CKD数字压力传感器

CKD数字压力传感器
CKD数字压力传感器

电阻应变片压力传感器设计

《电阻应变片的压力传感器设计》 题目电阻应变片的压力传感器设计时间 201608 班级 2014级 姓名 序号 指导教师 教研室主任 系教学主任 2016年08月 前言

随着科学技术的迅猛发展,非物理量的测试与控制技术,已越来越广泛地应用于航天、航空、交通运输、冶金、机械制造、石化、轻工、技术监督与测试等技术领域,而且也正逐步引入人们的日常生活中去。传感器技术是实现测试与自动控制的重要环节。在测试系统中,被作为一次仪表定位,其主要特征是能准确传递和检测出某一形态的信息,并将其转换成另一形态的信息。 传感器是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置。其中电阻应变式传感器是被广泛用于电子秤和各种新型机构的测力装置,其精度和范围度是根据需要来选定的。因此,应根据测量对象的要求,恰当地选择精度和范围度是至关重要的。但无论何种条件、场合使用的传感器,均要求其性能稳定,数据可靠,经久耐用。 随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。 本次课程设计的是一个大量程称重传感器,测量范围为1t到100t。 本次课程设计的称重传感器就是利用应变片阻值的变化量来确定弹性元件的微小应变,从而利用力,受力面积及应变之间的关系来确定力的大小,进而求得产生作用力的物体的质量。应变片阻值的变化可以通过后续的处理电路求得。 传感器的设计主要包括弹性元件的设计和处理电路的设计。由于传感器输出的信号是微弱信号,故需要对其进行放大处理;由于传感器输出的信号里混有干扰信号,故需要对其进行检波滤波;由于传感器输出的信号通常都伴随着很大的共模电压(包括干扰电压),故需要设计共模抑制电路。除此之外,还要设计调零电路。 目录

压力传感器的安装方法及使用要求

●检查安装孔的尺寸 如果安装孔的尺寸不合适,传感器在安装过程中,其螺纹部分就很容易受到磨损。这不仅会影响设备的密封性能,而且使压力传感器不能充分发挥作用,甚至还可能产生安全隐患。只有合适的安装孔才能够避免螺纹的磨损(螺纹工业标准1/2-20 UNF 2B),通常可以采用安装孔测量仪对安装孔进行检测,以做出适当的调整。 ●保持安装孔的清洁 保持安装孔的清洁并防止熔料堵塞对保证设备的正常运行来说十分重要。在挤出机被清洁之前,所有的压力传感器都应该从机筒上拆除以避免损坏。在拆除传感器时,熔料有可能流入到安装孔中并硬化,如果这些残余的熔料没有被去除,当再次安装传感器时就可能造成其顶部受损。清洁工具包能够将这些熔料残余物去除。然而,重复的清洁过程有可能加深安装孔对传感器造成的损坏。如果这种情况发生,就应当采取措施来升高传感器在安装孔中的位置。 ●选择恰当的位置 当压力传感器的安装位置太靠近生产线的上游时,未熔融的物料可能会磨损传感器的顶部;如果传感器被安装在太靠后的位置,在传感器和螺杆行程之间可能会产生熔融物料的停滞区,熔料在那里有可能产生降解,压力信号也可能传递失真;如果传感器过于深入机筒,螺杆有可能在旋转过程中触碰到传感器的顶部而造成其损坏。一般来说,传感器可以位于滤网前面的机筒上、熔体泵的前后或者模具中。 ●仔细清洁 在使用钢丝刷或者特殊化合物对挤出机机筒进行清洁前,应该将所有的传感器都拆卸下来。因为这两种清洁方式都可能会造成传感器的震动膜受损。当机筒被加热时,也应该将传感器拆卸下来并使用不会产生磨损的软布来擦拭其顶部,同时传感器的孔洞也需要用清洁的钻孔机和导套清理干净。 ●保持干燥 尽管传感器的电路设计能够经受苛刻的挤出加工环境,但是多数传感器也不能绝对防水,在潮湿的环境下也不利于正常运行。因此,需要保证挤出机机筒的水冷装置中的水不会渗漏,否则会对传感器造成不利影响。如果传感器不得不暴露在水中或潮湿的环境下,就要选择具有极强防水性的特殊传感器。

索尔SOR压力传感器选型资料(中文版)

聆听机械 微米级专业的判断 一个帕斯卡的反应,我们也会告诉您我们一直在努力追求 微帕自控的力量

SOR索尔压力开关 SOR公司(中文名称索尔公司)成立于1946年,是世界上唯一一家集生产各类机械及电子压力、差压、温度、流量、液位开关及变送器于一体的专业化国际公司,总部位于美国肯萨斯州州府,现有员工300人,其压力开关类产品产量位居世界第一。 压力开关产品主要采用静态O型圈密封的活塞-弹簧-膜片组合式结构,具有抗震、抗过压能力强,测量范围广且回差小、使用寿命长等特点。其生产的高静压低差压开关是世界上独一无二的。其核级压力及差压开关是世界上不多的取得IEEE认证的产品。 SOR的机械液位开关全部满足ANSIB31.1和B31.3国际电力和石化行业压力容器标准,包括机械式浮球及沉筒两类,其独特的分级冷凝球降温措施能够很好地保证液位开关的开关单元部分免受高温蒸汽的影响,可以可靠地应用于高温工况,越来越受到客户的青睐。 除机械类产品外,SOR的电子产品种类也是非常丰富的,包括热差式流量开关、非接触式超声波变送器、接触式超声波开关,射频导纳开关及变送器、以及集开关、变送器、实时显示三位一体的SGT,该仪表不仅有实时压力显示、独立的开关量输出,而且有4~20毫安模拟量输出。非接触式超声波变送器具有高能量、低频率、自动增益调节三大特点使其能够应用于诸如碳黑、干灰、啤酒、石膏等高粉尘、高泡沫及高雾气的复杂环境中,帮助很多用户解决了多年来用其他超声波产品甚至是雷达产品都解决不了的难题。

压力控制器(压力计) NN 2最大工作压力30 inHg 到 7000 psig 20.25mm活塞行程,使用寿命长 2设定点可调 210amps@250VAC 2CSA, CE 2NEMA 4, 4X, IP65 RN 2最大工作压力30 inHg 到 7000 psig 20.25mm活塞行程,使用寿命长 2设定点可调 210amps@250VAC> 2CSA, CE NEMA 4, 4X, IP65 L 2最大工作压力30 inHg 到 7000 psig 20.25mm活塞行程,使用寿命长 2设定点可调 210amps@250VAC 2CSA, CE UL: Class I, Group C, Div. 1 B32最大工作压力30 inHg 到 7000 psig 20.25mm活塞行程,使用寿命长 2设定点可调 210amps@250VAC 2CSA, CE UL/CSA: Class I, Group B, Div. 1; ATEX: Eex d IIC T6 V12双设定点 2最大工作压力30 inHg 到 4000 psig 20.25mm活塞行程,使用寿命长 2设定点可调 210amps@250VAC CSA, CE V22双设定点 2最大工作压力30 inHg 到 4000 psig 20.25mm活塞行程,使用寿命长 2设定点可调 210amps@250VAC UL/CSA: Class I, Group A, Div. 1; SnapSw: UL/CSA, ATEX, SAA

JJG 860—94压力传感器(静态)检定规程

压力传感器(静态)检定规程 JJG 860—94 本规程主要起草人:许新民(航空工业总公司第304研究所) 郭春山(中国计量科学研究院) 张首君(中国计量科学研究院) 参加起草人:陈景文(航空工业总公司第304研究所) 目次 一概述 二技术要求 三检定条件 四检定项目和检定方法 五检定结果处理和检定周期 附录1 压力传感器检定记录格式 附录2 检定证书内容格式(1) 附录3 检定证书内容格式(2) 压力传感器(静态)检定规程 本检定规程适用于新制造、使用中和修理后的压力传感器的静态检定。 一概述 压力传感器是一种能感受压力,并按照一定的规律将压力转换成可用输出信号(一般为电信号)的器件或装置,通常由压力敏感元件和转换元件组成。 按压力测试的不同类型,压力传感器可分为表压传感器、差压传感器和绝压传感器等。 二技术要求 1压力传感器的准确度等级和允许基本误差应符合表1规定。 表1 2压力传感器的配套应完整,外观不应有影响计量性能的锈蚀和损伤。各部件应装配牢固,不应有松动,脱焊或接触不良等现象。 3压力传感器在外壳上或外壳的铭牌上应清楚地标明其型号和编号。压力传感器的名称、

测量范围、准确度等级、制造厂家、制造日期及工作电源可在外壳或铭牌上标明,或在相应的技术文件中说明。 4差压传感器的高压(+)和低压(-)接嘴应有明确的永久性标志。 5压力传感器的电源端和信号输出端应有明确的区别标志。 6重复性误差。压力传感器的重复性误差不得大于允许基本误差的绝对值。 7回程误差。压力传感器的回程误差不得大于允许基本误差的绝对值。 8线性误差。压力传感器的线性误差的绝对值不得大于允许基本误差的绝对值。非线性压力传感器对此不作要求。 三检定条件 9 压力标准器 压力标准器选择的基本原则是其基本误差的绝对值应小于被检压力传感器基本误差绝对值的1/3。准确度等级为0.05级的压力传感器允许采用一等标准器(±0.02%)作为压力标准器。 压力标准器可选用工作基准活塞式压力计、工作基准微压计、标准活塞式压力计、标准活塞式压力真空计、气体活塞式压力计、标准浮球式压力计、标准液体压力计、补偿式微压计、数字式压力计、精密压力表及其他相应准确度等级的压力计量标准器。 10 检定设备 10.1激励电源。激励电源应按压力传感器要求配套,除非压力传感器对激励电源稳定性无特殊要求,否则其稳定度应为被检压力传感器允许基本误差绝对值的1/5~1/10,可选用精密稳压电源、稳流电源、干电池或蓄电池等。 10.2读数记录装置。检定压力传感器用的读数记录装置基本误差的绝对值应小于被检压力传感器允许基本误差绝对值的1/5~1/10,可选用数字式电压表、数字式频率计、电流表等。 10.3其他设备。真空计、数字式气压计(或标准气压表)、温度计、湿度计、精密电阻箱等。 10.4与压力标准器配套使用的加压(或抽空)系统应在示值检定范围内连续可调。 11 环境条件 11.1检定时的环境温度视被检压力传感器的准确度等级而定,应符合下列要求: 0.01、0.02级20±1℃ 0.05级20±2℃ 0.1、0.2、0.5级20±3℃ 其他等级20±5℃ 11.2检定前,压力传感器应在检定的环境温度下放置2h以上,方可进行检定。 11.3相对湿度:小于80% 大气压力:86~106kPa 四检定项目和检定方法 12 外观检查 12.1使用中的压力传感器应有前次检定证书,新制造的或修理后的压力传感器应有出厂合格证书。 12.2检查压力传感器的外观应符合本规程第2~5条要求。

电感式压力传感器设计

机械工程测试技术基础题目:电感式压力传感器设计 班级 13机械自动化1班 学号 姓名 指导教师李红星 成绩

目录 一、概述 (2) 1.1、相关背景和应用简介 (2) 二、设计内容 (3) 1.主要参数 (3) 2.选用的元件和工作原理 (3) 3.测量方法 (5) 4.外观设计 (6) 课程设计小结 (7) 参考文献 (7)

一、概述 1.相关背景和应用简介 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。 电感式传感器是利用电磁感应把被测的物理量如位移,压力,流量,振动等转换成线圈的自感系数和互感系数的变化,再由电路转换为电压或电流的变化量输出,实现非电量到电量的转换。 本次课程设计的电感式压力传感器为自感型,是由于磁性材料和磁导率不同,当压力作用于膜片时,气隙大小发生改变,气隙的改变影响线圈电感的变化,处理电路可以把这个电感的变化转化成相应的信号输出,从而达到测量压力的目的。电感式压力传感器的优点在于灵敏度高、测量范围大;缺点就是不能应用于高频动态环境。本次课程设计由于所学知识的欠缺,只说明电感式压力传感器的主要参数、选用的原件和工作原理、测量方法和外观设计。

二、设计内容 1.主要参数 量程:0~100KG. 综合精度:0.5%(线性、滞后、重复性). 灵敏度:1.0---1.5mV/V. 工作环境温度:—10O C~50O C. 适用对象:电子称,平台秤。 外壳材质:合金钢。 特殊要求:不得用于高频动态环境。 2.选用的元件和工作原理 选用的元件:线圈,铁心,衔铁,连接导线,合金钢外壳。工作原理: 1-线圈2-铁心3-衔铁 (a)可变磁阻结构 (b)特性曲线

压力传感器原理及应用-称重技术

压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电 信号作输出,给显示仪表显示压力值,或供控制和报警使用。 压力传感器的种类繁多,如压阻式压力传感器、应变式压力传感器、压电式压力传感器、电容式压力传感 器、压磁式压力传感器、谐振式压力传感器及差动变压器式压力传感器,光纤压力传感器等。 一、压阻式压力传感器 固体受力后电阻率发生变化的现象称为压阻效应。压阻式压力传感器是基于半导体材料(单晶硅)的压阻效应原理制成的传感器,就是利用集成电路工艺直接在硅平膜片上按一定晶向制成扩散压敏电阻,当硅膜片 受压时,膜片的变形将使扩散电阻的阻值发生变化。 压阻式具有极低的价格和较高的精度以及较好的线性特性。 1、压阻式压力传感器基本介绍 压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成粘贴式应变片,称为半导体应变片,因此 应变片制成的传感器称为半导体应变式传感器,另一种是在半导体材料的基片上用集成电路工艺制成的扩 散电阻,以此扩散电阻的传感器称为扩散型压阻传感器。 半导体应变式传感器半导体应变式传感器的结构形式基本上与电阻应变片传感器相同,也是由弹性敏感元件等三部分组成,所不同的是应变片的敏感栅是用半导体材料制成。半导体应变片与金属应变片相比,最 突出的优点是它的体积小而灵敏高。它的灵敏系数比后者要大几十倍甚至上百倍,输出信号有时不必放大 即可直接进行测量记录。此外,半导体应变片横向效应非常小,蠕变和滞后也小,频率响应范围亦很宽, 从静态应变至高频动态应变都能测量。由于半导体集成化制造工艺的发展,用此技术与半导体应变片相结 合,可以直接制成各种小型和超小型半导体应变式传感器,使测量系统大为简化。但是半导体应变片也存 在着很大的缺点,它的电阻温度系统要比金属电阻变化大一个数量级,灵敏系数随温度变化较大它的应变 —电阻特性曲线性较大,它的电阻值和灵敏系数分散性较大,不利于选配组合电桥等等。 扩散型压阻式传感器扩散型压阻传感器的基片是半导体单晶硅。单晶硅是各向异性材料,取向不同时特性不一样。因此必须根据传感器受力变形情况来加工制作扩散硅敏感电阻膜片。 利用半导体压阻效应,可设计成多种类型传感器,其中压力传感器和加速度传感器为压阻式传感器的基本 型式。 硅压阻式压力传感器由外壳、硅膜片(硅杯)和引线等组成。硅膜片是核心部分,其外形状象杯故名硅杯,在硅膜上,用半导体工艺中的扩散掺杂法做成四个相等的电阻,经蒸镀金属电极及连线,接成惠斯登电桥 再用压焊法与外引线相连。膜片的一侧是和被测系数相连接的高压腔,另一侧是低压腔,通常和大气相连,也有做成真空的。当膜片两边存在压力差时,膜片发生变形,产生应力应变,从而使扩散电阻的电阻值发 生变化,电桥失去平衡,输出相对应的电压,其大小就反映了膜片所受压力差值。

压力传感器分类与简介

将压力转换为电信号输出的传感器。通常把压力测量仪表中的电测式仪表称为压力传感器。压力传感器一般由弹性敏感元件和位移敏感元件(或应变计)组成。弹性敏感元件的作用是使被测压力作用于某个面积上并转换为位移或应变,然后由位移敏感元件(见位移传感器)或应变计(见电阻应变计、半导体应变计)转换为与压力成一定关系的电信号。有时把这两种元件的功能集于一体,如压阻式传感器中的固态压力传感器。压力是生产过程和航天、航空、国防工业中的重要过程参数,不仅需要对它进行快速动态测量,而且还要将测量结果作数字化显示和记录。大型炼油厂、化工厂、发电厂和钢铁厂等的自动化还需要将压力参数远距离传送(见遥测),并要求把压力和其他参数,如温度、流量、粘度等一起转换为数字信号送入计算机。因此压力传感器是极受重视和发展迅速的一种传感器。压力传感器的发展趋势是进一步提高动态响应速度、精度和可靠性以及实现数字化和智能化等。常用压力传感器有电容式压力传感器、变磁阻式压力传感器(见变磁阻式传感器、差动变压器式压力传感器)、霍耳式压力传感器、光纤式压力传感器(见光纤传感器)、谐振式压力传感器等。 传感器的基本知识 一、传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 二、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: 1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器 2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。 3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 关于传感器的分类: 1.按被测物理量分:如:力,压力,位移,温度,角度传感器等; 2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等; 3.按照传感器转换能量的方式分: (1)能量转换型:如:压电式、热电偶、光电式传感器等; (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等; 4.按照传感器工作机理分: (1)结构型:如:电感式、电容式传感器等; (2)物性型:如:压电式、光电式、各种半导体式传感器等; 5.按照传感器输出信号的形式分: (1)模拟式:传感器输出为模拟电压量; (2)数字式:传感器输出为数字量,如:编码器式传感器。 三、传感器的静态特性 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方

压力传感器选型的三大要素

压力传感器选型的三大要素 为新项目或设备选择压力传感器时,设计师通常比较关注关键设计参数,如压力范围、电流输出、介质兼容性以及环境条件等。然而,若要根据不同的应用选出合适的传感器,除以上参数外,还需考虑其它因素,常常被忽略的设计因素:压力传递介质(充油式和非充油式)、结构和传感技术类型。这也是压力传感器选型的三大要素。 一压力传递介质(充油式vs非充油式)在压力传感行业存在多种不同的传感技术,但所有传感器都可分为两大类:充油式和非充油式。充油式传感器是指在膜片和传感元件之间采用油液作为压力传递介质的传感器,例如基于微机电系统(MEMS)的电子传感器。 充油式传感器具有材料相容性(好)、成本低、易于集成到成套传感器系统中等特点,对许多制造应用都极具吸引力。虽然应用日益普遍,但相较于非充油式传感器,仍有不少缺点。 充油式设计的缺点是故障成本高。一旦传感膜片因过压或制造缺陷而破裂,那么油液就会泄漏至应用中并污染系统。油液进入系统会损坏关键的部件,造成成数千乃至数百万美元的损失,损失程度视具体应用而异(如,代价昂贵的燃料电池系统)。更糟的是,许多系统一旦被油液污染,几乎就没有修复的可能。相比之下,非充油式设计不仅能消除因故障导致污染的可能性,而且还可承受更高的过压冲击。 二结构压力传感器在应用中的服役时间是挑选传感器的关键指标之一。一般而言,全焊接结构的传感器,设计更坚固、耐用,在许多苛刻应用中的使用寿命都较长。另外,还要考虑接头在外壳上的焊接牢固度。要知道,在应用现场,这些装置常常会暴露在影响传感器工作的非理想环境下。 确保制造商不仅能够提供多种压力接头,包括1/4”和1/8”NPT等标准口径,而且还能够视需要量身定制过程接头。即使再坚固耐用的设计也有可能受潮湿环境影响,因此部分传感器需防潮保护以防止接头引脚的四周被腐蚀。 如果担心保护传感器受恶劣环境侵蚀,则选择IP防护等级满足安装需求的传感器。传感器可提供多种IP防护等级。其中,IP65级防护的型号可提供抵御粉尘渗入和喷嘴喷水的全面保护。 IP67级防护的传感器能够防护灰尘侵入以及短暂浸泡。IP69K级防护则适用于高

选择压力传感器的方法

压力传感器及压力变送器分为表压、尽压、差压等种类。常见0.1、0.2、0.5、1.0等精度等级。可丈量的压力范围很宽,小到几十毫米水柱,大的可达上百兆帕。不同种类压力传感器及压力变送器的工作温度范围也不同,常分成 0~70℃、-25~85℃、- 40~125℃、-55~150℃几个等级,某些特种压力传感器的工作温度可达400~500℃。 压力传感器及压力变送器基于不同的材料及结构设计有着不同的防水性能及防爆等级,接液腔体由于材料、外形的差异可丈量的流体介质种类也不同,常分为干燥气体、一般液体、酸碱腐蚀溶液、可燃性气液体、粘稠及特殊介质。压力传感器及压力变送器作为一次仪表需与二次仪表或计算机配合使用,压力传感器及压力变送器常见的供电方式为:DC 5V、12V、24V、±12V等,输出方式有:0~5V、1~5V、0.5~4.5V、0~10mA、 0~20mA、 4~20mA等及Rs232、Rs485等与计算机的接口。 用户在选择压力传感器及压力变送器时,应充分了解压力丈量系统的工况,根据需要公道选择,使系统工作在最佳状态,并可降低工程造价。 压力传感器常见精度参数及试验设备 传感器静态标定设备:活塞压力计:精度优于0.05% 数字压力表:精度优于0.05% 直流稳压电源:精度优于0.05% 。 传感器温度检验设备:高温试验箱:温度从0℃~+250℃温度控制精度为 ±1℃ 低温试验箱:温度能从0℃~-60℃温度控制精度为±1℃ 传感器静态性能试验项目:零点输出、满量程输出、非线性、迟滞、重复性、零点漂移、超复荷。 传感器环境试验项目:零点温度漂移、灵敏度漂移、零点迟滞、灵敏度迟滞。(检查产品在规定的温度范内对温度的适应能力。此项参数对精度影响极为重要) 压力传感器使用留意事项 压力传感器及压力变送器在安装使用前应具体阅读产品样本及使用说明书,安装时压力接口不能泄露,确保量程及接线正确。压力传感器及压力变送器的外壳一般需接地,信号电缆线不得与动力电缆混合展设,压力传感器及压力变送器

传感器的标定与校准

标定与校准的概念 新研制或生产的传感器需要对其技术性能进行全面的检定,以确定其基本的静、动态特性,包括灵敏度、重复性、非线性、迟滞、精度及固有频率等。 例如,对于一个压电式压力传感器,在受力后将输出电荷信号,即压力信号经传感器转换为电荷信号。但是,究竟多大压力能使传感器产生多少电荷呢?换句话说,我们测出了一定大小的电荷信号,但它所表示的加在传感器上的压力是多大呢? 这个问题只靠传感器本身是无法确定的,必须依靠专用的标准设备来确定传感器的输入――输出转换关系,这个过程就称为标定。简单地说,利用标准器具对传感器进行标度的过程称为标定。具体到压电式压力传感器来说,我们用专用的标定设备,如活塞式压力计,产生一个大小已知的标准力,作用在传感器上,传感器将输出一个相应的电荷信号,这时,再用精度已知的标准检测设备测量这个电荷信号,得到电荷信号的大小,由此得到一组输入――输出关系,这样的一系列过程就是对压电式压力传感器的标定过程,如图1-19所示。 图1-19 压电式压力传感器输入――输出关系 校准在某种程度上说也是一种标定,它是指传感器在经过一段时间储存或使用后,需要对其进行复测,以检测传感器的基本性能是否发生变化,判断它是否可以继续使用。因此,校准是指传感器在使用中或存储后进行的性能复测。在校准过程中,传感器的某些指标发生了变化,应对其进行修正。 标定与校准在本质上是相同的,校准实际上就是再次的标定,因此,下面都以标定为例作介绍。 1.7.2 标定的基本方法 标定的基本方法是,利用标准设备产生已知的非电量(如标准力、位移、压力等),作为输入量输入到待标定的传感器,然后将得到的传感器的输出量与输入的标准量作比较,从而得到一系列的标定数据或曲线。例如,上述的压电式压力传感器,利用标准设备产生已知大小的标准压力,输入传感器后,得到相应的输出信号,这样就可以得到其标定曲线,根据标定曲线确定拟合直线,可作为测量的依据,如图1-20所示。

exlar内置压力传感器样本

Force Measuring Option Exlar GSX and I Series Actuators GSX Series Linear Actuator ? Measuring of compressive loads with optional bi- directional load measurement ? Integrated strain gauge load cell ? 10 VDC external excitation ? 2 mV/V sensitivity ? +/- 1% linearity ? +/- 0.5% repeatability ? Hysteresis, 1% nominal ? 250 Hz frequency response ? Factory calibrated ? Compatible with standard gauge monitors and PLC strain gauge input cards ? Requires external excitation ? Totally enclosed within the actuator’s sealed housing, and connectorized for ease of use Force Measuring Actuators Exlar offers select models of its GSX and I Series actuators with integral force measuring capability. This option is avail- able in the GSX30, 40, 50 & 60 models and the I30 and 40 models. In both product lines a load cell is embedded within the actua- tor allowing it to directly mea- sure the force being applied by the actuator’s output rod. The strain gauge load sensor used to measure applied force is mounted inside the actuator’s case, protecting it from exter- nal damage and guaranteeing accurate and consistent force data. A separate connector is sup- plied for connecting the internal load cell to an external strain conditioner/ampli? er required to excite the strain gauge sen- sor. Alternatively, Exlar can offer strain gauge conditioners to provide a high level output signal, either 0-10V or 4-20mA. Alternatively, any one of nu- merous conditioners/ampli? ers available can be used for this purpose. Features Applications ? Fastening and Joining ? Riveting ? Bag Sealing ? Thermoforming ? Welding ? Fillers ? Formers ? Clamping ? Molding ? Precision Grinders ? Precision Pressing ? Interference Detection ? Die Cutters ? Injection Molding ? Tube Bending ? Stamping ? Test Stand Lifts ? Tension Control ? Wire Winding ? Parts Clamping ? Dispensers ? Circuit Board Testing ? Blood Processing Strain Gauge Ampli? er I Series Linear Actuator

智能压力传感器的设计

密级: NANCHANG UNIVERSITY 学士学位论文 THESIS OF BACHELOR (2009—2013年) 题目智能化压力传感器的设计 学院:环化学院系测控系 专业班级:测控技术与仪器093班 学生姓名:钟刚学号: 5801209114 指导教师:刘诚职称:讲师 起讫日期: 2013.3.15—2013.6.6 南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。

作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

传感器及转换器形成系统的“前端”,没有它,许多现代化的电子系统都无法正常工作。传感器已广泛的应用于工业控制系统和能源工业装置当中(如石油和天然气的生产、配电工业)。它们也是制造录音机和录像机这些原始设备产品的重要内在组成部分。大多数这些数字电子系统之所以具有普遍性和强大优势是得益于传感器广泛应用于这些电子电路中。 本课题将深入研究智能压力传感器系统理论及其在压力测试方面的应用,对新型智能压力传感器系统的智能化功能、智能化软件和硬件配置进行全面的设计。提出了一种差动电容式传感器的前置电路,基于电容/ 电压转换的原理,对微小电容变化量进行测量。电路输出的直流电压与差动电容变化量成线性关系,且能对偏差电容和电路的漂移进行自动补偿。 完善智能化软件,实现温度补偿、自动校准、总线数字通讯、自动增益控制等多种智能化特性,使智能化程度尽可能的提高。 关键词:传感器;压力;智能化。

推荐:压力传感器的选用

压力传感器的选用 【学员问题】压力传感器的选用? 【解答】压力传感器、压力变送器的种类及选用 压力传感器及压力变送器分为表压、尽压、差压等种类。常见0.1、0.2、0.5、1.0等精度等级。可丈量的压力范围很宽,小到几十毫米水柱,大的可达上百兆帕。不同种类压力传感器及压力变送器的工作温度范围也不同,常分成0~70℃、-25~85℃、-40~125℃、-55~150℃几个等级,某些特种压力传感器的工作温度可达400~500℃。 压力传感器及压力变送器基于不同的材料及结构设计有着不同的防水性能及防爆等级,接液腔体由于材料、外形的差异可丈量的流体介质种类也不同,常分为干燥气体、一般液体、酸碱腐蚀溶液、可燃性气液体、粘稠及特殊介质。压力传感器及压力变送器作为一次仪表需与二次仪表或计算机配合使用,压力传感器及压力变送器常见的供电方式为:DC5V、12V、24V、12V等,输出方式有:0~5V、1~5V、0.5~4.5V、0~10mA.0~20mA.4~20mA 等及Rs232、Rs485等与计算机的接口。 用户在选择压力传感器及压力变送器时,应充分了解压力丈量系统的工况,根据需要公道选择,使系统工作在最佳状态,并可降低工程造价。 压力传感器常见精度参数及试验设备 传感器静态标定设备:活塞压力计:精度优于0.05%数字压力表:精度优于0.05%直流稳

压电源:精度优于0.05%. 传感器温度检验设备:高温试验箱:温度从0℃~+250℃温度控制精度为1℃ 低温试验箱:温度能从0℃~-60℃温度控制精度为1℃ 传感器静态性能试验项目:零点输出、满量程输出、非线性、迟滞、重复性、零点漂移、超复荷。 传感器环境试验项目:零点温度漂移、灵敏度漂移、零点迟滞、灵敏度迟滞。(检查产品在规定的温度范内对温度的适应能力。此项参数对精度影响极为重要) 压力传感器使用留意事项 压力传感器及压力变送器在安装使用前应具体阅读产品样本及使用说明书,安装时压力接口不能泄露,确保量程及接线正确。压力传感器及压力变送器的外壳一般需接地,信号电缆线不得与动力电缆混合展设,压力传感器及压力变送器四周应避免有强电磁干扰。压力传感器及压力变送器在使用中应按行业规定进行周期检定。 以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。 结语:借用拿破仑的一句名言:播下一个行动,你将收获一种习惯;播下一种习惯,你将收获一种性格;播下一种性格,你将收获一种命运。事实表明,习惯左右了成败,习惯改变人的一生。在现实生活中,大多数的人,对学习很难做到学而不厌,学习不是一

基于电阻应变片的压力传感器设计

前言 随着科学技术的迅猛发展,非物理量的测试与控制技术,已越来越广泛地应用于航天、航空、交通运输、冶金、机械制造、石化、轻工、技术监督与测试等技术领域,而且也正逐步引入人们的日常生活中去。传感器技术是实现测试与自动控制的重要环节。在测试系统中,被作为一次仪表定位,其主要特征是能准确传递和检测出某一形态的信息,并将其转换成另一形态的信息。 传感器是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置。其中电阻应变式传感器是被广泛用于电子秤和各种新型机构的测力装置,其精度和范围度是根据需要来选定的。因此,应根据测量对象的要求,恰当地选择精度和范围度是至关重要的。但无论何种条件、场合使用的传感器,均要求其性能稳定,数据可靠,经久耐用。 随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。 本次课程设计的是一个大量程称重传感器,测量范围为1t到100t。 本次课程设计的称重传感器就是利用应变片阻值的变化量来确定弹性元件的微小应变,从而利用力,受力面积及应变之间的关系来确定力的大小,进而求得产生作用力的物体的质量。应变片阻值的变化可以通过后续的处理电路求得。 传感器的设计主要包括弹性元件的设计和处理电路的设计。由于传感器输出的信号是微弱信号,故需要对其进行放大处理;由于传感器输出的信号里混有干扰信号,故需要对其进行检波滤波;由于传感器输出的信号通常都伴随着很大的共模电压(包括干扰电压),故需要设计共模抑制电路。除此之外,还要设计调零电路。

压力传感器动态数字滤波的实现方法_图文.

匡亘垂塑雯亚亟壅垂薹蛩 传感器与仪器仪表 文章编号"1008--0570(2008)12--1--0127.-02 一种压力传感器动态数字滤波的实现方法 AMethodfor Dynamo,dig加tfilterImplementationofPressureSensors (南京工业大学)毛丽民孙冬梅程明霄 MAO Li--minSUNDon9?mei CHENGMing--xiao 摘要:本文运用高斯一牛顿法,根据压力传感器的响应曲线建立了传感器的动态模型。该方法可使拟合结果逼近无偏估计。从而提高拟合的精度。为提高传感器动态特性.采用零极点配置法根据动态模型设计了动态补偿数字滤波器。运用Altera提 供的DSPBuilder开发工具从Simulink模型自动生成vHDL代码.并在FPGA上实现了3阶llR的数字滤波器,通过仿真取得了较好的效果。 . 关键词:高斯—牛顿法;压力传感器:数字滤波器

中图分类号:TP212 文献标识码:A Abstract:ThisarticleutilizesC,BUSS—Newtonmethod.hasestablished the fllj,llSOr dynamicmodelaccording to thepressure.8P,n,solr re. sponseClllWe.Thismethod ellll.b]e thefittingretsuh to approach theunbiassedestimate,andP,nhallCtp fittingprecision.Dynamical corn?

pensatordigitall融terforPressure.flP,llsorhasbeendesigned byzero—poleplacementaceor(1ing to dynamicmodel UsingDSPBuilderwhichprovidedby Alterahasautomaticallyproduced theVHDLcode fromtheSimulinkmodel,has realized 1t 3 stepsIIRfilter Oil FPGA,andtakethe#rood effectthroughthesimulation. ‘ Keywords:Gauss-Nqewtonmetlaod;Pressuresen.sol';Digital脚ter

手机侧边压力传感器校准方法与制作流程

本技术公开了一种手机侧边压力传感器校准方法,该方法通过按压两个传感器中间的点,获取两个传感器端的压力值,以此为基础,把相邻两个压力传感器的校准系数比例关系,再根据相邻压力传感器的比例关系,最终得到所有传感器间的比例关系,通过该比例关系进行压力传感器的校准。通过本技术可以在没有专业校准设备的情况下,获得各传感器的相对校准系数,由此实现快速、准确地校准。 技术要求 1.一种手机侧边压力传感器校准方法,其特征在于该方法通过按压两个传感器中间的点,获取两个传感器端的压力值,以此为基础,把相邻两个压力传感器的校准系数比例关 系,再根据相邻压力传感器的比例关系,最终得到所有传感器间的比例关系,通过该比 例关系进行压力传感器的校准。 2.如权利要求1所述的手机侧边压力传感器校准方法,其特征在于该方法包括如下步骤: 101、启动校准功能后,用户按压第一传感器和第二传感器中间位置201,分别读出四个 压力传感器的信号值为A1,A2,A3,A4; 102、按压第二传感器和第三传感器中间位置202得到B1,B2,B3,B4;

103、按压第三传感器和第四传感器中间位置203,等到C1,C2,C3,C4; 104、计算,获取各传感器的相对校准系数。 105、然后通过相对校准系数,可以精确获知用户按压了什么位置,以此进行校准。 3.如权利要求2所述的手机侧边压力传感器校准方法,其特征在于所述104步骤中,利用公式P1=R1*A1,其中P1为传感器1处的压力值,R1为传感器101的校准系数,A1为传感器101输出的信号量; 当按压两个传感器中间位置201时,传感器101与102感受到的压力值是相同的即: P1=P2R1*A1=R2*A2R2=R1*A1/A2 依此类推: 当按压两个传感器中间位置202时,P2=P3R2*B2=R3*B3R3=R2*B2/B3 当按压两个传感器中间位置203时,P3=P4R3*C3=R4*C4R4=P3*C3/C4 由于测定按压位置的识别只有两个通道间的压力比例相关,与压力大小无关。 因此我们可以设定R1为1.0,则: R1=1.0; R2=A1/A2; R3=(A1/A2)*(B2/B3); R4=(A1/A2)*(B2/B3)*(C3/C4)。 技术说明书 一种手机侧边压力传感器校准方法 技术领域

电阻应变式压力传感器设计说明

传感器与检测技术电阻应变式压力传感器的设计 学院:信息技术学院 指导老师:蔡杰 班级:B1106 :佳林 学号:0915110629

目录 一、设计任务分析 (2) 二、方案设计 (2) 2.1原理简述 (2) 2.2应变片检测原理 (3) 2.3弹性元件的选择及设计 (4) 2.4应变片的选择及设计 (5) 三、单元电路的设计 (6) 3.1电桥电路的设计 (6) 3.2放大电路的设计 (6) 3.3移相器的设计 (7) 3.4过零比较器的设计 (8) 3.5相敏检波电路的设计 (9) 3.6低通滤波器的设计 (9) 四、误差分析 (10) 五、心得体会 (10) 六、致 (11)

电阻应变式压力传感器的设计 一、设计任务分析 采用电阻应变片设计一种电阻应变式质量(压力)传感器,具体要求如下: 1.正确选取电阻应变片的型号、数量、粘贴方式并连接成交流电桥; 2.选取适当形式的弹性元件,完成其机械结构设计、材料选择和受力分析, 3.并根据测试极限围进行校核; 4.完成传感器的外观与装配设计; 5.完成应变电桥输出信号的后续电路(包括放大电路、相敏检波电路、低通 滤波电路)的设计和相关电路参数计算,并绘制传感器电路原理图; 二、方案设计 2.1原理简述 电阻应变式传感器为本设计的主要部件,传感器中的弹性元件感受物体的重 力并将其转化为应变片的电阻变化,再利用交流全桥测量原理得到一定大小的输 出电压,通过电路输出电压和标准重量的线性关系,建立具体的数学模型,在显 示表头中将电压(V)改为质量(kg)即可实现对物品质量的称重。 本设计所测质量围是0-10kg,同时也将后续处理电路的电压处理为与之对 应的0-10V。由于采用了交流电桥,所以后续电路包括放大电路,相敏检波电路, 移相电路,波形变换电路,低通滤波电路(显示电路本次未设计)。 原理框图如图一所示。 (质量)压力电阻应变片交流电桥5KHZ交流 放大器移相器数显表头 过零比较器 相敏检波 低通滤波

相关文档
最新文档