永磁涡流柔性调速器 水冷型永磁涡流柔性传动调速装置

永磁涡流柔性调速器 水冷型永磁涡流柔性传动调速装置
永磁涡流柔性调速器 水冷型永磁涡流柔性传动调速装置

永磁涡流柔性调速器水冷型永磁涡流柔性传动调速装置永磁涡流柔性调速器,水冷型永磁涡流柔性可调速装置利用永磁转子和导体的相对运动,以离心方式引导稳定的冷却水经过传动元件,发挥传导冷却功能,驱散热量。

一般而言,水冷ASD装置用于电机功率高于500马力、永磁转子和导体的转动速度低到不足以对这些元件进行空气冷却等应用情况。

水冷型永磁涡流柔性传动调速装置(水冷ASD)利用导体转子的高速旋转运动,以离心方式引导稳定的冷却水经过传动元件,发挥传导冷却功能,驱散热量。

一般而言,水冷ASD装置用于电机功率高于500KW、电机转数低到不足以对这些元件进行空气冷却等应用中。如供水泵站、引风机、冷却塔风机和其它设备上。

迈格钠为选择应用水冷ASD装置的用户提供可以选装的闭环制冷却循环系统。如果选用这种选装设备,将根据应用的具体功率和速度提供成套冷却系统,并且可以根据客户的特定

需求提供其它配套装置。

安徽沃弗电力科技有限公司是一家集科研、设计、生产、销售服务为一体的高新技术企业,凭借在永磁传动领域的专业水平和成熟的技术,在工业领域迅速崛起。安徽沃弗电力科技有限公司奉行“进取、求实、严谨、团结”的方针,不断开拓创新,以技术为核心,视质量为生命,奉用户为上帝,竭诚为您提供性价比最高的永磁产品,高质量的工程改造设计及无微不至的售后服务。

永磁调速器必将退出市场

变频器与磁力耦合器的一些说明 1、前言 我国经济目前正处于高速发展时期,随着年工业生产总值的不断提高,能源消耗也随之大幅度上升,由于国内工业发展比例失调,目前在工业生产中缺电和电价居高不下的局面已经严重制约了我国经济的发展,对此国家提出节能减排的政策方略。 目前,火电生产企业辅机能耗高,而且电网对发电机组参与调峰的能力要求越来越高,更使辅机能耗居高不下,严重制约了经济效益的提高。对电站主要辅机中的风机进行变频改造,其节能效果非常明显。因此,采用高压变频节能技术,以其卓越的调速性能、完善的保护功能、显著的节能效果和容易与DCS自动控制系统接口实现自动调节等特点(同时,实施变频改造后能优化机组的调节性能,有利于机组的稳定运行),必将在电厂引风机等高压大容量旋转设备改造中得到广泛的应用。使用变频器除了起到节能作用外,对机组还有以下好处: (1)高压变频器优良的软启动/停止功能(可以零转速启动),启动过程最大电流小于额定电流,大大减小了启动冲击电流对电动机和电网的冲击。有效减小了电机故障。从而大大延长了电机的检修周期和使用寿命。同时还可有效避免冲击负荷对电网的不利影响; (2)变频改造后,原调节风门全开,大大减少其磨损,延长了风门使用寿命,降低检修维护费用,进一步降低了风道阻力; (3)变频改造后,功率因素可得到提高(变频功率因数可以达到0.96),降低线路损耗; (4)高压变频器特有的平滑调节减少了风机以及电机的机械磨损,同时降低了轴承、轴瓦的温度.有效减少了检修费用,延长了设备的使用寿命。 2、关于磁力耦合器 常用的通过调节开度调节流量,这种常用的调节方式,虽然起到了调节流量和压力的目的,但电机处在低负荷运行状态,存在着不合理的运行,电

磁性联轴器的设计与仿真

径向充磁联轴器的设计与仿真 摘要 径向永磁联轴器利用稀土永磁体之间的相互作用,无需机械连接就能进行机械能量的传递,是一种新型联轴器。径向永磁联轴器主要由内、外转子组成,实现了无机械连接传动,解决了过载保护、主从动轴对中、软启动的问题,同时也解决了一些机械传动装置中密封性要求等问题,从根本上消除了传动泵密封处泄漏的问题,现已在化工机械、仪表及食品、真空等行业中得到广泛的应用。 对于永磁联轴器的研究,随着科技的发展,研究方法在不断改进和完善,种类也不断增加。对于径向力和力矩的计算,国内外己经有很多种方法,包括经验法、有限元法和磁路法等等。由于有限元法的计算相对其它几种算法精度较高,所以本文将采用此种方法对主、从动磁环之间的轴向力、传递的力矩进行计算分析,然后利用Ansoft有限元软件进行仿真。 本文以径向磁性联轴器为研究对象,主要讲述几个问题: (1)计算径向永磁联轴器力矩,分析影响力矩的主要因素。 (2)用有限元法分析气隙磁场,建立径向永磁联轴器气隙磁场的有限元分析模型,利用Ansoft软件对径向永磁联轴器 气隙磁场进行分析,得出正确的结果。 (3)设计一个简单的径向磁性联轴器,用Ansoft软件的模拟分析,验证理论知识的正确性。 关键词 径向磁性联轴器;Ansoft有限元法;磁场;力矩 1 引言 近年来永磁传动技术已从泵类向其它密封机械扩展,技术上集中于提高设备的可靠性、抗介质腐蚀新材料的研究,流体技术及制造装配的精度。磁力泵代表着一个国家制造技术的水平,近年来工业发达国家的磁力泵在效率、寿命、制造周期、成本及可靠性等方面有了突破性的进展。永磁传动技术逐渐应用到各个领域,将原动机的动力通过其轴上的外磁部件传递给工作轴上的内磁部件,内外磁部件由隔离罩分开,从而工作轴无须伸出所要封闭的空间,取消了动密封,实现无密封、零泄漏。永磁传动技术发展的时间不长,还存在一些的问题:永磁传动[1]有些因为制造困难,性价比低,往往还只停留在理论研究上;永磁传动的设计目前还没有一套系统和完善的设计方法,磁路的设计、转矩的计算均建立在实验、半实验基础上,研制周期长,代价高,重复性劳动多;在磁路设计方面,多体渐变技术未能充分利用;磁场计算多成用上述的一些方法,由于多是近似计算,精度有待进一步提高。永磁传动技术的发展任重而道远。 2 磁性联轴器电磁转矩分析 本章涉及到电磁转矩的模拟分析,通过对一磁性联轴器的分析,利用有限元分析软件Ansoft模拟

磁力耦合传动

磁力耦合器 磁力耦合器比液耦有很多优势 也称磁力联轴器、永磁传动装置。 磁力耦合器结构图 永磁涡流传动装置主要由铜转子、永磁转子和控制器三个部分组成。一般,铜转子与电机轴连接,永磁转子与工作机的轴连接,铜转子和永磁转子之间有空气间隙(称为气隙),没有传递扭矩的机械连接。这样,电机和工作机之间形成了软(磁)连接,通过调节气隙来实现工作机轴扭矩、转速的变化。因气隙调节方式的不同,永磁涡流传动装置分为标准型、延迟型、限矩型、调速型等不同类型。 永磁涡流传动技术并非只是简单地利用磁体的同性相斥、异性相吸的原理,它是传动技术、材料技术、制造技术的集成。21 世纪制造技术不但将继续制造常规条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备,21 世纪制造的产品应是符合节能和生态环保,与人友好的绿色产品,永磁涡流传动技术正是适应这一发展态势应运而生的。随着新技术、新工艺、新结构的不断出现,必将迎来永磁涡流传动技术发展的新阶段。 技术优势 该技术主要特点有: 1. 节能效果:25%~66% 2. 维护工作量小,几乎是免维护产品,维护费用极低。 3. 允许有较大的安装对中误差(最大可为5mm),大大简化了安装调试过程。 4. 具有过载保护功能,从而提高了整个系统的可靠性,完全消除了系统因过载而导致的损坏。 5. 提高电机的启动能力,减少冲击和振动,协调多机驱动的负荷分配。 6. 调速型可在电机转速基本不变的情况下实现输出转速的无级调节。 7. .使用寿命长,设计寿命为30 年。并可延长系统中零部件的使用寿命。 8. .易于实现遥控和自动控制,过程控制精确高。 9. 结构简单,适应各种恶劣环境。对环境友好,不产生污染物,不产生谐波。体

西门子直流调速器6RA70入门指导

6RA70入门指南 Hudson 2007-6-8 6RA70 SIMOREG DC MASTER 系列整流器为全数字紧凑型整流器,输入为三相电源,可向直 流驱动用的电枢和励磁供电,额定电枢电流从15A 至2200A。紧凑型整流器可以并联使用,提 供高至12000A 的电流,励磁电路可以提供最大85A 的电流(此电流取决于电枢额定电流)。 (1) 恢复缺省值设置以及优化调试/Resuming defaults and optimization P051=21;恢复缺省值,操作后P051=40 – 参数可改; P052=3;显示所有参数(恢复缺省值后默认就是3); P076.001=50;设置电枢回路额定直流电流百分比; P076.002=10;设置励磁回路额定直流电流百分比; P078.001=380;设置电枢回路供电电压; P078.002=380;设置励磁回路供电电压; P100=5.6;设置电枢额定电流(A); P101=420;设置电枢额定电压(V); P102=0.32;设置励磁额定电流(A); P104、P105、P106、P107、P108、P109、P114;默认值 (P100~P102由电机铭牌读出) P083=2 选择速度实际值由脉冲编码器提供; P140=1 选择编码器类型1 是相位差90度的二脉冲通道编码器; P141=1024 选择编码器脉冲数是1024; P142=1 选择编码器输出 15V信号电压; P143=3000 设置编码器最大运行速度3000转; P051=25 开始电枢和励磁的预控制以及电流调节器的优化运行 P051=26 开始速度调节器的优化运行 Note:修改P051参数前,首先“分闸”,修改完P051参数后整流器转换到运行状态o7.4几 秒,然后进入状态o7.0,此时“合闸”并“运行使能”,开始优化。值得注意的是:端子38 脉冲使能(本实验装置中的第二个开关,DIN2),必须为1电机才能启动。端子37起停信号 (本实验装置中的第一个开关,DIN1),必须有上升沿电机才能启动。即按照如下顺序: OFF?P051=25?ON?OFF。以后在电机运行时也是如此,需要端子38的高电平和端子37 的上升沿才能起动电机。 (2) 6RA70电动电位计的功能参考功能图:G126,G111 P433=240 将电动电位计的输出K240 连接主给定通道P433

涡流制动器工作原理

电涡流制动器使用说明书 一、概述: 电涡流制动器是一种性能优越的自动控制元件,它是利用涡流损耗的原理来吸收功率的。其输出转矩与激磁电流呈良好的线性关系。并具有响应速度快、结构简单等优点。 电涡流制动器广泛应用于测功机的加载。即测量电机、内燃机、减变速机等动力及传动机械的转矩、转速、功率、效率、电流、电压、功率因数时,用电涡流制动器作为模拟加载器。并可与计算机接口实现自动控制。与我公司生产的TR-1型转矩转速功率测量仪、CGQ型转矩转速传感器、WLK型自动控制器、自动测试软件可组成成套自动测功系统。 电涡流制动器广泛应用于印刷、包装、造纸及纸品加工、纺织、印染、电线、电缆、橡胶皮革、金属板带加工等有关卷绕装置的张力自动控制系统中。与我公司生产的WLK型控制器配套,可组成手动张力控制系统。与我公司生产的ZK 型自动张力控制仪及张力检测传感器配套,可组成闭环自动张力控制系统.。 二、主要特点: 1、转矩与激磁电流线性关系良好,适合于自动控制; 2、结构简单,运行稳定、价格低廉、使用维护方便; 3、采用水冷却,噪音低、振动小; 4、输入转速范围宽,可用于变频调速等各类电动机及动力机械的型式试验; 5、控制器采用直流电源,控制功率小。

四、特性曲线 注:P0为最大冷却功率; n1为额定最低转速; n2为额定最高转速。

五、使用环境 1、最高环境温度不超过40℃; 2、海拔高度不超过2000m; 3、当环境温度为20℃时,相对湿度不大于85%。 六、冷却水 1、水质。冷却水为自来水,一般工业用水、地下水、河水。水中不含有直径1mm 以上的固体颗粒或其它杂物,其pH值为6-8,硬度为200ppm以下为宜,最大值为300ppm。 2、水压。进水压力一般为不小于0.1Mpa,不大于0.3Mpa。用户在使用本产品时应安装水压表和进水阀门,以方便监控和调节水量。 3、水量。冷却水量见参数表,进水量的大小按测试功率的不同进行调节。 4、水温。进水温度最高不超过30℃,出水温度约为50℃-60℃为宜,使用时可根据出水温度的高低调节水量。 七、注意事项: 1、按额定转矩、转速、功率选用涡流制动器。严禁超转矩、超功率、超转速使 用。 2、运行前须对电涡流制动器进行检查。核定铭牌数据是否为要求的规格;检查 紧固件是否松动,各接线板接线是否正确,接触是否良好,如有缺陷或不良应予排除或更换;用500伏的兆欧表检查励磁绕组

永磁耦合器

永磁耦合传动技术发展 ●磁耦合传动技术早在20世纪30年代就有人提出,但由于当时对这一技术缺乏认识,再加上永 磁材料也有局限性,所以一直没有具体应用。 ●1946年,英国一家公司率先推出一台磁力传动泵,使得磁耦合传动技术开始有了具体的应用。 ●20世纪80年代,新型稀土永磁材料被开发出来,使得永磁耦合传动技术有了突破,开始进入大 规模应用时期。 ●美国能源部曾经出资为海军舰艇开发一项新的永磁耦合传动技术(涡流式磁力驱动技术), 后来MagnaDrive公司在1999年将此项技术引入到民用行业,目前已有6000多套设备运行在全球各个地点。2004年,美国海军也开始批量地采购使用。 ●在2008年,美国MagnaDrive公司将永磁耦合传动技术引入到中国,目前已成功地使用在石油、 发电、化工等行业。 ●2012年11月,国家发改委在严格审查了永磁耦合传动技术后,建议更名为“永磁涡流柔性传动 节能技术”,推荐为《国家重点节能技术推广目录(第五批)》。据了解,相比传统的传动设备,“永磁涡流柔性传动技术”单台节电率达30%。预计到2015年,将会有45亿人民币的市场容量。

永磁耦合器原理与优势 ●永磁耦合器的工作原理是通过气隙将扭力从电机端传向负载端,设备传动侧与负载侧之间无 物理连接。位于传动装置一侧的永磁体和位于 另一侧的导体产生的感应电流在交互作用下 产生扭力。只需通过改变气隙间距可以实现扭 力的精确控制,从而达到速度控制。 ●永磁耦合器由三个部分组成: 1)永磁转子组件内含永磁体,与负载连接; 2)导体转子组件与电机连接; 3)执行组件,用于控制永磁转子与导体转子 之间的气隙间距; 永磁耦合器的主要优势有以下: ?节约能源; ?可无极调速,调速范围为0~98%; ?允许存在轴对中偏差,能最大限度隔离并减少振动,从而延长轴承和密封件寿命; ?纯机械设备,可靠性增强,降低了设备维护成本; ?可以实现缓冲和延时启动,允许存在冲击负载; ?不存在谐波失真或能源质量问题; ?能够在恶劣的环境下运行; 典型应用行业 ?海事行业 ?水处理行业 ?冶金行业 ?发电行业 ?采矿和水泥行业?石化行业 ?一般制造业 ?以及许多其它行业典型应用 ?离心泵 ?离心风机和鼓风机?离心

国内外永磁耦合器电机的发展现状

国内外永磁耦合器电机的发展现状 国内外永磁耦合器电机的发展现状。永磁同步电动机具有质量轻、结构较简单、体积小、特性好、功率密度大等优点,很多科研机构、企业都在努力积极开展永磁同步电机的研发工作,其应用领域将进一步扩大。 历史上第一台电机是永磁电机。当时,永磁材料性能比较差,永磁体矫顽力和剩磁都太低,不久就被电励磁电机取代了。到了20世纪70 年代,以钕铁硼为代表的稀土永磁材料拥有很大的矫顽力、剩磁,退磁能力强和较大的磁能积使大功率永磁同步电机登上历史的舞台。现在,关于永磁同步电机的研究日趋成熟,正朝向高速度,大转矩、大功率、高效率以及微型化、智能化发展。近年来,在永磁同步电机本体上出现了很多高端电机,比如1986年德国西门子公司开发的230r/min、1 095 kW的六相永磁同步电动机。用它为舰船提供动力,其体积比传统的直流电机小近60%,损耗降低近20%. 瑞士ABB 公司建造的用于舰船推进的永磁同步电动机最大安装容量达38 MW。我国对永磁电机的研究起步晚,随着国内学者和政府的大力投入,它发展得很快。目前,我国已经研制生产出3MW 高速度永磁

风力发电机,南车株洲公司也在研制更大功率的永磁电机。 随着微型计算机技术及自动控制技术的发展,永磁同步电动机在各领域得到了广泛的应用。现在由于社会的进步,人们对永磁同步电机的要求更加苛刻,促使永磁电动机向着拥有更大的调速范围和更高的精度控制发展。由于现在生产工艺的提高,具有高性能的永磁材料得到进一步的发展。这使其成本大大降低,逐渐被应用于生活的各个领域。 安徽沃弗电力科技有限公司是一家集科研、设计、生产、销售服务为一体的高新技术企业,凭借在永磁传动领域的专业水平和成熟的技术,在工业领域迅速崛起。安徽沃弗电力科技有限公司奉行“进取、求实、严谨、团结”的方针,不断开拓创新,以技术为核心,视质量为生命,奉用户为上帝,竭诚为您提供性价比最高的永磁产品,高质量的工程改造设计及无微不至的售后服务。

永磁调速器工作原理及特点

>>>永磁调速器(PMD)的工作原理及特点 2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。 永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献就是将永磁驱动技术的应用大大拓宽。它不解决密封的问题,但就是它解决了旋转负载系统的对中、软启动、减震、调速及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到98、5%。该技术现已在各行各业获得了广泛的应用。该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。 该产品已经通过美国海军最严格的9-G抗震试验。同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。目前,由MagnaDrive公司与美国西北能效协会组成专门小组对该技术设备进行商业化推广。由于该技术创新,使人们对节能概念有了全新的认识。在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。 (一) 系统构成与工作原理

永磁磁力耦合调速驱动(PMD)就是通过铜导体与永磁体之间的气隙实现由电动机到负载的转矩传输。该技术实现了在驱动(电动机)与被驱动(负载)侧没有机械链接。其工作原理就是一端稀有金属氧化物硼铁钕永磁体与另一端感应磁场相互作用产生转矩,通过调节永磁体与导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。 由下图所示,PMD主要由导体转子、永磁转子与控制器三部分组成。导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子与永磁转子之间有间隙(称为气隙)。这样电动机与负载由原来的硬(机械)链接转变为软(磁)链接,通过调节永磁体与导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。由上面的分析可以知道,通过调整气隙可以获得可调整的、可控制的、可以重复的负载转速。 磁感应原理就是通过磁体与导体之间的相对运动产生。也就就是说,PMD的输出转速始终都比输入转速小,转速差称为滑差。典型情况

合肥永磁磁力联轴器7大优点

合肥永磁磁力联轴器7大优点 磁力耦合器也称磁力联轴器,主要由连接在电动机轴端的导磁体和连接在负载端的永磁体两部分组成。在运行中,按照涡流感应原理,以上两部分相对运动产生磁场,而这样在盘状导体中就会产生涡流,而涡流所产生的磁场和磁体相互吸引,从而使转子和导体两个部件通过空气间隙传递力矩,这样电动机和负载就由原来的硬连接转变为软连接[1],如图1和图2所示。 根据以上原理,近年来国内开发出了延迟型、限矩型、调速型等不同类型的磁力耦合器。我公司使用的是由上海高率机电科技有限公司生产的限矩型磁力耦合器。近年来,随着水泥企业节能降耗和内部挖潜等技术革新的开展,如磁力耦合器、动态谐波节能装置等,在水泥行业逐渐得到了应用和推广。 磁力耦合器与其他传动设备比较

通过统计及实际应用分析,现将磁力耦合器与其他类型的联轴方式针对其特点、维修成本等方面进行分析比较,如表1所示。 将磁力耦合器与其他节能传动设备进行性能、能效等方面比较,如表2所示。 通过以上内容及列表分析可知,弹性联轴器、滑差设备及液力耦合器等类型的传动设备所存在的弊端,这里就不再一一赘述。而磁力耦合器的优点主要体现在以下几个方面:1)驱动电动机电流降低,节能效果显著。使用磁力耦合器后,无论是单台设备的能效还是系统的总能效,磁力耦合器的效率都是最高的。因此,使用磁力耦合器,将会为水泥生产线设备降低能耗,节约运行和维修成本。 2)使用磁力耦合器后,可大大减少设备的振动,延长电动机及其轴承的使用寿命。磁力耦合器是靠空气间隙传递扭矩的,是真正的无接触连接装置。这种连接方式,可使设备连接应力更加均匀,对中性能更好,承载能力大大加强。通过检测,使用磁力耦合器可以减少80%以上的振动。 3)使用磁力耦合器后,可以很好地实现设备柔性启动(即软启动),可以很好地保护电动机和负载。 4)使用磁力耦合器可以减低故障率。由于磁力耦合器靠空气间隙传递扭矩,没有磨损部件,基本上不发生故障,这样就会降低故障率,从而大大缩短停机时间。 5)磁力耦合器具有过载保护功能,提高了系统运行的安全可靠性。水泥企业常用的液力耦合器是通过喷油泄压方式来进行过载保护的,而这种过载保护方式,既污染环境,又增加修复时间和维护费用。 6)磁力耦合器结构简单,无需润滑,对环境无任何污染损害,属绿色环保产品。 7)对于调速范围较窄的设备,如高温风机等,还可以通过调节磁力耦合器两部分之间

涡流制动器

一种涡流制动器调速系统,是利用检测感应电动机转子电压作为转速反馈信号的转速单闭环系统,当转速给定值与实际值比较后产生差值时,此差值经速度调节器,令可控硅整流装置调节涡流制动器的制动转矩,使系统在给定转速下运行,其特征在于所述的调整速系统是在转速闭环的基础上,增设了克服涡流制动器电惯性的电流环,为了确保系统的安全可靠,再增设励磁电流快速上升补偿环节、励磁电流全过程监控环节及停顿制动环节,所述的转速闭环的转速反馈信号,是采用检测感应电动机的转子频率,并将频率快速转换成电压的测速方法。 涡流制动器,还有涡流阻尼器,原理是导体在磁场中运动,导体内产生感生电势感生电流,并受到阻碍其运动的制动电磁力矩。电涡流制动器 一、概述 涡流制动器又称电磁制动器,它是利用涡流损耗的原理来吸收功率的。通常由涡流制动器、控制器及测力装置组成测功装置,可以测取被测机械的输出转矩和转速,从而得出输出功率,它可以取代磁粉离合器、水力测功机、直流发电机组等,用来测量各种电动机、变频器、发动机、齿轮箱等动力机械的性能,成为型式试验的必要设备,与其它测功装置相比,WZ

系列测功装置具有更高的可靠性、实用性和稳定性,价格也便宜很多。 二、主要特点 1、结构简单、运行稳定、价格低廉、使用维护方便; 2、采用水冷却,噪音低、振动小; 3、输入转速范围宽,可用于变频调速等各类电动机及动力机械的型式试验; 4、控制器采用单相交流电源,控制功率小; 5、转矩的测量可以采用普通磅秤、电子磅秤或高精度转矩转速测量仪,适用于不同测量精度的场合; 6、该装置还能作制动器用,制动力矩大,耐高转速。 三、产品规格及主要数据 1、型号说明 A:双轴伸,基本形式(可省略)B:单轴伸

DYT限矩型永磁耦合器行业典型案例

DYT限矩型永磁耦合器行业典型案例 一、DYT限矩型永磁耦合器产品介绍 原理: 利用磁感应原理传递扭矩,由永磁盘和导体盘组成,采用非物理联 接技术传递扭矩。 优点: 没有物理联接,软启动效果好;不加油不通电,无需维护保养; 隔离振动传递,延长设备寿命;容忍对中误差,容易安装拆卸; 结构简单可靠,适应恶劣环境;过载限矩保护,恢复生产快捷; 适用范围: 斗提机、拉链机、皮带机代替原液力耦合器 过载保护: 当设备过载堵转时,与负载端联接的永磁盘转速急剧降低甚至停止,导体盘与永磁盘之间产生巨大排斥力迅速将两侧磁体盘向中间推动,永磁盘和导体盘的气隙变大,使负载脱开,实现对传动系统的保护。当故障排除,负载端转速逐渐上升,设备再次进入正常工作状态。 二、典型应用案例 案例一:某水泥集团万吨线入窑斗提机(电机功率:2*200kw) 改造原因:入窑斗提机驱动设备安装位置高,空间狭窄,液力耦合 器有密封漏油、轴承损坏的现象,设备堵转时易熔塞熔化,污染环 境,设备恢复生产工作量大。 改造目的:降低设备故障率,减少维护量,提高设备可靠性,保证 生产的正常运行。 改造效果:电机启动电流减小,设备振动降低,延长电机和减速 机使用寿命。自动过载保护功能,没有液力油的烦恼,实现了设备 的免维护,得到客户一致好评。 案例二:某水泥集团6000吨线斜拉链机(电机功率:1*110kw)

改造原因:原设备驱动部安装位置环境恶劣,现场温度高、粉尘大, 设备堵转时液耦易熔塞熔化喷油,维护量大且频率高。 改造目的:降低设备故障率,减少维护量,提高设备稳定性,保证 生产的正常运行。 改造效果:永磁耦合器不用液力油,适应各种恶劣环境。自动的过 载保护功能,实现了设备的免维护,恶劣环境下故障率基本为零, 得到客户一致好评。 案例三:某电力集团2*1000MW机组输煤皮带机(电机功率:1*355kw) 改造原因:原使用液力偶合器连接,设备运行时经常因冲击载荷导 致易熔塞融化喷油,维护程序繁琐且费力。。 改造目的:减少冲击载荷引起的设备故障,提高设备的正常运转率 ,提高设备稳定性,保证生产的正常运行。 改造效果:实现柔性启动,隔离系统振动传递,提供驱动系统过载 时自动保护功能,延长减速机及电机的使用寿命,减少了对电网的 冲击。永磁偶合器基本免维护,大大降低维护维修的工作量,提高 了工作效率。用户反馈应用永磁偶合器效果非常好。 案例四:某电力集团2*1000MW机组斗轮机悬臂皮带(电机功率:1*132kw) 改造原因:原斗轮机悬臂皮带使用液偶联接,启动时冲击载荷较大, 振动较高,电机经常异常报警停机。另减速机相对故障率高,高速 轴平均每年要被顶坏一次,严重影响系统正常运行。 改造目的:降低系统振动,减少设备故障率,提高设备稳定性,保 证生产的正常运行。 改造效果:降低了电机和减速机的振动值,延长了电机和减速机寿 命,电机冲击电流大大缩小,自动的过载保护功能,实现了设备的免维护,用户对此改造感到非常满意!

某工厂西门子6RA70直流调速步骤

西门子6RA70直流调速步骤 (2012-04-16 16:10:45) 转载▼ 标签: 分类:PLC相关资料共享 杂谈 拆箱6RA70参数设置与调试 6RA70装置的调试步骤大致分为以下几个步骤: 1、外部逻辑组态 2、6RA70参数设置 3、电枢回路的升压试验 4、励磁回路试验 5、电机空负荷单转 6、电机热负荷调试 下面就上述几个方面进行分析,并按照调试顺序逐一细解: 一、外部逻辑组态 在这一步工作之前,首先要确认: 外部进线端子没有短路; 所有柜内断路器上下进线没有短路,用万用表的200欧姆电 阻档测量,无相间短路也无对地短路,确认稳压电源24V无短路; 在未能确认现场接线正确与否的情况下,先将所有往现场送电的控制操作电源全部断开(电机风机及磁场、电枢线要先确认,可不断),确保柜内电源不送至柜外,尤其是急停,外部油、风温的信号。例如,600,U34,P15,M15都要断开。 在确保上述无误的情况下,将外部控制电源,操作电源, 励磁电源依照先后顺序送电至端子,在端子上测量电压等级,正确的情况下再进入下一步。先将6RA70控制电源合上(Q31),注意观察6RA70箱内部有无冒烟,打火及异常糊味,同时将6RA70的P参数找到P051,调整P051=21,按P键使6RA70的参数全部恢复至出厂设

置。这一步在任何场合或传新的参数时都必须执行,以防止个别参数被修改,下传的参数不能覆盖原有参数。 将Q32脉冲功放电源(DC24V)合上,将Q33(DC24V信号电源)合上,用万用表测量稳压电源的DC24V是否正确,注意:万用表笔测量的量程及表笔插孔位置,以及+、-表笔的顺序。在这一步中,要注意观察S7-200的电源指示灯是否已经点亮,而且是变绿色,当变为黄色时,将S7-200的控制盒(小盖板)打开,将开关拨至RUN状态,S7-200的运行指示灯就变为绿色了。 将Q35合上,柜内风机运行,用很薄的软纸试一下风机的运行方向,柜内风机应该是往柜内排风,因此将纸放置于散热风孔处应该是往里吸的。如果风向反了,将风机开关(Q35)的出线电源A、B相(U35、V35)调换位置,再次试验风向。 将Q36电机风机开关合上,同时将Q34合上,通过门板上的风机启停开关将电机风机启动,并注意门板指示灯点亮。第一次运行时接触器吸合可能有杂音,可以将Q36断开,用手或工具将接触器合几次,确保接点无杂物及尘土。同时根据电机风机功率的大小,将热继电器的调整值设为电机风机的额定电流值。 上述步骤,可以在S7-200程序完成后再进行。 将柜内开关Q31,Q32,Q35、Q36断开,只保留Q33(DC24V信号电源),Q34(PLC电源),将S7-200编程电缆接好,选择好接口及S7-200的CPU类型(注意国产的S7-200与国外的S7-200软件使用有所不同,国产的需要用Step 7 Microwin,并且在工具栏的选项里选择中文并重新启动软件方可使用),开始编译程序。 编译程序时注意以下几个方面的原则: 1、外部重故障及6RA70故障一定要监控,而且要立即封锁使能(Enable); 2、外部轻故障可以和用户商定过几分钟转为重故障,也可以不进线处理直接送至6RA70,经过DP网送至PLC,由操作工自己去判断停机与否; 3、有故障一定要先封锁使能,然后才能断开进线开关; 4、系统不允许带故障合进线开关; 5、当外控时,一定要将使能送至6RA70的38#端子,以便与DP网上的使能相与才能转电机;

永磁调速器工作原理及特点

>>>永磁调速器(PMD)的工作原理及特点 2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。 永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献是将永磁驱动技术的应用大大拓宽。它不解决密封的问题,但是它解决了旋转负载系统的对中、软启动、减震、调速、及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到98.5%。该技术现已在各行各业获得了广泛的应用。该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。 该产品已经通过美国海军最严格的9-G抗震试验。同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。目前,由MagnaDrive公司和美国西北能效协会组成专门小组对该技术设备进行商业化推广。由于该技术创新,使人们对节能概念有了全新的认识。在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。 (一) 系统构成与工作原理 永磁磁力耦合调速驱动(PMD)是通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。该技术实现了在驱动(电动机)和被驱动(负载)侧没有机械链接。其工作原理是一端稀有金属氧化物硼铁钕永磁体和另一端感应磁场相互作用产生转矩,通过调节永磁体和导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。 由下图所示,PMD主要由导体转子、永磁转子和控制器三部分组成。导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子和永磁转子之间有间隙(称为气隙)。这样电动机和负载由原来的硬(机械)链接转变为软(磁)链接,通过调节永磁体和导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。由上面的分析可以知道,通过调整气隙可以获得可调整的、可控制的、可以重复的负载转速。 磁感应原理是通过磁体和导体之间的相对运动产生。也就是说,PMD的输出转速始终都比输入转速小,转速差称为滑差。典型情况下,在电动机满转时,PMD的

永磁联轴器在破碎机上的应用

永磁联轴器在SSC800型破碎机上的应用 姓名:何宗豪 单位:西山煤电集团公司东曲选煤厂

永磁联轴器在SSC800型破碎机上的应用 何宗豪 西山煤电集团公司东曲选煤厂 摘要:根据磁学、力学的观点,永磁联轴器可以分成四类:涡流装置、磁滞传动、磁阻式同步联轴器、同步联轴器。重点分析了常用的同步联轴器的磁路结构及其特点。指出永磁联轴器的重要性能是脱开扭矩、扭转刚度、运动惯性、总体尺寸与装置成本。 关键词:永磁联轴器;同步联轴器;破碎机;保护减速器 引言: 永磁联轴器在欧美地区已得到了广泛应用,相比较其他的传动方式,其性能优势非常明显。以齿辊式破碎机来说,齿辊与减速器之间使用鼓形齿式联轴器连接,属于刚性连接,没有针对减速器的保护装置,当有硬度较大的矸石或铁器进入破碎机后,由于齿辊的惯性作用,齿辊无法及时停止运转,这将给减速器带来很大伤害;相比较液力耦合器,磁力耦合器在满载启动、启动平稳、过载保护、失速保护等,保护破碎机及延长减速器寿命与降低维护保养费用方面,都有明显的优势。本文从结构、工作原理,结合实际的性能表现数据等对对两者进行了比较分析,并通过具体的应用实例来说明磁力耦合器的优势所在。 一、永磁联轴器的结构与性能特点 1、永磁联轴器的结构

永磁联轴器主要由两部分组成:一部分是连接在电动机出轴端的特殊材料的导体;另一部分是连接在负载端(减速器输入轴)的永磁体。在运行过程中,这两个部分的相对运动产生了一个磁场,在盘状导体中产生涡流。涡流产生的磁场和磁体相互吸引,从而使转子和导体两个部件通过空气间隙传递力矩。 2、永磁联轴器的性能特点 与液力耦合器及其他传动设备相比,永磁联轴器结构紧凑,安装无须其它的附属设备。由于是通过空气间隙传递扭矩,两部件之间没有任何接触,所以无磨损部件,并能减少80%的振动;最大限度的允许偏心;无须润滑;能提供指定的启动方式;容许脉动载荷;能实现软启动、加载启动;过载保护,并且对电机、负载、耦合器没有损害。 永磁联轴器可以使用在任何离心负载的应用中,能够使用在高达6000马力的负载上。因为负载速度改变的同时,电机一直以它额定转速运行,电机发热不再是问题。而且因为这是机械装置,它不会引起谐波干扰。滤波器、变压器以及冷却系统都不需要。在磁力耦合器中,导体盘与磁体盘之间存在滑差,这种滑差会使速度大约比全速时损失1%-2%。 3、永磁联轴器的优点 限矩形磁力耦合器的主要优点有:超负荷扭矩保护;自动重启;柔性启动/停止;降低使用的总成本;允许一定的轴心偏离;减小电

永磁涡流联轴器原理及应用

永磁涡流联轴器原理及应用 永磁涡流联轴器原理及应用。永磁联轴器它无需直接的机械联接,而是利用稀土永磁体之间的相互作用,利用磁场可穿透一定的空间距离和物质材料的特性,进行机械能量的传送。磁力联轴器的出现,彻底解决了某些机械装置中动密封存在的泄漏问题。这种产品广泛应用于化工、电镀、造纸、制药、食品、真空等行业的密封传动机械上。 磁性联轴器原理 磁力传动联轴器主要有2种结构:平面磁力传动联轴器和同轴磁力传动联轴器。磁体以轴向充磁,耦合磁极成轴向配置的叫平面磁力传动联轴器。磁体以径向充磁,耦合磁极成径向配置的叫同轴磁力传动联轴器,如图1所示。 现以同轴磁力传动联轴器为例,来说明其工作原理。磁力传动联轴器由外磁体、内磁体和隔离罩组成。内、外磁体均由沿径向磁化且充磁方向相反的永磁体组成,永磁体以不同极

性沿圆周方向交替排列,并固定在低碳钢钢圈上,形成磁断路连体。隔离罩采用非铁素体(因而是非磁性)的高电阻材料制造,一般用奥氏体不锈钢。在静止状态时,外磁体的N极(S极)与内磁体的S极(N极)相互吸引并成直线,此时转矩为零,如图3所示。当外磁体在动力机的带动下旋转时,刚开始内磁体由于摩擦力及被传动件阻力的作用,仍处于静止状态,这时外磁体相对内磁体开始偏移一定的角度,由于这个角度的存在,外磁体的N极(S极)对内磁体的S极(N极)有一个拉动作用,同时外磁体的N极(S极)对内磁体的前一个N极(S极)有一个推动作用,使内磁体有一个跟着旋转的趋势,这就是磁力联轴器的推拉磁路工作原理。当外磁体的N极(S极)刚好位于内磁体的2个极(S极和N极)之间时,产生的推拉力达到最大,如图4所示,从而带动内磁体旋转。在传动过程中,隔离罩将外磁体和内磁体隔开,磁力线是穿过隔离罩将外磁体的动力和运动传给内磁体的,从而实现了无接触的密封传动。 应用领域 磁力传动联轴器的成功应用之一是其与泵的结合——磁力泵。以前,它作为贵重的特殊产品迫不得已时才选用,现在它的应用领域很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入;饮食、生物、医药要保证介质的纯净卫生。磁力传动联轴器在这些领域找到了用武之地,可以说磁力泵是磁性材料的一大市场。 将磁力传动联轴器特别是永磁联轴器应用于阀门上,阀杆不穿过阀盖,省略了填料函,得名为全封闭无填料永磁传动阀。该阀门由于无填料函,可长期安全可靠地运行;阀杆与填料间无摩擦力矩,转动省力;负压操作无外界气体进入。截止阀、闸板阀、球阀、碟阀等一切工业阀门均可以改造成全封闭阀门。反应釜是化工厂广泛使用的一种混合反应设备,液体

西门子直流控制器6RA70简介

西门子直流控制器6RA70简介 目前,随着交流调速技术的发展,交流传动得到了迅猛的发展,但直流传动调速在诸多场合仍有着大量的应用。随着计算机技术的发展,过去的模拟控制系统正在被数字控制系统所代替。在带有微机的通用全数字直流调速装置中,在不改变硬件或改动很少的情况下,依靠软件支持,就可以方便地实现各种调节和控制功能,因而,通用全数字直流调速装置的可靠性和应用的灵活性明显优于模拟控制系统。目前,以德国SIEMENS 公司的6RA70系列通用全数字直流调速装置在中国的应用最为广泛。 1.1结构及工作方式 SIMOREG 6RA70系列整流装置为三相交流电源直接供电的全数字控制装置,其结构紧凑,用于可调速直流电机电枢和励磁供电,装置额定电枢电流范围为15至2000A,额定励磁3到85A,并可通过并联SIMOREG整流装置进行扩展,并联后输出额定电枢电流可达到12000A。6RA70直流控制器已经广泛应用与各行业,控制器器的核心器件上已经在国内外得到可靠实例的证实,可靠性、安全方面较有保障。 根据不同的应用场合,可选择单象限或四象限工作的装置,装置本身带有参数设定单元,不需要其它的任何阻力。设备即可完成参数的设定。所有的控制、调节、监视及附加功能都由微处理器来实现。可选择给定值和反馈值为数字量或模拟量。 SIMOREG 6RA70系列整流装置特点为体积小,结构紧凑。装置的门内装有一个电子箱,箱内装入调节板,电子箱内可装用于技术扩展和串行接口的附加板。各个单元很容易拆装使装置维修服务变得简单、易行。外部信号连接的开关量输入/输出,模拟量输入、输出,脉冲发生器等,通过插接端子排实现。装置软件存放闪(Flash)-EPPOM,使用基本装置的串行接口通过写入可以方便地更换。 1.2功率部分:电枢和励磁回路 电枢回路为三相桥式电路: (1)单象限工作装置的功率部分电路为三相全控桥B6C。 (2)四象限工作装置的功率部分为两个三相全控桥(B6)A(B6)C。 励磁回路采用单相半控桥B2HZ,额定电流15-800A的装置(交流输入电压400V时,电流至 1200A),电枢和励磁回路的功率部分为电绝缘晶闸管模块,所以其散热器不带电。更大电流或输入电压高的装置,电枢回路的功率部分为平板式晶闸管。这时散热器是带电的。功率部分的所有接线端子都在前面。 1.3通讯口 下列串行接口可供使用: (1)U X300插头是一个串行接口,此接口按RS232或RS485标准执行USS协议,可用于连接选件操作面板0P1S或通过PC调试SMOVIS。 (2)主电子极端子上的串行接口,RS485双芯线或4芯线用于USS通信协议或装置对装置连接。 (3)在端于扩充板选件端子上的串行接口,RS485双芯线或4芯线,用于USS通信协议或装置对装置连接。 (4)通过附加卡(选件)的PROFIBUS-DP。 (5)经附加卡(选件)SIMOLINK与光纤电缆连接。

永磁涡流缓速器制动特性分析及试验研究

第44卷第6期2018年6月北京工业大学学报JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Vol.44No.6Jun.2018 永磁涡流缓速器制动特性分析及试验研究 叶乐志,刘玉朋,曹明广,李德胜 (北京工业大学机械工程与应用电子技术学院,北京 100124) 摘 要:针对重载货车下坡制动负荷过大的问题,基于永磁涡流制动原理提出一种制动力矩可无级调节的永磁涡流缓速器,用于车辆辅助制动.通过有限元法对永磁盘和涡流盘吸力特性进行分析,设计了制动力矩调节机构.通过建立永磁涡流缓速器数值分析模型,应用有限元仿真软件JMAG-Designer 分析了缓速器的电磁场分布,并得到了制动力矩与转速变化的关系.通过分析温度对涡流盘材料电磁特性的影响,采用数值模拟的方法得出了制动力矩随温度影响的变化规律.试制了Φ485mm ?255mm 永磁涡流缓速器样机,对不同气隙的数值仿真数据和试验数据进行对比,并对缓速器不同涡流盘材料时的制动特性进行了台架拖动试验.结果表明:低速时数值仿真和台架拖动试验数据吻合较好.永磁涡流缓速器持续制动特性试验表明,在82s 内涡流盘表层温度上升了158?,制动力矩下降了34.8%. 关键词:缓速器;永磁涡流;制动力矩;数值模拟 中图分类号:U 463.51 文献标志码:A 文章编号:0254-0037(2018)06-0837-06 doi :10.11936/bjutxb2017040038收稿日期:2017-04-24 基金项目:北京市科技新星计划资助项目(Z151100*********);北京市教育委员会科研计划资助项目(KM2017100005010)作者简介:叶乐志(1982 ),男,讲师,主要从事电磁/永磁涡流制动和传动方面的研究,E-mail:yelezhi@https://www.360docs.net/doc/375318477.html, Braking Characteristics and Experiment of a Permanent Magnet Eddy-current Retarder YE Lezhi,LIU Yupeng,CAO Mingguang,LI Desheng (College of Mechanical Engineering and Applied Electronics Technology,Beijing University of Technology,Beijing 100124,China)Abstract :Aiming at the over load braking problem of heavy vehicle,a permanent magnet eddy current retarder was proposed as an auxiliary braking apparatus,which is based on the principle of permanent magnet eddy current braking.The retarder can adjust the braking torque.The suction characteristics of the permanent magnetic disk and the eddy current disk were analyzed by using finite element method,and the braking torque adjusting mechanism was designed.The numerical analysis model was established.The electromagnetic field distribution was analyzed by using the finite element simulation software JMAG-Designer,and the relationship between the braking torque and the rotational speed was obtained.According to the analysis of temperature influence on the electromagnetic characteristics of the eddy current disk,the variation law of the braking torque with temperature was obtained by the numerical simulation method.A retarder prototype of Φ485mm ?255mm was tested.The simulation data was compared with the test data at different air-gaps,and the retarder braking characteristic with different eddy current disks was studied by the bench test.Test results show that the simulation data and test data agree well at low speed.The continuous braking characteristic test shows that the increased surface temperature of the eddy current disk is 158?and the brake torque decreases by 34.8%in 82s.Key words :retarder;permanent magnet eddy current;braking torque;numerical simulation 万方数据

相关文档
最新文档