压裂液配方表

压裂液配方表

清洁压裂液

压裂液: 地层水: 配伍性最好, 但悬砂性能差前提是支撑剂的密度降下来。最小的伤害就在于使用地层水加入添加剂,对支撑剂进行改进,利用纳米技术使得它的密度很水一样,强度还要好,那么在水中就能悬浮,这样就达到无伤害的目的。风险大 水力压裂改造技术主要机理为: 通过高压驱动水流挤入煤中原有的和压裂后出现的裂缝内,扩宽并伸展这些裂缝,进而在煤中产生更多的次生裂缝与裂隙,增加煤层的透气性。且可产生有较高导流能力的通道,有效地连通井筒和储层,以促进排水降压,提高产气速度,这对低渗透煤层中开采煤层气尤为重要. 可消除钻井过程中泥浆液对煤层的伤害,这种地层伤害可急剧降低储层内部的压降速度,使排水过程变得缓慢,影响煤层气的开采。 这种技术在煤层气生产实践中也存在一些问题: ①由于煤层具有很强的吸附能力,吸附压裂液后会引起煤层孔隙的堵塞和基质的膨胀,从而使割理孔隙度及渗透率下降,且这种降低是不可逆的,因此,目前国内外在压裂改造技术中,开始使用大量清水来代替交联压裂液,以预防其伤害,但其造缝效果受到一定的影响; ②由于煤岩易破碎,因此,在压裂施工中,由于压裂液的水力冲蚀作用及与煤岩表面的剪切与磨损作用,煤岩破碎产生大量的煤粉及大小不一的煤屑,不易分散于水或水基溶液,从而极易聚集起来阻塞压裂裂缝的前缘,改变裂缝的方向,在裂缝前缘形成一个阻力屏障。 ③对于构造煤(soft coal),采取压裂的办法行不通,因为受压煤层的透气性会更低. 构造煤主要难点:强度弱、煤岩碎、非均质强、渗透性差 清洁压裂液(ClearFRAC) 清洁压裂液的工作原理:加入的表面活性剂形成的胶束,可以在特定的盐浓度下产生,获得粘度,可以在稀释获得遇见亲油相以后通过减少胶束过流面积以后去除粘度。它一种粘弹性流体压裂液,主要成分包括长链的表面活性剂(VES)、胶束促进剂(SYN)和盐(KCl),目前国内外广泛使用是第一代VES 压裂液,主要是阳离子型季铵盐表面活性剂,它们是CTAB(十六烷基三甲基溴化铵)、Schlumberger的JB508型表面活性剂和孪生双季铵盐类表面活性剂。VES压裂液

大流量压裂液配制设备的橇装化设计

大流量压裂液配制设备的橇装化设计 刘庆1卢亚平1邱峰2徐占东2潘社卫1宫秀坤2杨春2台广锋1王振华2 (1:北京矿冶研究总院,北京100160;2:大庆钻探工程公司井下作业工程公司,松原, 138000) 摘要: 为了满足大型压裂作业的需求,设计出了大流量压裂液配制装置,配制速度达到8m3/min,实现了现场配制“即配即用”,降低了配制余量,节省了配液成本,提高了压裂施工效率,该装置在吉林油田中得到了应用,经过多年的大型压裂作业验证,设备运行稳定,达到了装置的研制效果。本文主要介绍了配液装置的配液工艺流程、装置的组成以及现场应用情况。 关键词:大流量;压裂液;连续混配;配液装置 Skid Mounted Design of Large Flow Fracturing Fluid Preparation Equipment LIU Qing1 , LU Yaping1,QIU Feng2 , XU Zhandong 2 ,PAN Shewei1,GONG Xiukong2,YANG Chun2, TAI Guangfeng1,WANG Zhenhua2 (1:Beijing General Research Institute of Mining and Metallurgy , Beijing 100160; 2:Downhole Service Engineering Company of Daqing Drilling Engineering,Songyuan,138000) ABSTRACT:In order to meet the demand of large-scale fracturing, large flow of fracturing fluid preparation equipment is developed. liquid mixing velocity reaches 8m3/min, Field liquid mixing ‘ready-to-use’ is implemented, Reduced the liquid allowance, saved the liquid mixing costs, and improved the efficiency of fracturing construction.The device has been used in jilin oilfield, after many years of verification in large-scale fracturing operation, equipment operation was stabled, development effect was achieved. This paper mainly introduces the liquid mixing process, composition and field application of this device. KEY WORDS: large flow; fracturing fluid; continuous mixing; mixing device 0 引言 现有的水力压裂工艺通常是在施工前在配液站提前配制好压裂液,采用罐车运送至现场,而如今压裂现场呈现出作业点分布广的特点,仅靠固定配液站配液的方式已不能满足大型压裂作业要求,需要开发新的配液方式,以解决压裂准备时间长、罐车拉液成本高、压裂液防腐以及残液环保处理等诸多难题。 连续混配技术在国外80年代已经开始研究使用,但多以油基浓缩液的方式配液,溶解

延长油田用压裂液的优点与不足

延安职业技术学院 毕业论文 题目:延长油田用压裂液的优点与不足所属系部:石油工程系 专业:应用化工生产技术(油田化学)年级班级:07应用化工(4)班 作者:李阿莹 学号: 指导老师: 评阅人: 2010年月日

目录 第一章绪论…………………………………………………………………()第二章延长油田地质情况……………………………………………()第三章压裂液概述………………………………………………………()3.1 概述………………………………………………….……………………()3.2 分类……………………………………………………………….………()3.3 压裂液的国内外研究与应用状况…………………………….….()第四章延长油田用压裂液…………………………………..………()4.1 胍尔胶压裂液……………………………………………………………()4.2 清洁压裂液………………………………………………………………()4.3清洁压裂液与胍胶压裂液的应用对比…………………………………()结论…………………………………………………………..…………….………()参考文献…………………………………………………………….……………()致谢………………………………………………………………………………()

摘要:经过几十年的开发,延长油田已进入中后期开发阶段,为了达到稳产、增产进而合理利用资源的目的,油田企业会对部分井实施措施作业。本论文以此为出发点,就油田常用的两种压裂液体系用外加剂、工艺、施工效果等方面做了概述并由对两种压裂液体系的应用对比,总结出各自的有优点与不足. 关键词:水力压裂延长油田胍胶压裂液清洁压裂液

最新压裂技术现状及发展趋势资料

压裂技术现状及发展趋势 (长城钻探工程技术公司) 在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。 1、压裂技术发展历程 自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。 (2)1970年-1990年:中型压裂。通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。 (3)1990年-1999年:整体压裂。压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。 (4)1999年-2005年:开发压裂。考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。 (5)2005年-今:广义的体积压裂。从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。 2、压裂技术发展现状 经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。 2.1 压裂工艺和技术

(工艺技术)油田压裂新技术工艺

2012年4月8日星期日 1、黑油模型:指油质较重性质的油藏类型。黑油模型是最完善、最成熟,也是应用最为广 泛的模型。是油藏数值模拟的基础,其它模型大都是黑油模型的扩展。 (1) 黑油模型的基本假设:(1)油藏中的渗流是等温渗流。 (2)油藏中最多只有油、 气、水三相,每一相均遵守达西定律。 (3)油藏烃类只含有油、气两个组分。在油 藏状态下,油气两组分可能形成油气两相,油组分完全存在于油相内,气组分则可 以以自由气的方式存在于气相中,也可以以溶解气的方式存在于油相中,所以地层 内油相为油组分和气组分的某种组合。在常规油田中,一般不考虑油组分向气组分 挥发的现象。(4)油藏中气体的溶解和逸出是瞬间完成的,即认为油藏中油气两相 瞬时达到相平衡状态。(5)油水之间不互溶;天然气也假定不溶于水。 煤层气:赋存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于 煤孔隙中或溶解于煤层水中的烃类气体。 全国煤层气试验区分布图 J3-K1 哈尔滨 28 3、页岩气 页岩气形成的条件 (1) 岩性:形成页岩气的岩石除页岩外,还包括泥岩、粉砂岩、甚至很细的砂岩 (2) 物性:页岩最突出的特点是孔隙度和渗透率极低,典型的气页岩的基质渗透率处于微 达西~纳达西范围,因此气体在储层中的流动主要取决于页岩中天然裂缝的发育情况 (3 )矿物组成:粘土矿物和碳酸盐含量低、粉砂质或硅质(石英)含量较高比较有利。 (4)裂缝: 裂缝发育适中。 2012-4-9 4、压裂工艺成果 压裂工艺推陈出新,分段压裂、裂缝性气藏压裂、火山岩压裂、降滤压裂、重复压裂、转向 压裂、控缝高压裂等压裂技术得到了成功应用, 特别是水平井分段压裂技术的推广应用, 保障油气田增储上产方面发挥了巨大作用。 较好指标: 2、 乌鲁木齐 J1-2 J3-K1 J3-K1 J3-K1 J3-K1 J2 J1-2 J1-P2 J1-2 J1-2 西宁 兰州 J1-2 1-2 西安 P2 成都 2"| C-P 北京1 ? 济南3 9 C-P 长春 E J3-K1 1开滦 15 韩城 2大城 16 蒲县 3济南 17 柳林 4淮北 18 吴堡 5淮南 19 三交 6平顶山 20 临县 7荥巩 21 兴县 8焦作 22 丰城 9安阳 23 冷水江 10晋城 24 涟邵 11屯留 25 沈北 12阳泉 26 红阳 29 阜新 13澄合 27 铁法 30 辽河 14彬长 28 鹤岗 T3 武汉二 长沙 2 : P2 上海 P2 P2 福州 卢台北

压裂液

压裂液 大体作用:1、携带支撑剂到地层;2、压开裂缝;3、降低地层温度。 压裂液分类及作用 压裂液可分为: A 水基压裂液(稠化水压裂液,水冻胶压裂液,水包油压裂液,水基泡沫压裂液); B 油基压裂液(稠化油压裂液,油冻胶压裂液,油包水压裂液,油基泡沫压裂液)。 C乳化压裂液; D纯气体压裂液 1)前置液:作用是破裂地层并造成一定几何尺寸的裂缝以备后面的携砂液进入,它还起到一定的降温作用。有时为了提高前置液的工作效率,在一部分前置液中加细砂以堵塞地 2)携砂液:作用是将支撑剂带入裂缝中并将砂子放到预定位置上去。在压裂液的总量 3)顶替液:作用是打完携砂液后,用于将井筒中全部携砂液替入裂缝中。中间顶替液 压裂液的性质

④稳定性好。压裂液稳定性包括热稳定性和剪切稳定性。即压裂液在温度升高、机械剪切下粘度不发生大幅度降低,这对施工成败起关键性作用。 ⑤配伍性好,压裂液进入地层后与各种岩石矿物及流体相接触,不应产生不利于油气渗滤的物理、化学反应,即不引起地层水敏及产生颗粒沉淀。这些要求是非常重要的,往往有些井压裂后无效果就是由于配伍性不好造成的。 ⑥低残渣。要尽量降低压裂液中的水不溶物含量和返排前的破胶能力,减少其对岩石孔隙及填砂裂缝的堵塞,增大油气导流能力。 ⑦易返排。裂缝一旦闭合,压裂液返排越快、越彻底,对油气层损害越小。 ⑧货源广,便于配制,价格便宜。 常用各种类型压裂液或压裂液体系见表3-2。 注:HPG:羟丙基瓜胶;HEC:羟乙基纤维素;TQ:田菁胶;CMHEC:羧甲基羟乙基纤维素CMHPG: 羧甲基羟丙基瓜胶。 一.水基压裂液 水基压裂液是以水作溶剂或分散介质,向其中加入稠化剂、添加剂配制而成的。主要采用三种水溶性聚合物作为稠化剂,即植物胶(瓜胶、田菁、魔芋等)、纤维素衍生物及合成聚合物。这几种高分子聚合物在水中溶胀成溶胶,交联后形成粘度极高的冻胶。具有粘度高、悬砂能力强、滤失低、摩阻低等优点。目前国内外使用的水基压裂液分以下几种类型:天然植物胶压裂液,包含如瓜胶及其衍生物羟丙基瓜胶,羟丙基羧甲基瓜胶,延迟水化羟丙基瓜胶;多糖类有半乳甘露糖胶,如田箐及其衍生物,甘露聚葡萄糖胶;纤维素压裂液,包含如羧甲基纤维素,羟乙基纤维素,羧甲基—羟乙基纤维素等;合成聚合物压裂液,包含如聚丙烯酰胺、部分水解聚丙烯酰胺、甲叉基聚丙烯酰胺及其共聚物。 水基压裂液配液过程是: 水+添加剂+稠化剂→溶胶液

压裂液返排处理

11.2 项目实施方案 11.2.1压裂返排液分析 常规压裂施工所采用的压裂液体系,以水基压裂液为主。压裂施工后所产生的压裂废液主要来源于两个方面:一是施工前后采用活性水洗井作业产生的大量洗井废水;另一个方面就是压裂施工完成后从井筒返排出来的压裂破胶液,返排的压裂废液中含有大量的胍胶、甲醛、石油类及其他各种添加剂,众多添加剂的加入使压裂液具有较高的COD值、高稳定性、高黏度等特点,特别是一些不易净化的亲水性有机添加剂,难以从废水中除去。总的来说,压裂废液具有以下特点: (1)成分复杂。返排液主要成分是胍胶和高分子聚合物等,其次是SRB菌、硫化物、硼酸根、铁离子和钙镁离子等,总铁、硼含量都很高。 (2)处理难度大。悬浮物是常规含油污水处理中最难达标的项目,压裂返排液组分的复杂性及其性质的独特性决定了其处理难度更大。 (3)处理后要求比较高。处理后的液体不仅粘度色度要达标,里面的钙镁离子、铁离子、和硼酸根离子均要去除,否则会影响后续配制压裂液的各项性能。 11.1 国内外研究现状 由于压裂废液具有粘度大、稳定性好、COD高等特点,环保达标处理难度较大。国外对压裂废液的处理主要是回收利用。根据国外报道的技术资料看,他们对压裂废液的处理技术和工艺相对简单,一般采用固液分离、碱化、化学絮凝、氧化、过滤等几个组合步骤,处理后的水用于钻井泥浆、水基压裂液、固井水泥浆等配制用水。这种处理方式不仅降低了处理压裂废液的费用支出,而且还减少了污染物的排放。 国内对早些压裂废液的处理主要采取以下一些方法: (1)废液池储存:将施工作业中产生的压裂废液储存在专门的废液池中,采用自然蒸发的方式干化,最后直接填埋。这种处理方式不仅耗时长,而且填埋的污泥块仍然会渗滤出油、重金属、醛、酚等污染物,存在严重的二次污染。 (2)焚烧:这种方式虽然可以在一定程度上控制污染物的排放,但仍然会造成大气污染。 (3)回注:将压裂废液收集,集中进行絮凝、氧化等预处理,然后按照一定比例与采油污水掺混进行再处理,处理后的水质达标后用作回注用水。

中石油压裂液技术发展思考

【技术】中石油压裂液技术发展思考 文/程兴生卢拥军管保山王丽伟翟文明华 中石油勘探开发研究院廊坊分院 伴随着北美页岩气革命,储层改造技术正在引领全球非常规油气勘探开发的重大变革,已经成为与物探、钻井并列的三大关键工程技术。中石油60%~70%新增 储量为低渗特低渗透非常规油气资源,低渗特低透、深层高温、非常规和海洋石油等“难新”领域待开发利用。改造对象从常规储层到非常规储层,储层物性由高渗透到低渗透、超低渗,甚至为纳达西级致密储层;油藏类型由常规油气藏到致密气、致密油、页岩气、煤层气等;并伴有低压、异常高压、水敏、高温等特性,改造对象异常复杂。随着改造井数、层数、段数越来越多,储层改造呈现大排量、高泵压、大规模、工厂化作业的特点。上述变化对压裂液与储层、新工艺的适应性以及成本投入提出新的要求,有必要对中石油压裂液技术现状进行梳理,对未来发展进行思考和规划。 1 中石油压裂液技术与应用现状 压裂液的分类和命名目前没有统一的标准。按照稠化剂类型进行命名,可分为植物胶类压裂液、合成聚合物压裂液、表面活性剂压裂液、纤维素压裂液等。本文以稠化剂分类为主线,结合特色压裂液技术,介绍中石油压裂液技术及应用现状。 1.1 胍尔胶压裂液 胍尔胶压裂液是由胍尔胶原粉或其衍生物与硼或锆等交联形成的冻胶。胍尔胶原粉水不溶物含量较高18%~25%,改性后的胍尔胶不溶物2%~12%。原粉1%浓度 增黏能力187 mPa.s~351mPa.s,冻胶破胶后残渣含量高,质量分数为7%~10%。原粉在大庆油田高渗浅层有应用。胍尔胶衍生物包括羟丙基胍尔胶(HPG)、超级胍尔胶(SHPG)、羧甲基胍尔胶(CMG)、羧甲基羟丙基胍尔胶(CMHPG)等,

压裂液混配射流器设计

压裂液混配射流器设计 发表时间:2019-06-17T11:56:33.203Z 来源:《中国西部科技》2019年第7期作者:陆燕 [导读] 针对大庆油田三次采油过程中,压裂混配液混配过程中存在“水包粉”难题,设计一种射流器混配,解决压裂混配过程中的问题,介绍其组成及其工原理,分析了工作过程及其混配优点。 青岛海旭石油泵业有限公司 1.前言 大庆油田是我国最大的油田,也是世界上为数不多的特大型砂岩油田之一,从开发至今已有近60余年的历史,在我国有举足轻重的地位。当前大庆油田处于二类油层反块区域剩余油开采阶段[1-3]。大庆油田三次采油技术在不断更新与进步中,在石油开采中由于当前地层压力低,经常出现储层渗透率降低,有油出不来的老化现象。因此压裂增产技术被引入到石油行业的生产技术中[4-6]。压裂是一种利用压力把含有高度黏性较强的液体注入井下,对石油作业层延伸裂缝,从而提升油层的渗透性,这种液体通常称为压裂液伴随着压裂技术的应用,油层的渗透性随之提高,不仅达到油田增产目的,也保证了石油资源的有效开采利用。 在压裂施工过程中,耗费工时最长的是压裂液的配制,并且对配液人员的要求也非常苛刻,且配制压裂液需要的各组分添加剂均需人为加料,这很难做到精确添加,特别是提供黏性的增稠剂。瓜胶粉的添加数量和加入时间稍有不当,就会影响压裂作业的质量[6]。在以往的配液工作中,稠化剂的添加工作时间过长,存在较高的时间工作成本。大型的压裂设备用于高效开发大规模非常规油气藏及非常规储层,所需压裂液量非常大,若按以往压裂液配置方法进行压裂液配制,专业技术人员劳动强度大,配液时间长,配制的压裂液性能不稳定[7]。一般采用的压裂液配制站与压裂施工现场较远,运输路途时间较长,压裂液长时间的放置会使粘度降低[8]。配制好的压裂液如果不能及时使用,其基液降解会影响粘度,造成不必要损失。这就造成了压裂液中包含大量"水包粉",造成粉料浪费大、混配质量差、水合粘度低,同时也会出现加料不均匀,粘度不均匀。产生溶胀速度慢,作业前需预先混配,若压裂工况改变,预先混配的压裂液难以满足新的工况,易造成浪费。同时还会污染污染环境与地层,增加生产后期处理与投入[9-10]。 2.射流器组成 射流器压裂液混配系统内,清水由工作泵提供,经全程流量计监测和流量调节阀调控,符合工况要求后,流入多级串联射流泵混配装置。动力液流经射流泵内喷嘴后形成高速射流,流体速度增加,从而使吸液腔内形成低压。液体添加剂被吸入到吸液腔,与高速的清水在喉管内混合后流入扩散管。在扩散管内将混合液的动能转化为压能后流入下一级配药装置。射流泵混配装置工作过程中自动控制系统内的计算机根据设定的工况参数对全程流量监测,并及时调节控制阀确保配药比例维持在设定的配比。 2.1动力系统 动力系统:提供混配工作过程的动力源,本设计装置主要采用三相异步电动机,以电能作为原动力。在井场或配液场电能方便且是清洁能源,不会形成二次污染,油田供电采用专用供电线路,保证工作的顺利进行。 2.2混合系统 混合系统:混合系统主要由清水泵,传输泵、发液泵、流量调节阀,电动控制阀、涡轮流量计,射流器、混合罐等组成。混合系统要有抗弱酸与弱碱的能力,管道与射流器均由不锈钢材料制成;清水泵过水管道装有过滤滤网,清水管道为碳钢制成,传输与排除管道均为不锈钢制成。 混合器是根据流体力学原理工作,专门针对胍胶等物料混配工作,工作时无论流量如何变化能保持清水压力值不变,确保混合时高压对粉体的冲击,达到设计的效果,彻底消除水包粉的现象。扩散部位能有效除去混合液中空气,进一步增强混合效果。为防止液体飞溅,外加排气口护罩。每次作业完成可以对排污和清洗装置进行彻底的排空和清洗。 2.3计量系统 粉料计量系统主要有储粉箱、粉料平台、螺旋喂入机构、过滤斗、电子测量装置等组成。储粉容积可根据粉箱实际设定,储粉箱要有防雨设施,粉料送料装置,各个装置要固定牢固合理。 储粉箱可设置振动装置,保证料粉顺利下落;螺旋输送机构转速可调,适应不同速度配液,与配液装置按比率变化,采用马达驱动,防潮、防水。 该混配装置中粉料称重采用电子秤配合螺旋输送失重法在线测量动态稠化剂的方式,计量粉量重量,动态控制物料的输出,改变按总重量投料的控制精度方式,实现连续均匀加药,加料精度达±1%,配比精度达±2%。 液体混配计量采用双流量计闭环控制系统控制,根据液体的流速或质量控制药品的流速或质量,保证均匀浓度实时混合,流速控制准确均匀。液体混配控制采用负压自吸式,采用流速与流速均匀计量浓度,实时流量输出液体物料,改变以往的不可控制总体积的混合方式,实现连续均匀混合配药,配合浓度比精度达到±1.5%。 2.4控制系统 由工业计算机、软件、电子秤、液压表、电气元件等组成,工作时根据计算机设置的水流值,水粉比调整相应的水量、粉量或液体流量,使其符合设计值。计算机采用适用野外作业,安装防震操作控制器,控制箱采用全封闭结构,仪表显示清水流量、排出流量、添加剂流量、胍胶添加量、电子秤称重、气压等参数。 因设备出口粘度高,能在三分钟内将出口黏度达到试验同等条件下最高黏度85%以上,可以将混配工作与砂车共同工作使用,混配直接供给砂车,实现现配现用,现配现压,改变传统工作模式。 3.工作特点 (1)降低了工人的作业强度,有利于保证工作人员的身体健康,提高了混配液的利用效率,节约了原材料与生产成本。(2)缩短了整体生产时间,减小了施工组织难度,提高了生产效率。 (3)避免了配液过程中产生"水包粉",提高了配液精度与配液质量,减少了对地层的伤害,保护了环境与水资源。(4)射流器混配具有先进先出的设计原则,保证混合液的粘度一致性,浓度均匀、聚合效果好。 参考文献: [1]武雯.大庆油田机械采油节能技术现状及展望[J].科学技术创新,2018(03):64-65.

环保型压裂液—可回收清洁压裂液技术

森瑞石油-环保型压裂液技术 1、可回收清洁压裂液技术 随着水平井压裂和体积压裂等大规模压裂方式逐渐成为油田开发的主体技术,但是压后返排废液处理已成为制约大规模压裂瓶颈,尤其是近年来环境保护法则对油田开发返排液已提出了较高的要求,我公司在清洁压裂液基础上通过一年半技术攻关,形成了可回收清洁压裂液技术。 可回收清洁压裂液摒弃了常规清洁压裂液中长链脂肪酸的季铵盐的强阳离子特性,采用DE DOVO从头设计法形成了多支链、多位点、双亲可逆两性表面活性剂,复合特有表面活性剂增强剂,形成了可回收清洁压裂液。该压裂液具有交联可逆、重复利用独特特性,优良的粘弹性,无残渣、低摩阻、低伤害,能实现直接混配方便快捷施工方式。尤其适用于丛式井密集的油田、大规模压裂改造(如水平井体积压裂,分层压裂等)以及环保要求高的地区。该技术在国内油田已应用10余井组超过40井次,节水、减排、增产效果明显。 可回收清洁压裂液特点: 可实现直接混配,无需配液,施工方便,节省作业周期 体系无残渣、无水不溶物 体系遇油、水均能自动破胶 携砂能力强,施工摩阻低 对储层伤害小,不影响裂缝导流能力 返排液回收利用率高,环保优势明显 适用储层温度≤90℃ 2、可回收线性胶压裂液技术 针对油气田中高温储层(90~130℃)开发中压裂液在节水、环保方面缺点,结合瓜尔胶压裂液体系回收工艺复杂、成本高、效率低的问题,我公司在可回收清洁压裂液基础上研发出可逆交联的环保线性胶稠化剂,该稠化剂可降解,对环

境污染小,研发了可降解糖苷表面活性剂作为其配套添加剂,形成了可回收线性胶压裂液体系。 回收线性胶压裂液体系与可回收清洁压裂液相比在耐温上有大幅度提升,该体系可满足160℃耐温能力,多次回收液体系仍可满足130℃耐温能力。该体系具可逆交联特性,能实现返排液可回收,重复利用功能,同时有强悬砂性能,无水不容物,体系破胶彻底,破胶后无残渣,对储层伤害低,对裂缝导流能力无伤害,能够满足(130℃以内)储层改造要求。整个体系在配液与施工过程中和胍胶类压裂液相同,无须特殊设备。对水资源欠缺、残液排放严格区域能实现提高水利用率、零排放标准,该技术节水、减排、增产效果明显。 可回收线性胶压裂液特点: 体系满足可逆交联,可实现重复利用, 返排液回收利用率高,节水优势明显 原材料具有降解彻底,环保优势明显 体系无残渣,破胶彻底,对裂缝导流能力影响小 携砂能力强,抗温耐剪切性能好,能够满足(130℃以内)储层改造要求。 3、回注水压裂液技术 油田注水开发中,采出液处理后所得采出水因矿化度较高除了用于回注外,使用范围窄。在水资源欠缺、残液排放严格区域,合理使用回注水,能提高水资源利用率。回注水矿化度较高,与储层地层水相当,在采出水同储层改造中用作压裂液配液用水,入井液在储层中离子平衡状态,能减少地层粘土膨胀、水敏伤害。但高矿化度回注水对目前常规压裂有以下影响:植物胶压裂液在回注水中难以溶胀,无法交联携砂;聚合物压裂液耐盐剪切性差,破胶困难;会降低清洁压裂液交联CMC值、易分层、沉淀。 根据矿化度对压裂液特性,研发了多种回旋镶嵌型耐高矿化度小分子表面活性剂,组成回注水压裂液体系,该体系能在高矿化度快速溶胀,不分层、沉淀,高矿化度对体系耐温有促进作用,具备良好的耐剪切性能,遇油破胶彻底,对裂缝

压裂液性能评价-粘土稳定剂

压裂液总结 压裂液是压裂施工的关键性环节之一,素有压裂“血液”之称。它的性能除了直接影响到水力压裂施工的成功率外,还会对压后油气层改造效果产生很大的影响。压裂液在施工时应具有良好热稳定性和流变性能,较低的摩阻压降,优秀的支撑剂输送和悬浮能力,而在施工结束后,又能够快速彻底的破胶返排,残渣低、并且进入地层的滤失液与油气配伍性好,对储层造成的潜在性伤害应最小,从而获得较理想的施工效果。因此,在优选水力压裂所用的工作液时,应从压裂液的综合性能满足压裂工艺的要求及压裂液应当与储层配伍,对储层造成的潜在性伤害尽可能地小两方面着手,优选出高效、低伤害、适合储层特征的优质压裂液体系。 压裂是油气井增产,水井增注的有效措施之一。特别适于低渗透油气藏的整体改造。压裂形成具有高导流能力的填砂裂缝,能改善储集层流体向井内流动的能力,从而提高油气井产能。然而,压裂作业中压裂液进人储集层后,总会干扰储集层原有平衡条件,压裂措施本身包含了改善储集层和伤害储集层双重作用,当前者占主导时,压裂增产,反之则造成减产。为了获得较好增产效果,就应充分发挥其改善储集层的作用,尽量减少对储集层的伤害。 一、压裂液对油气层的损害 压裂液是压裂施工的关键性环节之一,素有压裂“血液”之称。它的性能除了直接影响到水力压裂施工的成功率外,还会对压后油气层改造效果产生很大的影响。压裂作业中压裂液造成油气层损害的主要原因有:一是由于压裂液及其添加剂选择不当造成压裂液与油气层岩石矿物和油气层流体不配伍造成损害;二是压裂液对支撑裂缝导流能力的损害;三是压裂施工过程中的损害。 1.压裂液与油层岩石和油层流体不配伍损害 1)压裂液滤液对油层的损害 在压裂施工中,向储集层注人了大量压裂液,压裂液沿缝壁渗滤人

压裂液,基本知识,对储层伤害的评价

酸性交联压裂液伤害性评价实验报告 1 压裂液基础知识 水力压裂是油气层改造与油井增产的重要方法,得到广泛的应用,对于油气的生产起着不可代替的作用。几十年来,国内外油田对压裂液技术方面进行了广泛的研究。该技术发展是越来越成熟,目前压裂液体系的发展更是日新月异,国内外均出现了天然植物胶冻胶压裂液、泡沫压裂液、酸基压裂液、乳化压裂液、油基压裂液、清洁压裂液等先进的压裂液进一步为油气的勘探开发和增储上做出了重大贡献。我们对一些国内外先进的压裂液体系做了一些介绍,并了解了国内外压裂液的发展方向和概况。同时为了更清楚地认识压裂液中各种化学添加剂性能优劣对地层伤的害性,对其伤害性的评价就显得十分重要和必要了。 1.1 压裂液在压裂施工中基本的作用: (1)使用水力劈尖作用形成裂缝并使之延伸; (2)沿裂缝输送并辅置压裂支撑剂; (3)压裂后液体能最大限度地破胶与反排,减少裂缝与地层的伤害,并使储集层中存在一定长度的高导流的支撑带。 1.2 理想压裂液应满足的性能要求: (1)良好的耐温耐剪切性能。在不同的储层温度、剪切速率与剪切时间下,压裂液保持有较高的黏度,以满足造缝与携砂性能的需要。 (2)滤失少。压裂液的滤失性能主要取决于压裂液的造壁滤失特性、黏度特性和压缩特性。在其中加入降滤失水剂将大大减少压裂液的滤失量。 (3)携砂能力强。压裂液的携砂能力主要取决于压裂液的黏度与弹性。压裂液只要有较高的黏度与弹性就可以悬浮与携带支撑剂进入裂缝前沿。并形成合理的砂体分布。 一般裂缝内压裂液的黏度保持在50~100mpa*s。

(4)低摩阻。压裂液在管道中的摩阻愈小在外泵压力一定的条件下用于造缝的有效马力就愈大。一般要求压裂液的降阻率在50%以上。 (5)配伍性。压裂液进入地层后与各种岩石矿物及流体接触,不应该发生不利于油气渗率的物理或化学反应。 (6)易破胶、低残渣。压裂液快速彻底破胶是加快压裂液反排,减少压裂液在地层中的滞留时间的必然要求。降低压裂液残渣是保持支撑裂缝高导流能力,降低支撑裂缝伤害的关键因素。 (7)易反排。影响压裂液反排的因素有:压裂液的密度、压裂液的表面、界面张力和压裂液破胶液黏度。 (8)货源广、便于配制与价格便宜。随着大型压裂的发展,压裂液的需求量很大,其是压裂成本构成的主要部分,所以压裂液的可操作性和经济可行性是影响压裂液选择和压裂施工的重要因素。 2国内外先进压裂液的发展趋势与研究概况: 目前国内外压裂液的研究趋势是开展具有低残渣或无残渣、易破胶、配伍性好、低成本、低伤害等特点压裂液配方体系的研究,减小压裂液对储层的伤害成为压裂液研究的热点。 2.1清洁压裂液 粘弹性表面活性剂压裂液(VES)是在盐水中添加表面活性剂形成的一种低粘阳离子胶凝液,又被称为清洁压裂液(clear FRAC)。它由长链脂肪酸衍生的季胺盐组成,在盐水中季胺盐分子形成蚯蚓状或杆状胶束,这些胶束类似于聚合物链,能够卷曲,形成一种粘弹性的流体,其粘度是通过表面活性剂杆状胶束的相互缠绕而形成的,这与瓜胶等植物胶压裂液的粘度形成机理不一样。植物胶压裂液不耐剪切,由于分子链的断开,剪切过程中植物胶的粘度会永久的丧失。而清洁压裂液胶束的形成和相互缠绕是表面活性剂分子之间和表面活性剂聚集体之间的行为,其变化的速率远远的大于流体的流动速率,表现为清洁压裂液的表观粘度不随时间而变化以及通过高剪切后体系的粘度又能够得到恢复。当压裂液暴露到烃液中或被地层水稀释时发生破胶,无需另外添加破胶剂。清洁压裂液中不含任何高聚物,它主要

SYT51071995水基压裂液性能评价方法

SY 中华人民共和国石油天然气行业标准 SY/T 5107 -1995水基压裂液性能评价方法 1995-12-25发布1996-06-30实施 中国石油天然气总公司发布

前言 根据压裂液技术研究的发展、先进技术的引进、仪器设备的更新以及原标准实施过程中存在的—些问题,本标准对SY 5107—86《水基压裂液性能评价推荐作法》进行了修订。 本标准保留了原标准中多年实践证明适合我国压裂液性能测定方法的主要内容。但随着我国压裂液技术研究发展,压裂液性能不断的提高和改善,为了更全面地测定压裂液性能,增加了用表面张力仪测定破胶液表面张力和界面张力的测定方法、压裂液交联时间测定方法、降阻率的现场测定方法;由于试验仪器设备的更新,增加了RV20粘度计测定压裂液流变性的方法。压裂液对岩心基质渗透率损害机理的研究表明,压裂液滤液侵入,滤液在地层孔隙、喉道中发生物理化学变化,是造成压裂地层基质渗透率损害的主要原因。因此,修订了压裂液对基质渗透率损害的测定方法,删去了原标准中粉剂含水、水不溶物测定方法,还删去RV。测流变性及管路摩阻测定方法和附录中部分内容,对有的章、条内容作了补充完善和调整。本标准与原标准相比章、条内容有变动。 本标准从生效之日起,同时代替SY 5107—86。 本标准的附录A是标准的附录; 本标准的附录B、附录C、附录D都是提示的附录。 本标准由油田化学专业标准化技术委员会提出并归口。 本标准起草单位:石油勘探开发科学研究院采油工程研究所、石油勘探开发科学研究院廊坊分院压裂酸化中心。 本标准主要起草人官长质何秉兰卢拥军崔明月

目次 前言 l 范围 (1) 2 引用标 (1) 3 定义 (1) 4 仪器设备及试剂 (1) 5 压裂液试样制 (2) 6 压裂液性能测定方法 (2) 附录A(标准的附录) 压裂液性能测定结果表格式 (10) 附&B(提示的附录) 旋转粘度计与管道或裂缝中K,n,值换算………………………………1l 附录C(提示的附录) 旋转粘度计测定说明 附录D(提示的附录) 岩心渗透率损害率测定说明 (13)

油田压裂新技术工艺

2012年4月8日星期日 1、黑油模型:指油质较重性质的油藏类型。黑油模型是最完善、最成熟,也是应用最为广 泛的模型。是油藏数值模拟的基础,其它模型大都是黑油模型的扩展。 (1)黑油模型的基本假设:(1)油藏中的渗流是等温渗流。(2)油藏中最多只有油、气、水三相,每一相均遵守达西定律。(3)油藏烃类只含有油、气两个组分。在油藏状态下,油气两组分可能形成油气两相,油组分完全存在于油相内,气组分则可以以自由气的方式存在于气相中,也可以以溶解气的方式存在于油相中,所以地层内油相为油组分和气组分的某种组合。在常规油田中,一般不考虑油组分向气组分挥发的现象。(4)油藏中气体的溶解和逸出是瞬间完成的,即认为油藏中油气两相瞬时达到相平衡状态。(5)油水之间不互溶;天然气也假定不溶于水。 (2)物性:页岩最突出的特点是孔隙度和渗透率极低,典型的气页岩的基质渗透率处于微达西~纳达西范围,因此气体在储层中的流动主要取决于页岩中天然裂缝的发育情况 (3)矿物组成:粘土矿物和碳酸盐含量低、粉砂质或硅质(石英)含量较高比较有利。(4)裂缝:裂缝发育适中。 2012-4-9 4、压裂工艺成果 压裂工艺推陈出新,分段压裂、裂缝性气藏压裂、火山岩压裂、降滤压裂、重复压裂、转向压裂、控缝高压裂等压裂技术得到了成功应用,特别是水平井分段压裂技术的推广应用,在保障油气田增储上产方面发挥了巨大作用。 较好指标:

水平井压裂分段数:9段 深层气压裂最大支撑剂量: 908.5t (角64-2H井) 最大注入井筒液量: 4261.1m3 最大酸压规模:1603 m3 ?水力喷射分层加砂压裂在四川、长庆地区施工20余井次,平均单井次缩短施工周期20天以上;气井应用不动管柱分层压裂技术307井次,施工成功率99%;平均单井缩短试气周期20天以上;连续混配压裂施工405井次,累计配液88898 m3,累计缩短施工周期425天。 ?裸眼封隔器分段压裂取得突破性进展。全年在苏里格等地区现场应用22井次,并取得良好效果。长城钻探在苏里格气田采用裸眼封隔器进行压裂投产后产量是临近直井的5倍以上。 ?川庆钻探与美国EOG公司合作,在角64-2H井应用水平井泵送电缆桥塞压裂技术,成功完成水平井9段分层加砂压裂施工,注入液体4261.1m3,支撑剂908.5t,刷新此项工艺技术作业时间最短、段数最多(9段)、注入砂量最大、注入液量最多、累计作业时间最长等5项亚洲记录, ?2010年,国产水平井裸眼封隔器及配套工具的成功研发和推广应用,打破了外国公司的垄断,取得了很好的增产效果,产量是临近直井的3倍以上。 ?2010年,川庆钻探在合川 2口井成功进行了连续油管喷砂射孔环空6-7级分段压裂现场施工;西南油气田的威201页岩气井也已进行了2次的页岩气压裂改造施工,为非常规气藏有效开发探索出了新的途径。 5、机械分段压裂技术 机械分段压裂技术包括裸眼封隔器分段压裂技术、动管柱套管内多封隔器卡封分段压裂技术、不动管柱套管内多封隔器卡封分段压裂技术、封隔器+桥塞分段压裂技术等。 1、裸眼封隔器分段压裂 ◆裸眼封隔器分段压裂是苏里格水平井储层改造的主要方式:到目前苏里格共完成裸眼分段压裂36井(167段),占整个水平井改造总井数的81.8%。 ◆应用规模逐年扩大: 09年8井次、10年1~7月28井次。 ◆技术水平逐步提高:分段数从3段到10段(工具已下井,近期压裂施工),最长水平段1512m,最大下入深度5235m。 套管鞋:3698.81

压裂液国内外研究现状

1. 压裂液国内外发展概况 压裂技术是我国油气田开发必不可少的重要措施之一,它在增加产量和储量动用方面起到了重要的作用。压裂的目的主要是形成具有一定几何形状的高导流能力裂缝,改善油气通道,从而增加油气产量。而压裂液在压裂中起着非常重要的作用,压裂液体系的性能是关乎整个压裂施工作业成败及压裂效果的关键点之一,性能好的压裂液不但能够保障压裂施工的顺利进行,而且能够保护储层,获得理想的增产效果[1]。压裂液通常是由各种化学添加剂按一定比例配制成具有良好粘弹性的冻胶状物质,主要分为水基压裂液、油基压裂液、泡沫压裂液、清洁压裂液[2]。 1947年,水力压裂首次在现场成功应用的初期,主要使用以原油、成品油所配成的油基压裂液,原因是水基压裂液会对水敏地层造成损害。五十年代,出现了控制水敏地层损害的方法以后,水基压裂液才被应用在压裂作业中,但油基压裂液仍为主要的压裂液。到六、七十年代,增稠剂瓜胶及其衍生物的出现,使水基压裂液迅速发展并占据主要地位。到了八十年代,由于致密气藏开采和部分低压油井压后返排困难等问题,出现了泡沫压裂液。到九十年代及以后,为了解决常规压裂液在返排过程中由于破胶不彻底对油藏渗透率造成很大伤害的问题,又开发研制了粘弹性表面活性剂压裂液,即清洁压裂液。 1.1 水基压裂液 水基压裂液是以水作溶剂或分散介质,向其中加入稠化剂、添加剂配制而成的,主要采用三种水溶性聚合物作为稠化剂,即植物胶(瓜胶、田菁、香豆、魔芋等)、纤维素衍生物及合成聚合物。这几种高分子聚合物在水中溶胀成溶胶,交联后形成粘度极高的冻胶。具有低摩阻、稳定性好、携砂能力强、低损害、施工简单、货源广、廉价等特点。通常,水基压裂液按加入稠化剂种类大致可分为三种类型: 天然植物胶压裂液、纤维素压裂液以及合成聚合物压裂液。 1.1.1 天然植物胶压裂液 国内外最先研究和应用的是天然植物胶压裂液,因而这类压裂液使用最多,其中瓜胶及其改性产品为典型代表[3]。美国BJ公司开发了一种新型低聚合物浓度的压裂液体系,稠化剂是一种高屈服应力的羧甲基瓜胶,一般使用浓度是0.15-0.30%,可适用底层温度为93-121℃。该压裂液体系具有较高的粘度,良好的携砂能力。目前,国外已经进行了350口井以上的压裂施工,获得了较理想的缝长和较彻底的清洁返排,增产效果好于使用HPG交联冻胶的结果。田菁胶是国内植物胶中大分子结构与瓜胶十分相似的一种,最早于20世纪70年代末由胜利油田开发应用。继田菁胶之后而出现的香豆胶最早由石油勘探开发科学研究院研制成功。用无机硼酸盐交联的香豆胶压裂液常用在30-60℃的地层,用有机硼交联的香豆胶可用于60-120℃的地层。90年代中期开发了一种GCL锆硼复合交联剂使耐受温度达到140℃[4]。从20世纪90年代以来,香豆胶已在大庆、吉林、玉门、塔里木、吐哈等各大油田得到了推广使用[5]。20世纪80年代,四川、华北油田研究并应用了魔芋胶压裂液。 1.1.2 纤维素压裂液 纤维素衍生物主要是纤维素醚,用于石油行业的是高取代度的纤维素醚,它以每年3%-5%的速度增长。其中CMC、HEC和HPMC应用最多,在我国,这三类衍生物的用量曾占10%左右[6],CMC、HEC冻胶的热稳定性及滤失性能好,可用于140℃下井下施工,其主要问题是摩阻偏高,尚有待进一步改进。由于纤维素衍生物对盐敏感、热稳定性差,增稠能力不大,不如植物胶应用广泛。2010年李永明等[7]配制出了含纤维的超低浓度稠化剂压裂液,其稠化剂浓度为0.2%、BF-2纤维加量为0.7%,该压裂液携砂性能好,残渣量较少,储层损害小,现场应用取得成功,川孝270井用该压裂液对储层改造后获得天然气产量为

压裂液使用指导

压裂基本知识 地层水:配伍性最好, 但悬砂性能差前提是支撑剂的密度降下来。最小的伤害就在于使用地层水加入添加剂,对支撑剂进行改进,利用纳米技术使得它的密度很水一样,强度还要好,那么在水中就能悬浮,这样就达到无伤害的目的。风险大 水力压裂改造技术主要机理为: 通过高压驱动水流挤入煤中原有的和压裂后出现的裂缝内,扩宽并伸展这些裂缝,进而在煤中产生更多的次生裂缝与裂隙,增加煤层的透气性。且可产生有较高导流能力的通道,有效地连通井筒和储层,以促进排水降压,提高产气速度,这对低渗透煤层中开采煤层气尤为重要. 可消除钻井过程中泥浆液对煤层的伤害,这种地层伤害可急剧降低储层内部的压降速度,使排水过程变得缓慢,影响煤层气的开采。这种技术在煤层气生产实践中也存在一些问题: 由于煤层具有很强的吸附能力,吸附压裂液后会引起煤层孔隙的堵塞和基质的膨胀,从而使割理孔隙度及渗透率下降,且这种降低是不可逆的,因此,目前国内外在压裂改造技术中,开始使用大量清水来代替交联压裂液,以预防其伤害,但其造缝效果受到一定的影响; 由于煤岩易破碎,因此,在压裂施工中,由于压裂液的水力冲蚀作用及与煤岩表面的剪切与磨损作用,煤岩破碎产生大量的煤粉及大小不

一的煤屑,不易分散于水或水基溶液,从而极易聚集起来阻塞压裂裂缝的前缘,改变裂缝的方向,在裂缝前缘形成一个阻力屏障。 对于构造煤(soft coal),采取压裂的办法行不通,因为受压煤层的透气性会更低. 构造煤主要难点:强度弱、煤岩碎、非均质强、渗透性差 清洁压裂液(ClearFRAC) 清洁压裂液的工作原理:加入的表面活性剂形成的胶束,可以在特定的盐浓度下产生,获得粘度,可以在稀释获得遇见亲油相以后通过减少胶束过流面积以后去除粘度。它一种粘弹性流体压裂液,主要成分包括长链的表面活性剂(VES)、胶束促进剂(SYN)和盐(KCl),目前国内外广泛使用是第一代VES 压裂液,主要是阳离子型季铵盐表面活性剂,它们是CTAB(十六烷基三甲基溴化铵)、Schlumberger的JB508型表面活性剂和孪生双季铵盐类表面活性剂。VES压裂液粘度低,但依靠流体的结构粘度,能有效地输送支撑剂,同时能降低摩阻力。与传统聚合物压裂液(包括天然的胍胶,田青胶,黄原胶,半天然的HPG,HEC,全人工的可交联聚丙烯酰胺,低分子量的国内也自称是清洁压裂液)相比,该压裂液配制简单,不需要交联剂(理论上没有可在砂体中形成聚合物堵塞的可能)、破胶剂和其他化学添加剂,因此,几乎无地层伤害并能使充填层保持良好的导流能力。

相关文档
最新文档