的方程; (II)求矩形外接圆的方程; (III)若动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程. 11. 已知平面上两定点M(0,-2)、N(0,2),P为一动点,满足. (I)求动点P的轨迹C的方程; (II)若A、B是轨迹C上的两不同动点,且. 分别以A、B为切点作轨迹C 的切线,设其交点 Q,证明为定值. 【参考答案】 1.C 解析:由椭圆定义知,△ABC的周长=4a。 2.A 解析:由几何知识知道,平移直线与抛物线相切, 切点到直线的距离最小。 3.C 解析:

【高考精品复习】第九篇 解析几何 第8讲 直线与圆锥曲线的位置关系

第8讲 直线与圆锥曲线的位置关系 【高考会这样考】 1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入和设而不求的思想. 2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向量等在解决问题中的综合运用. 【复习指导】 本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 基础梳理 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程. 即??? Ax +By +C =0,F (x ,y )=0, 消去y 后得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交; Δ=0?直线与圆锥曲线C 相切; Δ<0?直线与圆锥曲线C 无公共点. (2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)圆锥曲线的弦长 直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长.

最新圆锥曲线的概念及性质

圆锥曲线的概念及性 质

第二讲 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为 ( ) A.?? ??22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为??? ? 62,0. 答案:C 2.(2010·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一 个 焦点在抛物线y 2=24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 2 27=1 C.x 2108-y 236=1 D.x 227-y 2 9 =1 解析:∵渐近线方程是y =3x ,∴ b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,P A⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|= () A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴P A∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形. 又在Rt△AFF′中,FF′=4,

高中数学复习:圆锥曲线的方程与性质

高中数学复习:圆锥曲线的方程与性质 1.已知A 为抛物线C :y 2 =2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A.2 B.3 C.6 D.9 解析 设A (x ,y ),由抛物线的定义知,点A 到准线的距离为12,即x +p 2=12. 又因为点A 到y 轴的距离为9,即x =9, 所以9+p 2=12,解得p =6.故选C. 答案 C 2.设O 为坐标原点,直线x =2与抛物线C :y 2 =2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A.? ????14,0 B.? ?? ??12,0 C.(1,0) D.(2,0) 解析 将x =2与抛物线方程y 2 =2px 联立, 可得y =±2p , 不妨设D (2,2p ),E (2,-2p ), 由OD ⊥OE ,可得OD →·OE → =4-4p =0,解得p =1, 所以抛物线C 的方程为y 2 =2x .其焦点坐标为? ?? ??12,0.故选B. 答案 B 3.设F 1,F 2是双曲线C :x 2 -y 2 3 =1的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则△ PF 1F 2的面积为( ) A.72 B.3 C.52 D.2 解析 法一 由题知a =1,b =3,c =2,F 1(-2,0),F 2(2,0), 如图,因为|OF 1|=|OF 2|=|OP |=2,所以点P 在以F 1F 2为直径的圆上,故PF 1⊥PF 2,则|PF 1|2 +|PF 2|2 =(2c )2 =16.

由双曲线的定义知||PF 1|-|PF 2||=2a =2,所以|PF 1|2 +|PF 2|2 -2|PF 1||PF 2|=4,所以|PF 1||PF 2|=6, 所以△PF 1F 2的面积为1 2 |PF 1||PF 2|=3.故选B. 法二 由双曲线的方程可知,双曲线的焦点F 1,F 2在x 轴上,且|F 1F 2|=21+3=4.设点P 的坐标为(x 0,y 0),则?????x 20-y 2 03=1,x 20+y 20 =2,解得|y 0|=32. 所以△PF 1F 2的面积为12|F 1F 2|·|y 0|=12×4×3 2=3.故选B. 答案 B 4.已知椭圆C 1:x 2a 2+y 2 b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点 重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=4 3|AB |. (1)求C 1的离心率; (2)设M 是C 1与C 2的公共点.若|MF |=5,求C 1与C 2的标准方程. 解 (1)由已知可设C 2的方程为y 2 =4cx ,其中c =a 2 -b 2 . 不妨设A ,C 在第一象限,由题设得A ,B 的纵坐标分别为b 2a ,-b 2 a ;C ,D 的纵坐标分别为2c , -2c ,故|AB |=2b 2 a ,|CD |=4c . 由|CD |=43|AB |得4c =8b 2 3a ,即3×c a =2-2? ?? ??c a 2 . 解得c a =-2(舍去)或c a =1 2 . 所以C 1的离心率为12 . (2)由(1)知a =2c ,b =3c ,故C 1:x 24c 2+y 2 3c 2=1. 设M (x 0,y 0),则x 204c 2+y 203c 2=1,y 2 0=4cx 0, 故x 20 4c 2+4x 03c =1.①

立体与平面解析解析几何(研究生整理)

立体与平面解析解析几何 1. 常见多面体:棱柱,棱锥,棱台 常见的旋转体:圆柱,圆锥,圆台,球 平面的表示:通常用希腊字母α、β、γ表示,如平面α 直线一般用小写英语字母a, b, l或者大写字母直线上的两个点AB表示。 点与平面的关系:点A在平面内,记作;点不在平面内, 记作 点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作A l; 直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。 4. 四个公理 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 符号语言 公理2:经过不在同一条直线上的三点,有且只有一个平面。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面α和β相交,交线是a,记作α∩β=a。 公理4:平行于同一条直线的两条直线互相平行 5. 直线和平面之间的位置关系 ★线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此 平面平行 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平

面的交线与该直线平行 ★面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行 ★线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 ⑶性质:垂直于同一个平面的两条直线平行。 ★面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直 ⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。 6. 思考途径 证明直线与直线的平行的思考途径 (1)转化为二直线同与第三条直线平行; (2)转化为线面平行; 证明直线与平面的平行的思考途径 (1)转化为线线平行; (2)转化为面面平行. 证明平面与平面平行的思考途径 (1)转化为线面平行; (2)转化为线面垂直. 证明直线与直线的垂直的思考途径 (1)转化为线面垂直; (2)转化为线与另一线的射影垂直; 证明直线与平面垂直的思考途径 (1)转化为该直线与平面内相交二直线垂直; (2)转化为该直线与平面的一条垂线平行; (3)转化为该直线垂直于另一个平行平面; 证明平面与平面的垂直的思考途径

2017高考试题分类汇编之解析几何和圆锥曲线文科(word解析版)

2017年高考试题分类汇编之解析几何(文) 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2017课表I 文)已知F 是双曲线:C 13 2 2 =-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点 A 的坐标是)3,1(,则APF ?的面积为( ) .A 13 .B 1 2 .C 2 3 .D 3 2 【解答】解:由双曲线C :x 2﹣=1的右焦点F (2,0), PF 与x 轴垂直,设(2,y ),y >0,则y=3, 则P (2,3), ∴AP ⊥PF ,则丨AP 丨=1,丨PF 丨=3, ∴△APF 的面积S=×丨AP 丨×丨PF 丨=, 同理当y <0时,则△APF 的面积S=, 故选D . 【点评】本题考查双曲线的简单几何性质,考查数形结合思想,属于基础题. 2.(2017课标II 文)若1a >,则双曲线2 221x y a -=的离心率的取值范围是( ) .A 2,)+∞ .B 2,2) .C 2) .D (1,2) 【分析】利用双曲线方程,求出a ,c 然后求解双曲线的离心率的范围即可.

【解答】解:a >1,则双曲线﹣y 2=1的离心率为:==∈(1,). 故选:C . 【点评】本题考查双曲线的简单性质的应用,考查计算能力. 3.(2017浙江)椭圆22 194 x y +=的离心率是( ) . A 13 3 . B 53 . C 23 . D 59 【分析】直接利用椭圆的简单性质求解即可. 【解答】解:椭圆 + =1,可得a=3,b=2,则c= = , 所以椭圆的离心率为:=. 故选:B . 【点评】本题考查椭圆的简单性质的应用,考查计算能力. 4.(2017课标II 文)过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( ) .A 5 .B 22 .C 23 .D 33 【分析】利用已知条件求出M 的坐标,求出N 的坐标,利用点到直线的距离公式求解即可. 【解答】解:抛物线C :y 2=4x 的焦点F (1,0),且斜率为的直线:y= (x ﹣1), 过抛物线C :y 2=4x 的焦点F ,且斜率为的直线交C 于点M (M 在x 轴上方),l 可知:,解得M (3,2 ). 可得N (﹣1,2 ),NF 的方程为:y=﹣ (x ﹣1),即, 则M 到直线NF 的距离为:=2 . 故选:C .

怎样学好圆锥曲线

怎样学好圆锥曲线(解析几何的高考热点与例题解析)圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始. 高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到: 1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容. 2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等. 3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查. 4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程. (1)方程思想 解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量. (2)用好函数思想方法 对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a,b,c,e之间构成函数关系,函数思想在处理这类问题时就很有效. (3)掌握坐标法 坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练. 考点一求圆锥曲线方程 求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题。 解决这类问题常用定义法和待定系数法。 ●思路方法:一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤。 定形——指的是二次曲线的焦点位置与对称轴的位置. 定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,

平面解析几何知识点总结.doc

基本要求① .掌握两条直线平行、垂直的条件,能根据直线方程判断两条直线的位置关系; ②.掌握两条直线的夹角公式、到角公式和点到直线的距离公式。 ③ . 掌握圆的标准方程和一般方程 . ④ . 掌握圆的方程的两种形式,并能合理合理运用; ⑤. 灵活运用圆的几何性质解决问题 . 1 直线方程的五种形式 点斜式:y y0k ( x x0 ) ,(斜率存在 ) 斜截式:y kx b (斜率存在 ) 两点式: y y1 x x 1, (不垂直坐标轴 ) y2 y1 x2 x1 截距式:x y 1 (不垂直坐标轴 ,不过原点 ) a b 一般式: Ax By C 0 2.直线与直线的位置关系: ( 1)有斜率的两直线 l1:y=k 1x+b1; l2:y=k 2x+b2;有:① l1∥ l2 k1=k2且 b1≠ b2;② l 1⊥ l2 k1·k2 =-1 ; ③ l 1与 l 2相交k 1≠ k2 ④l 1与 l 2重合k1=k2 且 b1=b2。( 2)一般式的直线l : A x+B y+C =0, l : A x+B y+C =0 有:① l ∥ l 2 AB-A B=0;且 BC-B 2 C ≠ 0 1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 1 ② l1⊥ l2A1A2+B1B2=0 ③ l1与 l2相交 A 1B2-A 2B1≠ 0 ④ l1与 l2重合 A 1B2-A 2B1=0 且 B1C2-B 2C1=0。 3.点与直线的位置关系: 点 P( x , y )到直线 Ax+By+C=0的距离: d Ax0 By0 C 。 00 A2 B 2 平行直线 Ax+By+C1=0 与 Ax+By+C2=0 之间的距离为 d C1 C2 A2 B 2 两点间距离公式:| PP | (x x )2 ( y y )2 1 2 1 2 1 2 .4 直线系方程 ①过直线 l 1:A1x+B1y+C1=0, l 2:A2x+B2y+C2=0交点的直线系方程为:A1x+B1y+C1+λ( A2x+B2y+C2)=0(λ∈R)( 除l2外 ) 。 ②过定点 M ( x0 , y0 ) 的直线系方程为 y y0 k( x x0 ) (其中不包括直线x x0) ③和直线 Ax By C 0 平行的直线方程为Ax By C ' 0 (C C ') ④和直线 Ax By C 0 垂直的直线方程为Bx Ay C ' 0 5.圆的定义 : 平面内与定点距离等于定长的点的集合( 轨迹 ) 叫圆 . 在平面直角坐标系内确定一个圆需要三个独立条件: 如三个点 , 半径和圆心 ( 两个坐标 ) 等 . 2 2 2 6. 圆的方程 (1)标准式: (x-a) +(y-b) =r (r>0),其中 r 为圆的半径, (a, b)为圆心。 2 2 2 2 D E 1 D 2 E 2 4F (2)一般式: x +y +Dx+Ey+F=0(D+E -4F>0),其中圆心为( , ) ,半径为 2 2 2 (3) 参数方程 : x r cos , x a r cos (是参数) . 消去θ可得普通方程y r sin y b r sin ( 4) A(x 1, y1)B(x 2,y2)为直径的圆: (x-x1)(x-x 2)+(y-y 1)(y-y 2)=0; (5) .过圆与直线(或圆)交点的圆系方程: i)x2+y2+Dx+Ey+F+λ (Ax+By+C)=0,表示过圆与直线交点圆的方程

椭圆的标准方程与性质

椭圆的标准方程与性质 教学目标: 1了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用; 2 掌握椭圆的定义、几何图形、标准方程及简单几何性质. 高考相关点: 在高考中所占分数:13分 考查出题方式:解答题的形式,而且考查方式很固定,涉及到的知识点有:求曲线方程,弦长,面积,对称关系,范围问题,存在性问题。 涉及到的基础知识 1.引入椭圆的定义 在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|=2c)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数: 有以下3种情况 (1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若a

标准方程x2 a2 +\f(y2,b2)=1 (a>b>0) \f(y2,a2)+错误!=1 (a>b>0) 图形 性质范围 -a≤x≤a -b≤y≤b -b≤x≤b -a≤y≤a 对称性对称轴:坐标轴;对称中心:原点 顶点 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b 焦距|F1F2|=2c 离心率e=错误!∈(0,1) a,b,c的关系c2=a2-b2题型总结

类型一椭圆的定义及其应用 例1:如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( ) A.椭圆? B.双曲线 C.抛物线 D.圆 【解析】根据CD是线段MF的垂直平分线.可推断出,进而可以知道 结果为定值,进而根据椭圆的定义推断出点P的轨迹【答案】根据题意知,CD是线段MF的垂直平分线.,(定值),又显然,根 据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.所以A选项是正确的 练习1:已知F1,F2是椭圆C: 22 22 1 x y a b +=(a>b>0)的两个焦点,P为椭圆C 上的一点,且 错误! 1⊥2 PF,若△PF1F2的面积为9,则b=________. 【解析】由题意的面积∴故答案为: 【答案】3 练习2:已知F1,F2是椭圆错误!+错误!=1的两焦点,过点F2的直线交椭圆于A,B两点,在△AF1B中,若有两边之和是10,则第三边的长度为() A.6?B.5 C.4 D.3

2011年高考数学二轮考点专题突破:圆锥曲线的概念及性质

第二讲 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为 ( ) A.?? ??22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为??? ? 62,0. 答案:C 2.(2010·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个 焦点在抛物线y 2=24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 2 27=1 C.x 2108-y 236=1 D.x 227-y 2 9=1 解析:∵渐近线方程是y =3x ,∴b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,P A⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=() A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴P A∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形.

解析几何与平面几何选讲

解析几何与平面几何选讲

1 ?已知△ ABQ的顶点B、C在椭圆x/4+ y = 1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ ABC的周长是() A. 2 B. 6 C. 8 D. 12 2.抛物线' -:;±的点到直线-- 11距离的最小值是() A. 3?已知以椭圆的右焦点F为圆心,a为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是() 4.已知椭圆的焦点是F1、F2, P是椭圆上的一个动点,过点F2向/ F1PF2的外角平分线作垂线,垂足为 M,则点M的轨迹是() D ?双曲线的一支 B.

H 2 5.如图,已知点B是椭圆;;厂…”的短轴位于x 轴下方的端点,过B作斜率为1的直线交 椭圆于点M,点P在y轴上,且PM// x 轴,丽.踰=9,若点P的坐标为(0,t),则t的取值范围是() 0

① AD+AE=AB+BC+CA ; ② AF ?AG=A D AE ③ 厶AFB ?△ ADG 其中正确结论的序号是 A ?①② B ?②③ D ?①②③ 7.如图2,A,E 是半圆周上的两个三等分点, 直径 BC=4,AD 丄BC,垂足为D,BE 与AD 相交 与点F ,则AF 的长 为 ______________ 。 8如图,已知圆中两条弦丄与上相交于点」, ,是 丄延长线上一点,且 C .①③ n D

m 71 -「若二与圆相切,则 线段翅的长为_____________ . 9 .已知点门,动点/满足条件宀‘记动点」的轨迹为丁.则丁的方 程是_______________ . 10.矩形一匸?的两条对角线相交于点』-1, 旳边所在直线的方程为点丁(-1,1)在曲边 所在直线上. (I)求丄:边所在直线的方程; (II )求矩形」二外接圆的方程; (III )若动圆」过点--■■,且与矩形—二的外 接圆外切,求动圆「的圆心的轨迹方程. 11.已知平面上两定点M(0,—2)、N(0,

高考圆锥曲线解题技巧总结

第五篇 高考解析几何万能解题套路 解析几何——把代数的演绎方法引入几何学,用代数方法来解决几何问题。 与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到。 第一部分:基础知识 1.概念 特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向; (2)在椭圆中,a 最大,222 a b c =+,在双曲线中,c 最大,222c a b =+。 2.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0), 四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22221x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时, 称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离 心率:c e a =,双曲线?1e >,等轴双曲线?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦 点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-; ⑤离心率:c e a =,抛物线?1e =。

解析几何-- 圆锥曲线的概念及性质

4.2解析几何--圆锥曲线的概念及性质 一、选择题 1.(2010·安徽双曲线方程为x2-2y2=1,则它的右焦点坐标为 ( A. B. C. D.(,0 解析:∵原方程可化为-=1,a2=1, b2=,c2=a2+b2=, ∴右焦点为. 答案:C 2.(2010·天津已知双曲线-=1(a>0,b>0的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为 ( A.-=1 B.-=1 C.-=1 D.-=1 解析:∵渐近线方程是y=x,∴=.① ∵双曲线的一个焦点在y2=24x的准线上, ∴c=6.② 又c2=a2+b2,③ 由①②③知,a2=9,b2=27, 此双曲线方程为-=1. 答案:B

4.(2010·辽宁设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|= ( A.4 B.8 C.8 D.16 解析:解法一:AF直线方程为: y=-(x-2, 当x=-2时,y=4,4A(-2,4. 当y=4时代入y2=8x中,x=6, 4P(6,4, 4|PF|=|PA|=6-(-2=8.故选B. 解法二:5PA∞l,4PA%x轴.

又5 AFO=60°,4 FAP=60°, 又由抛物线定义知PA=PF, 4≥PAF为等边三角形. 又在Rt≥AFF′中,FF′=4, 4FA=8,4PA=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为 ( A.圆 B.椭圆 C.双曲线 D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,=,从而 PC=2PA.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2,则A(-5,0,C(5,0,设P(x,y,得=2 化简得x2+y2+x+25=0,显然,P点的轨迹为圆. 答案:A 二、填空题 解析:由题知,垂足的轨迹为以焦距为直径的圆,则c

解析几何与平面几何选讲(精.选)

1.已知△的顶点B、C在椭圆x2/4+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则△的周长是 ( ) A.2 B.6 C.8 D.12 2.抛物线上的点到直线距离的最小值是() A.B. C.D. 3.已知以椭圆的右焦点F为圆心,a为半径的圆与椭圆的右准线交于不同的两 点,则该椭圆的离心率的取值范围是() A.B.C. D. 4.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,过点F2向∠F12的外角平分线作垂线,垂足为 M,则点M的轨迹是() A.圆B.椭圆C.直线D.双曲线的一支

5.如图,已知点B是椭圆的短轴位于x轴下方的端点,过B作斜率为1的直线交 椭圆于点M,点P在y轴上,且轴,,若点P 的坐标为(0,t),则t的取值范围 是() A.0

7. 如图2,是半圆周上的两个三等分点,直径4,⊥,垂足为与相交与点F,则的长 为。 8.如图,已知圆中两条弦与相交于点,是延长线上一点,且 若与圆相切,则线段 的长为. 9.已知点,动点满足条件.记动点的轨迹为.则的方 程是. 10. 矩形的两条对角线相交于点,边所在直线的方程为,点在边所在直线上.

(I)求边所在直线的方程; ()求矩形外接圆的方程; ()若动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程. 11. 已知平面上两定点M(0,-2)、N(0,2),P为一动点,满足. (I)求动点P的轨迹C的方程; ()若A、B是轨迹C上的两不同动点,且. 分别以A、B为切点作轨迹C的切线,设其交点 Q,证明为定值. 【参考答案】 1.C 解析:由椭圆定义知,△的周长=4a。 2.A 解析:由几何知识知道,平移直线与抛物线 相切, 切点到直线的距离最小。

解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义、方程及几何性质 学习目标 (1)理解圆锥曲线的定义,并能正确运用圆锥曲线的定义解决一些简单的问题; (2)掌握圆锥曲线的标准方程,并能熟练运用“待定系数法”求圆锥曲线的方程; (3)能根据圆锥曲线的方程研究圆锥曲线的一些几何性质(尤其是焦点、离心率以及双曲线的渐近线等)。 知识回顾及应用 1.圆锥曲线的定义 (1)椭圆 (2)双曲线 (3)抛物线 2.圆锥曲线的方程 (1)椭圆的标准方程 (2)双曲线的标准方程 (3)抛物线的标准方程 3.圆锥曲线的几何性质 (1)椭圆的几何性质 (2)双曲线的几何性质 (3)抛物线的几何性质 4.应用所学知识解决问题: 【题目】已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点53 (,)22 -, 求椭圆的方程。 答案:22 1106 x y + = 【变式1】写出适合下列条件的椭圆的标准方程: (1)离心率14 e b = =,焦点在x 轴上; (2)4,a c ==焦点在y 轴上; (3)10,a b c +== 答案:(1)22116x y +=;(2)22 116y x +=;(3)2213616x y + =或2213616 y x +=。 【变式2】写出适合下列条件的椭圆的标准方程: (1)3a b =,且经过点(3,0)P ; (2)经过两点3(2-。 答案:(1)22 19x y +=或221819y x +=;(2)2214 x y +=。

问题探究(请先阅读课本,再完成下面例题) 【类型一】圆锥曲线的方程 例1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆 和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。 解:设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1 对于椭圆,1222a MF MF =++(2 2 2222211321 a a b a c ∴=+∴=+=+∴=-=+∴= 椭圆方程为: 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴='∴=-'''∴=-=∴= 双曲线方程为: 练习:1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为 2 。过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。 答案:22 1168 x y + =求圆锥曲线的方程主要采用“待定系数法” 。需要注意的是在求解此类问题时应遵循“先定位,再定量”的原则。注意:当“焦点所在轴不定”时,要有“分类讨论”意识,

相关文档
最新文档