基本初等函数经典总结

基本初等函数经典总结
基本初等函数经典总结

第十二讲 基本初等函数

一:教学目标

1、掌握基本初等函数(指数函数、对数函数、幂函数)的基本性质;

2、理解基本初等函数的性质;

3、掌握基本初等函数的应用,特别是指数函数与对数函数

二:教学重难点

教学重点:基本初等函数基本性质的理解及应用; 教学难点:基本初等函数基本性质的应用

三:知识呈现

1.指数与指数函数

1).指数运算法则:(1)r

s

r s

a a a

+=;

(2)()

s

r rs a

a =;

(3)()r

r r

ab a b =;

(4)m

n m

n

a a =;

(5)m n

n

m

a

a -

=

(6)

,||,n

n a n a a n ?=?

?奇偶

2). 指数函数:形如(01)x

y a a a =>≠且

2.1)对数的运算:

1、互化:N b N a a b log =?=

2、恒等:N a

N

a =log

3、换底: a

b b

c c a log log log =

指数函数

0

a>1

图 象

表达式 x y a =

定义域 R 值 域 (0,)+∞ 过定点 (0,1)

单调性

单调递减 单调递增

推论1 a

b b a log 1log =

推论2 log log log a b a b c c ?= 推论3 log log m n

a a

n b b m

=)0(≠m 4、N M MN a a a log log log +=

log log log a

a a M

M N N

=- 5、M n M a n a log log ?= 2)对数函数:

3.幂函数

一般地,形如 a

y x =(a R ∈)的函数叫做幂函数,其中a 是常数 1)性质:

(1) 所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1, 1);

对数函

0

a>1

图 象

表达式 log a y x =

定义域 (0,)+∞

值 域 R

过定点 (1,0)

单调性

单调递减

单调递增

(2) 如果α>0,则幂函数图象通过(0,0),并且在区间[0,+∞)上是增函数;

(3) 如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 趋于+∞时,图象在x 轴上方无限逼近x 轴。

四:典型例题

考点一:指数函数

例1 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥,

∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x >

.∴x 的取值范围是14??

+ ???

,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判

断底数与1的大小,对于含有参数的要注意对参数进行讨论.

例2 函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______. 分析:令x t a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围. 解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-. ∴当1a >时,∵[]11x ∈-,, ∴1

x a a a

≤≤,即1t a a ≤≤.

∴当t a =时,2max (1)214y a =+-=. 解得3a =或5a =-(舍去); 当01a <<时,∵[]11x ∈-,, ∴1

x a a a

≤≤,即1a t a ≤≤,

∴ 1t a =时,2

max 11214y a ??

=+-= ???

解得13a =或1

5

a =-(舍去),∴a 的值是3或13.

评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.

例3 求函数y = 解:由题意可得2160x --≥,即261x -≤,

∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-,

∞.

令26x t -=,则1y t =-,

又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01,

. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 例4 求函数y =2

3231+-?

?

? ??x x 的单调区间.

分析 这是复合函数求单调区间的问题

可设y =u

??? ??31,u =x 2

-3x+2,其中y =u

??

? ??31为减函数

∴u =x 2

-3x+2的减区间就是原函数的增区间(即减减→增) u =x 2

-3x+2的增区间就是原函数的减区间(即减、增→减)

解:设y =u

??

? ??31,u =x 2

-3x+2,y 关于u 递减,

当x ∈(-∞,2

3

)时,u 为减函数, ∴y 关于x 为增函数;当x ∈[2

3

,+∞)时,u 为增函数,y 关于x 为减函数.

考点二:对数函数

例5 求下列函数的定义域 (1)y=log 2(x 2-4x-5); (2)y=log x+1(16-4x )

(3)y= .

解:(1)令x2-4x-5>0,得(x-5)(x+1)>0, 故定义域为 {x |x <-1,或x >5}.

(2)令 得

故所求定义域为{x |-1<x <0,或0<x <2}.

(3)令,得

故所求定义域为

{x|x<-1- ,或-1- <x<-3,或x≥2}.

说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零.

例6比较大小:

(1)log0.71.3和log0.71.8.

(2)(lg n)1.7和(lgn)2(n>1).

(3)log23和log53.

(4)log35和log64.

解:(1)对数函数y=log0.7x在(0,+∞)内是减函数.因为1.3<1.8,所以

log0.71.3>log0.71.8.

(2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论.

若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2;

若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里x=3,所以log23>log53.

(4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解.

因为log35>log33=1=log66>log64,所以log35>log64.

评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论.

例7已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值,及y 取最大值时,x的值.

分析要求函数y=[f(x)]2+f(x2)的最大值,要做两件事,一是要求其表达式;二是要求出它的定义域,然后求值域.

解:∵f(x)=2+log3x,

∴y=[f(x)]2+f(x2)=(2+log3x)2+2+log3x2

=(2+log 3x )2+2+2log 3x =log 23x+6log 3x+6 =(log 3x+3)2-3.

∵函数f (x )的定义域为[1,9],

∴要使函数y=[f (x )]2+f (x 2)有定义,就须???≤≤≤≤9

19

12

x x ,

∴1≤x≤3. ∴0≤log 3x≤1 ∴6≤y=(log 3x+3)2-3≤13

∴当x=3时,函数y=[f (x )]2+f (x 2)取最大值13.

说明 本例正确求解的关键是:函数y=[f (x )]2+f (x 2)定义域的正确确定.如果我们误认为[1,9]是它的定义域.则将求得错误的最大值22.

其实我们还能求出函数y=[f (x )]2+f (x 2)的值域为[6,13]. 例8 求函数y=log 0.5(-x 2+2x+8)的单调区间.

分析 由于对函数的底是一个小于1的正数,故原函数与函数u=-x 2+2x+8(-2<x <4)的单调性相反.

解.∵-x 2+2x+8>0, ∴ -2<x <4,

∴ 原函数的定义域为(-2,4).

又∵ 函数u=-x 2+2x+8=-(x-1)2+9在(-2,1]上为增函数,在[1,4)上为减函数, ∴函数y=log 0.5(-x 2+2x+8)在(-2,1]上为减函数,在[1,4)上为增函数. 评析 判断函数的单调性必须先求出函数的定义域,单调区间应是定义域的子集.

考点三:幂函数 例9.比较大小:

(1)1122

1.5,1.7 (2)33( 1.2),( 1.25)--(3)112

5.25,5.26,5.26---(4)30.530.5,3,log 0.5

解:(1)∵12y x =在[0,)+∞上是增函数,1.5 1.7<,∴1122

1.5 1.7<

(2)∵3

y x =在R 上是增函数, 1.2 1.25->-,∴3

3

( 1.2)( 1.25)->-

(3)∵1y x -=在(0,)+∞上是减函数,5.25 5.26<,∴11

5.25 5.26-->;

∵ 5.26x

y =是增函数,12->-,∴1

25.26

5.26-->;

综上,1

125.25

5.26 5.26--->>

(4)∵3

00.51<<,0.5

3

1>,3log 0.50<,

∴30.5

3log 0.50.53<<

例10.已知幂函数2

23

m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,

求m 的值. 解:∵幂函数2

23

m

m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,

∴2

230m m --≤,∴13m -≤≤;

∵m Z ∈,∴2

(23)m m Z --∈,又函数图象关于原点对称, ∴2

23m m --是奇数,∴0m =或2m =.

例11、求函数y =5

2x +2x 5

1+4(x ≥-32)值域.

解析:设t =x 5

1,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.

∴函数y =5

2

x +2x 5

1+4(x ≥-32)的值域为[3,+∞). 点评:这是复合函数求值域的问题,应用换元法.

五:课后练习

1、若a >1在同一坐标系中,函数y=a

x

-和y=log

x a

的图像可能是( )

A B C D 2.求值40625.0+4

16

-(π)0

-3833=

3. 下列函数在(),0-∞上为减函数的是( )

A.1

3

y x = B.2

y x = C.3

y x = D.2

y x -= 答案:B

4.已知x=

21

,y=31,求y x y x -+-y

x y x +-的值

5.若a 2

1<a 2

1-,则a 的取值范围是( )

A .a ≥1

B .a >0

C .1>a >0

D .1≥a ≥0 解析:运用指数函数的性质,选C . 答案:C

6.下列式子中正确的是( )

A log a

)

(y x -=log a

x

-log a

y

B

y

a

x a log log =log x a -log y

a

C y

a

x a log log =log y

x a D log a

x

-log a

y

= log y

x a

高中数学三角函数基础知识点及答案

高中数学三角函数基础知识点及答案 1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3. 终边相同的角的表示: (1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z , 注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。 弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,因此,1弧度约为57.3°,即57°17'44.806'', 1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度, 直角为π/2弧度。(答:25-;5 36 π- ) (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称?2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2 k k Z π α=∈. 如α的终边与 6 π 的终边关于直线x y =对称,则α=____________。 (答:Z k k ∈+ ,3 2π π) 4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第 二象限角,则2 α 是第_____象限角 (答:一、三) 5.弧长公式:||l R α=,扇形面积公式:211||22 S lR R α==,1弧度 (1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。 (答:22cm ) 6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么 s i n ,c o s y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠, ()csc 0r y y α=≠。三角函数值只与角的大小有关,而与终边上点P 的位置无关。

最新基本初等函数经典总结

第十二讲 基本初等函数 一:教学目标 1、掌握基本初等函数(指数函数、对数函数、幂函数)的基本性质; 2、理解基本初等函数的性质; 3、掌握基本初等函数的应用,特别是指数函数与对数函数 二:教学重难点 教学重点:基本初等函数基本性质的理解及应用; 教学难点:基本初等函数基本性质的应用 三:知识呈现 1.指数与指数函数 1).指数运算法则:(1)r s r s a a a +=; (2)()s r rs a a =; (3)()r r r ab a b =; (4)m n m n a a =; (5)m n n m a a -= (6),||,n n a n a a n ?=??奇偶 2). 指数函数:形如(01)x y a a a =>≠且 2.1)对数的运算: 1、互化:N b N a a b log =?= 2、恒等:N a N a =log 3、换底: a b b c c a log log log = 指数函数 01 图 象 表达式 x y a = 定义域 R 值 域 (0,)+∞ 过定点 (0,1) 单调性 单调递减 单调递增

推论1 a b b a log 1log = 推论2 log log log a b a b c c ?= 推论3 log log m n a a n b b m =)0(≠m 4、N M MN a a a log log log += log log log a a a M M N N =- 5、M n M a n a log log ?= 2)对数函数: 3.幂函数 一般地,形如 a y x =(a R ∈)的函数叫做幂函数,其中 a 是常数 1)性质: (1) 所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1, 1); 对数函 数 01 图 象 表达式 log a y x = 定义域 (0,)+∞ 值 域 R 过定点 (1,0) 单调性 单调递减 单调递增

(完整)高一必修一基本初等函数知识点总结归纳,推荐文档

n a n a n ? (1)根式的概念 高一必修一函数知识点(12.1) 〖1.1〗指数函数 ① 叫做根式,这里 n 叫做根指数, a 叫做被开方数. ②当 n 为奇数时, a 为任意实数;当 n 为偶数时, a ≥ 0 . ?a (a ≥ 0) ③根式的性质: ( n a )n = a ;当 n 为奇数时, = a ;当 n 为偶数时, =| a |= ?-a . (a < 0) (2) 分数指数幂的概念 m ①正数的正分数指数幂的意义是: a n = (a > 0, m , n ∈ N + , 且 n > 1) .0 的正分数指数幂等于 0. a - m = ( )1 m ( ) 1(a > 0, m , n ∈ N , n > 1) ②正数的负分数指数幂的意义是: n n = n m + 且 .0 的负分数指数幂没有意 a a 义. 注意口诀:底数取倒数,指数取相反数. (3) 分数指数幂的运算性质 ① a r ? a s = a r +s (a > 0, r , s ∈ R ) ② (a r )s = a rs (a > 0, r , s ∈ R ) ③ (ab )r = a r b r (a > 0, b > 0, r ∈ R ) (4) 指数函数 函数名称 指数函数 定义 函数 y = a (a > 0 且 a ≠ 1)叫做指数函数 a > 1 0 < a < 1 图象 y 1 y O y a x (0,1) x y a x y 1 O y (0,1) x 定义域 R 值域 (0,+∞) 过定点 图象过定点(0,1),即当 x=0 时,y=1. 奇偶性 非奇非偶 单调性 在 R 上是增函数 在 R 上是减函数 函数值的变化情况 y >1(x >0), y=1(x=0), 0<y <1(x <0) y >1(x <0), y=1(x=0), 0<y <1(x >0) a 变化对 图象的影响 在第一象限内, a 越大图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越小图象越低,越靠近 x 轴. 例:比较 n a n n a m

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

基本初等函数I知识点总结

第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1* >∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上, )1a 0 a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为.底.N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log —对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . ◆ 指数式与对数式的互化 幂值 真数 = b

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化: ,23600π= ,1800 π= 1rad =π 180°≈57.30°=57°18ˊ 1°= 180 π≈0.01745(rad ) 3.弧长及扇形面积公式 (1)弧长公式:r l .α= α----是圆心角且为弧度制 (2)扇形面积公式:S=r l .2 1 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: 记忆口诀:一全正,二正弦,三两切,四余弦

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1 (2)商数关系:ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式: 记忆口诀:把2 k π α±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. x y O — + + — + y O — + + —

基本初等函数知识点

指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1. 三、指数函数的图象和性质

高考数学三角函数知识点总结及练习

三角函数总结及统练 一. 教学内容: 三角函数总结及统练 (一)基础知识 1. 与角α终边相同的角的集合},2{Z k k S ∈+==απβ 2. 三角函数的定义(六种)——三角函数是x 、y 、r 三个量的比值 3. 三角函数的符号——口诀:一正二弦,三切四余弦。 4. 三角函数线 正弦线MP=αsin 余弦线OM=αcos 正切线AT=αtan 5. 同角三角函数的关系 平方关系:商数关系: 倒数关系:1cot tan =?αα 1c s c s i n =?αα 1s e c c o s =?αα 口诀:凑一拆一;切割化弦;化异为同。 6. 诱导公式——口诀:奇变偶不变,符号看象限。 α απ+k 2 α- απ- απ+ απ-2 α π -2 α π +2

正弦 αsin αsin - αsin αsin - αsin - αcos αcos 余弦 αcos αcos αcos - αcos - αcos αsin αsin - 正切 αtan αtan - αtan - αtan αtan - αcot αcot - 余切 αcot αcot - αcot - αcot αcot - αtan αtan - 7. 两角和与差的三角函数 ?????? ? ?+-=-?-+=+?????????+?=-?-?=+?-?=-?+?=+βαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαt a n t a n 1t a n t a n )t a n (t a n t a n 1t a n t a n )t a n (s i n s i n c o s c o s )c o s (s i n s i n c o s c o s )c o s (s i n c o s c o s s i n )s i n (s i n c o s c o s s i n )s i n ( 8. 二倍角公式——代换:令αβ= ??????? -= -=-=-=?=ααααααααααα22222tan 1tan 22tan sin cos sin 211cos 22cos cos sin 22sin 降幂公式?????? ?+=-=22cos 1cos 22cos 1sin 22αααα 半角公式: 2cos 12 sin αα -± =;2cos 12cos αα+±=; αα αcos 1cos 12tan +-± = αα ααα cos 1sin sin cos 12 tan += -= 9. 三角函数的图象和性质 函数 x y sin = x y cos = x y tan =

三角函数基础知识点整理

三角函数基础知识点 1、两角和公式 sin(A ±B) = sinAcosB ±cosAsinB B A B A B A tan tan 1tan tan )tan(?±=±μ cos(A ±B) = cosAcosB μsinAsinB 2、二倍角公式(含万能公式) tan2A = A tan 12tanA 2- sin2A=2s inA?cosA=A tan 12tanA 2 + cos2A = cos 2A-sin 2A=2cos 2A-1=1-2sin 2A=A tan 1A tan -12 2 + 22cos 1tan 1tan sin 222 A A A A -=+= 2 2cos 1cos 2 A A += 3、特殊角的三角函数值

4、诱导公式 公式一: απαsin )2sin(=+k ;απαcos )2cos(=+k ;απαtan )2tan(=+k .(其中Z ∈k ). 公式二: ααπ-sin sin(=+);ααπ-cos cos(=+);ααπtan tan(=+). 公式三: sin()-sin αα-=;cos()cos αα-= ;tan()tan αα-=-. 公式四: ααπsin sin(=-);ααπ-cos cos(=-);ααπtan tan(-=-) 公式五: sin(2sin παα-=-);cos(2cos παα-=);tan(2tan παα-=-) 公式六: sin( 2π) = cos ; cos(2π ) = sin . 公式七: sin(2π+) = cos ;cos(2π +) = sin . 公式八: sin(32π)=- cos ; cos(32π ) = -sin . 公式九: sin(32π+) = -cos ;cos(32 π +) = sin . 以上九组公式可以推广归结为:要求角2 k π α?±的三角函数值, 只需要直接求角α的三角函数值的问题.这个转化的过程及结果就是十字口诀“奇变偶不变,符号看象限”。即诱导公式的左边为k ·900+α(k ∈Z )的正弦(切)或余弦(切)函数,当k 为奇数时,右边的函数名称正余互变;当k 为偶数时,右边的函数名称不改变,这就是“奇变偶不变”的含义,再就是将α“看成”锐角(可能并不是锐角,也可能是大于锐角也可能小于锐角还有可能是任意角),然后分析k ·900+α(k ∈Z )为第几象限角,再判断公式左边这个三角函数在此象限是正还是负,也就是公式右边的符号。

人教版高中数学必修一-第二章-基本初等函数知识点总结

人教版高中数学必修一第二章基本初等函 数知识点总结 第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念: 负数没有偶次方根;0的任何次方根都是0,=0。 注意:(1)n a = (2)当 n是奇数时a = ,当 n 是偶数时,0 ||,0 a a a a a ≥?==?-∈>且 正数的正分数指数幂的意义:_1(0,,,1)m n m n a a m n N n a *= >∈>且 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)r s r s a a a a r s R +=>∈ (2)()(0,,)r s rs a a a r s R =>∈ (3)(b)(0,0,)r r r a a b a b r R =>>∈ 注意:在化简过程中,偶数不能轻易约分;如122 [(1]11≠- (二)指数函数及其性质 1、指数函数的概念:一般地,函数x y a = 叫做指数函数,其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 2a>1

注意: 指数增长模型:y =N(1+p)指数型函数: y=ka3 考点:(1)ab =N, 当b>0时,a,N 在1的同侧;当b <0时,a,N 在1的 异侧。 (2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。掌握利用单调性比较 幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。 (3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。 (4)分辨不同底的指数函数图象利用a 1=a,用x=1去截图象得到对应的底数。 (5)指数型函数:y=N(1+p)x 简写:y=ka x 二、对数函数 (一)对数 1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a — 底数, N — 真数,log a N — 对数式) 说明:1. 注意底数的限制,a>0且a ≠1;2. 真数N>0 3. 注意对数的书写格式. 2、两个重要对数: (1)常用对数:以10为底的对数, 10log lg N N 记为 ; (2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为. 3、对数式与指数式的互化 log x a x N a N =?= 对数式 指数式 对数底数← a → 幂底数 对数← x → 指数 真数← N → 幂 结论:(1)负数和零没有对数 (2)log a a=1, log a 1=0 特别地, l g10=1, lg1=0 , lne=1, l n1=0

初中三角函数知识点总结(中考复习)

初中三角函数知识点总结(中考复习)

锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余 A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A C

切值等于它的余角的正切值。 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:2 2 2 c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 2、应用举例:

(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度 (坡比)。用字 母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α==。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 反比例函数知识点整理 一、 反比例函数的概念 :i h l =h l α

基本初等函数(Ⅰ)知识点总结

第三章 基本初等函数(Ⅰ) 一、指数和指数函数 ①指数 1、定义:n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数。规定:1 a a = 2、整数指数幂的运算法则: m n m n a a a + ?= () n m m n a a = (),0m m n n a a m n a a -=>≠ ()m m m ab a b =? 规定:()010a a =≠,;()1 0n n a a a -= ≠ 3、平方根:如果2 x a =,则x 叫做a 的平方根 当0a >时,有两个平方根,互为相反数,记作:a ±(a 为算术平方根) 当0a = 时,00= 当0a <时,在实数范围内没有平方根 立方根:如果3 x a =,则x 叫做a 的立方根(或三次方根) 在实数范围内a 只有一个立方根,记作3a 举例382=,382-=-,311 273 - =- n 次方根:如果n x a =(,1,a R n n N +∈>∈) ,则x 叫做a 的n 次方根 注意:(1)偶次方根: 正数的偶次方根有两个,互为相反数,记作:,,n n a a - (0,a a >为偶数)负数的偶次方根在实数范围内不存在 (2)奇次方根:正数的奇次方根是一个正数,负数的奇次方根是一个负数,都表示为n a (3)算术根: 正数的正n 次方根叫做的a 的n 次算术根 4、根式:当n a 有意义时,n a 叫做根式,n 叫做根指数 5、根式性质:(1) () ()1,n n a a n n N +=>∈; (2),,n n a n a a n ??=??? 为奇数为偶数 6、分数指数幂性质:(1)()10n n a a a = >; (2)()() ()11 ,0m m m n m m n n n n a a a a a a ??=== => ??? ;(3)11 m n m n m n a a a - = =

高一三角函数知识点梳理总结

高一三角函数知识 §1.1任意角和弧度制 ?? ? ??零角负角:顺时针防线旋转正角:逆时针方向旋转 任意角..1 2.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.. ①与α(0°≤α<360°)终边相同的角的集合:{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{ } Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα 360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα 180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=, 90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角所对 的弧长为l ,则其弧度数的绝对值|r l = α,其中r 是圆的半径。 5. 弧度与角度互换公式: 1rad =(π 180)°≈57.30° 1°=180 π 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:? ?? ? ??∈+<

三角函数专题知识点及练习

三角函数知识总结一、知识框架 二、知识点、概念总结 1.Rt△ABC中 (1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=∠A的对边 斜边 (2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边 斜边 (3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边 (4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边 2.特殊值的三角函数: a sina cosa tana cota 30°1 2 3 2 3 3 3 45° 2 2 2 2 1 1 60° 3 2 1 2 3 3 3 3.互余角的三角函数间的关系 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα. 4. 同角三角函数间的关系 平方关系: sin2(α)+cos2(α)=1 tan2(α)+1=sec2(α) cot2(α)+1=csc2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 5.三角函数值 (1)特殊角三角函数值 (2)0°~90°的任意角的三角函数值,查三角函数表。

(3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤∠A≤90°间变化时, 0≤sinα≤1, 1≥cosA≥0, 当角度在0°<∠A<90°间变化时, tanA>0, cotA>0. 6.解直角三角形的基本类型 解直角三角形的基本类型及其解法如下表: 7.仰角、俯角 当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角. 要点一:锐角三角函数的基本概念

10基本初等函数知识点总结

基本初等函数知识点总结 一、指数函数的概念 (1)、指数函数的定义 一般地,函数x y a =(0a >,且1a ≠)叫做指数函数,其中x 是自变量,函数的定义域是R 。 (2)、因为指数的概念已经扩充到有理数和无理数,所以在底数0a >且1a ≠的前提下,x R ∈。 (3)、指数函数x y a =(0a >且1a ≠)解析式的结构特征 1、底数:大于0且不等于1的常数。 2、指数:自变量x 。 3、系数:1。 二、指数函数的图象与性质 一般地,指数函数x y a =(0a >,且1a ≠)的图象与性质如下表: 三、幂的大小比较方法 比较幂的大小常用方法有:(1)、比差(商)法;(2)、函数单调性法;(3)、中间值法: 要比较A 与B 的大小,先找一个中间值C ,再比较A 与C 、B 与C 的大小,由不等式的传递性得到A 与B 之间的大小。 四、底数对指数函数图象的影响 (1)、对函数值变化快慢的影响 1、当底数1a >时,指数函数x y a =是R 上的增函数,且当0x >时,底数a 的值越大,函数图象越“陡”,说明其函数值增长得越快。 2、当底数01a <<时,指数函数x y a =是R 上的减函数,且当0x <时,底数a 的值越小,函数图象越“陡”,说明其函数值减小得越快。 (2)、对函数图象变化的影响

指数函数x y a =与x y b =的图象的特点: 1、1a b >>时,当0x <时,总有01x x a b <<<;当0x =时,总有1x x a b ==;当 0x >时,总有1x x a b >>。 2、01a b <<<时,当0x <时,总有1x x a b >>;当0x =时,总有1x x a b ==;当 0x >时,总有01x x a b <<<。 五、对数的概念 (1)、对数:一般地,如果x a N =(0a >,且1a ≠),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数。 (2)、常用对数:我们通常把以10为底的对数叫做常用对数,为了简便,N 的常用对数10log N 简记为lg N 。 (3)、自然对数:我们通常把以无理数e ( 2.71828e =)为底的对数称为自然对数, 为了简便,N 的自然对数log e N 简记为ln N 。 六、对数的基本性质 根据对数的定义,对数log a N (0a >,1a ≠)具有如下性质: 1、0和负数没有对数,即0N >; 2、1的对数是0,即log 10a =; 3、底数的对数等于1,即log 1a a =; 4、对数恒等式:如果把b a N =中的b 写成log a N ,则log a N a N =。 七、对数运算性质 如果0a >且1a ≠,0M >,0N >,那么 (1)、()log log log a a a MN M N =+; (2)、log log log a a a M M N N =-; (3)、log log n a a M n M =(n R ∈)。 八、换底公式

基本三角函数知识点总结

基本三角函数 一、重要知识点 1、已知角α为第一象限,求α/2,α/3,α/4为第几象限 2、弧度与角度的转变 特别是一弧度大约等于57度要知道,便于三角函数比较大小和判断正负,举个例子sin (cos30°)与cos (cos30°)大小 3、弧长公式以及弧长公式的公式的推导 ||l R α=,扇形面积公式:211||22 S lR R α== 4、基本三角函数的定义 此章节的基础,比如能理解为什么sinX 在一二象限为正?为什么正弦和余弦平方和等于一?为什么正切余切在一三象限为正,为何正切等于正弦除余弦 重点掌握正弦、余弦和正切余切,正割余割不用掌握 5、诱导公式,奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角).诱导公式的应用是求任意角的三角函数值,其一般步骤: 这个是此章节的重点,只要理解这个定理,就不必记书上繁琐的公式 6、三角函数的两角和与差公式的推导过程,并逐渐推导二倍角公式,半角公式,万能公式,辅助角公式 四川去年高考题就是余弦两角和的公式推导 7、三角函数的定义域、值域,周期性、奇偶性、单调性、对称中心和对称轴、图像以及三角函数的变换

()k x ASin y Sinx y ++==?ω变化为怎样由 ? 振幅变化:Sinx y = ASinx y = 左右伸缩变化: x ASin y ω= 左右平移变化 )(?ω+=x ASin y 上下平移变化 k x ASin y ++=)(?ω ()a b Sin b a bCos aSin y =++=+=??αααtan , 22其中 补充知识点 1.常见三角不等式:(1)若(0,)2x π ∈,则sin tan x x x <<. (2) 若(0,)2x π ∈,则1sin cos 2x x <+≤. (3) |sin ||cos |1x x +≥. 2.三角形面积定理:111sin sin sin 222S ab C bc A ca B ===. 3.三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有: (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如 ()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--, 22 αβαβ++=?,()()222αββααβ+=---等),如(1)已知2tan()5 αβ+=,1tan()44πβ-=,那么tan()4 πα+的值是_____(答:322);(2)已知02πβαπ<<<<,且129cos()βα-=-,223 sin()αβ-=,求cos()αβ+的值(答:490729);(3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5 αβ+=-,则y 与x 的函数关系为______(答:23431(1)555 y x x x =--+<<) (2)三角函数名互化如(1)求值sin50(13tan10)+ (答:1);(2)已 知sin cos 21,tan()1cos 23 αααβα=-=--,求tan(2)βα-的值(答:18)

高一数学必修一基本初等函数知识点总结

〖 2.1〗指数函数 根式的性质:n a =;当n a =;当n 为偶数时, (0) || (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.②正数的负分数 指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)分数指数幂的运算性质① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ (4)指数函数 〖2.2〗对数函数 负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. 几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. 常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 对数的运算性质 如果0,1,0,0a a M N >≠>>,那么

①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 换底公式的推论: (5)对数函数 〖2.3〗幂函数 (1)幂函数的定义 一般地,函数 y x α=叫做幂函数,其中x 为自变量,α 是常数.

基本初等函数和函数的应用知识点总结

基本初等函数和函数的应用知识点总结 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根, 其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a +=),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 因为负数对一些分数次方无意义,0的负数次方无意义。 2、指数函数的图象和性质 a>1 0

相关文档
最新文档