定积分的证明题

定积分的证明题
定积分的证明题

题目1证明题 容易

d X

证明 (x -t) f (t)dt = f (x) - f (a) dx J a

解答_

X

a (x-t)f (t)dt

X

= [(X —t)df(t)

X X

=(X

t)f(t)

a + [

f(t)dt

X

= (^-X) f (a) + [ f (t)dt

d X

^X a

(X -t)f(t)dt

--f(a) f(x)

f (x) - f (a)。

题目2证明题

容易

由积分中值定理,在[0,…]上存在点',使

4 Iim 4 Sin n XdX= Iim Sin n (

0) G 三[0,] n

》::0

n

4

4

Iim Sin n 4 J 0

Q 0 . sin :: 1 .Iim Sin n

=0

n _O

π

.Iim 4 Sin n XdX= 0。

—0 0

题目3证明题 一般

b 设函数 f (x)在[a,b ]内可导,且 f(a)=0, f(x)dx = 0 -a

证明:在[a,b ]内至少存在一点?使f 「)=0。 解答_ 由积分中值定理,在(a,b)存在一点'1,使

b [

f (x)dx = f (: 1)(b -a) = 0

f ( 1

) =0

在区间[a , 1]上,应用罗尔定理,可知存 在一点 二(a , ' 1)

(a,b)使f ( J=0b

题目4证明题 一般

设 f (x) = f (x +a),

na

a

证明:当n 为正整数时 0 f (x)dx = n .°f(x)dx

解答

利用积分中值定理证明 解答

π

:Ijm 4

Sin n

XdX 二 0 n 0 0

2

na

a

2a

na

证明:

f(x)dx= f(x)dx f(x)dx

f(x)dx =0

=0

^a

=( n

丄)a

f(x) = f (x a)

2 a

a a

a

a f(x)dxx =y a 0 f(y a)dy = 0 f(y)dy = O f(x)dx 3a

a

a

2a f (x)dxx = y 2a O f (y 2a)dy = 0 f(y a)dy

a a

=.0f(y)dy = 0f(x)dx

na

a

(n 仆 f (x)dx x =y (n - 1)a O f (y (n — 1)a)dy

a

=0f(y)dy

a

0f(x)dx

na a

.0 f(x)dx= n 0f(x)dx°

题目5证明题

一般

1 1

证明:X m (I-X)n dx X n (I-X)m dx o

解答_

证:令X =1 -t 贝 UdX = -d 且X =0 时,t =1 X =1 时,t =0

1

?

x m (1-x)n dx

=.1(1-t)m t(dt)

1

= 0t n

(1 - t)m dt

1

=J 0χn (1-x)m dx

题目6证明题 一般

设f (x)在[a,b ]上有定义,且对[a,b ]上任意两点x, y,

有 f (x) - f (y) _ X - y.则f (x)在[a,b ]上可积,且

1

解答

b

1

a

f(x)dx -(b-a)f(a)兰;(b-a)

< X -a(x _ a)

即 f (a) -(x -a) Ef(X)Ef (a) (x -a) 由定积分的不等性质,有

b

[[f (a) —(x —a)]dx

b a

f(x)dx

b

a [f(a) (X -a)]dx -

b

a f (x)dx -(

b - a) f (a)

”:(b-a)2 _ 2

b

几[

f (x)dx -(b -a) f (a)

题目7证明题

一般

设f (x)在[a,b ]上的连续,在(a,b)内可导,且f(a) = f (b) = 0. 、

b

2

证明:4 I L f (x)dx 兰 M (b —a),其中 M=

SUP f "(x)

I a

_ L-

1

(a,x)

2

(x,b)

= 1,2

I f 2

∣f(x)dx≤M I a 2

(x —a)dx =M (b —a)

b b

M 2

a b f (x)dx 乞 M a b (b-x)dx (b-a)

2

2

8

两式相加,有

f ∣f(x)dx 兰 M

(b —a)2。 a 4

题目8证明题 一般

设f (x)在[a,b ]上正值,连续,则在 (a,b)内至少存在一点 匚 b 1 b

使 a f(x)dx = f(x)dx f(x)dx

证明:?∕x E (a,b)因为 ?y =| f (x +&) - f (x) ≤ A *

.Iim L y =O

.f (x)在[a, b ]上连续,于是f (X)在[a, b ]上可积. 又由题设知If(X) — f (a)

(b-a)2 2

-1(b -a)2。 2

a : ?x :

b 解答_

证明:由假设并利用微分中值 定理,有

f (X) = f (X) -f (a) =(x -a)f (

1

f (x) = f (x) - f (b) = (x -b) f ( 2) 又由 M

=SUPf (X)故 f ( i ) EM. i a :X Ib 取绝对值,有f (X) _(x -a)M f (x) _(b -x)M

a -b

a -b

解答

X b

证:令F(X)= f(t)dt - f(t)dt

U a J X

由于X [a,b]时,f(x) 0

b

-F(a) —a f(t)dt :::0

b

F(b) f(t)dt 0

V a

由根的存在性定理,存在一点-(a,b)使

F( )=0

已 b

即[f(t)dt = %f(t)dt

b E b

又Q a f(t)dt = a f(x)dx . f (x)dx

巴 b

f(x)dx . f (x)dx

a ■

>

=2 f (x)dx

a

从而原式成立。

题目9证明题一般

πJI

证明:0 < 02 Sin n*xdx c J2sin n XdX。

解答_

证明:

已知函数Sin 连续?非负,且X0 [0二],使

2 2

π

Sin n41x°>0,由性质,有0 Sin nd1xdxn0

又已知函数Sin n X-Sin n* X = Sin n x(1 -Sin x)在[0,工]连续非负,

2

且X0 [0, 2 ],使Sin n X0 -sin n 1 x。= Sin n x°(1 -Sin x°) 0,由性质,有

解答

π

『(Sin n X-Sin n*

π

二0 £ I L2 Sin n* XdX C

j0

题目10证明题一般

1 1dx 求

证:-:::一

2 04

π

x)dx = 02sin n XdX -

π

2sin n XdX

π

2Sin n舟XdXA

π

-χ2X3 6

X (0,1)时,x 2 x 3 ...4 -χ2 -χ3 :: . 4 = 2 又χ3 0 .4 -X 2 -X 3 . 4- X

1 1 1

2

. 4 -χ2 χ3

. 4-X

1

1 1 dχ = 0

2 2 1

dχ _ 二 厂4> =6 1 1

dχ 二 。 2

Lx 2 +χ3

6

题目11证明题 一般

设f(x)在区间(a,b)上连续,且在(a,b)内任一闭 区间上积分为零,证明f(x)在(a,b)内恒等于零。 解答_

证明:设 x 0 ? (a,b),-X ? (a,b)。令

X

G(X) = x f(t)dt x

0 则由题设:?:」(x) =0 从而G (X)=O

而"(X) = f (x)

.f(x)≡0°

题目12证明题 一般 若函数f (X)在[0,1]上连续,

a 3

2 1 a 2

证明:0X f(x )dx

Xf (x)dx (a 0)。

解答_

2 1

证:令X =t ,则XdX dt ,且x=0时,t = 0

2

X= a 时,t = a 2

a

3

0X f (X )dx

a 2 1

=0

t f

(t) -dt

1

a 2

= 2 -0 tf

(t)dt _ 1

2 题目13证明题 一般

设函数f (x)和g(x)在[a,b ]上连续,

b

2 b 2

b 2

证明:[a f(x)g(x)dx ] < a f (X)dx a g (x)dx 。

解答

a 2

O

Xf(X)dx 。

考虑以t为参数的定积分

b

2

f[f(X) —tg(x)] dx

显然[f(x) -tg(x)]2 _0.并由题设知它在[a,b]上连续,

故有[& f (x) -tg(x)]2dx _ 0

2 b 2 b b 2

即t a g(X)dx—2t[ f(x)g(x)dx + [ f (x)dxK0

不等式左端是关于t的二次三项式,且对任意t, 此二次式均非负.所以其判别式.■: < 0

b b b

即[[f(χ)g(χ)dχ]2—[[ f2(x)dx][ [g2(χ)dχ]≤0

b 2 b 2 b 2

-[a f(x)g(x)dx] <[ a f (x)dx][ a g (x)dx]o

题目14证明题一般

设f (x)在[0,1]上连续,

ππ

证明:02 f(sin2)cos:d = 04 f(sin2 )(cos「亠Sin :)d : 解答_

π

左式=『f (sin 2?)cos? d?

ππ

=Q4 f (Si n2)cos :d「亠∣2?f(si n2 )cos:d :

4

在第二个积分中,令t,则2即房-2t, d即=-dt

2

π

_2 f (Sin 2 ) cos :d :

4

0二

f (si n(二-2t))cos( t)d(-t)

4 2

π

=∫04 f (sin2t)sintdt

π

=∫04 f(sin2c P)sin c P d c P

ππ

.左式=o4 f (Sin2 Jcos V 亠14 f (sin2 Jsin :d :

π

二O4 f (sin2 J(CoS i Sin )d :

=右式。

题目15证明题一般

设 f (x)在[ a, b]上可导,且 f (x) EM, f(a) =0,

b MC

证明:a f (x)dx ≤M(b—a)2o

解答证明:由假设可知广X (a,b)f(x)在[a,x]上满足

微分中值定理,则

f (X) = f(x) 一f (a)

f ( )(x-a) (a,x)

又.f (x)二M, -χ= (a,b)

.f(x)^M(x-a)

由定积分的比较定理,有

定积分测试题及答案

定积分测试题及答案 班级: 姓名: 分数: 一、选择题:(每小题5分) 1.0=?( ) A.0 B.1 C.π D 4π 2(2010·山东日照模考)a =??02x d x ,b =??02e x d x ,c =??02sin x d x ,则a 、b 、c 的大小关系是( ) A .a

8.函数F (x )=??0 x t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323 C .有最小值-323,无最大值 D .既无最大值也无最小值 9.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=??1 x 1t d t ,若f (x )

(完整版)定积分的证明题

题目1证明题 容易 。证明 )()()()(a f x f dt t f t x dx d x a -='-? 解答_ 。 )()()()()()()()()()()()() ()()()( a f x f x f a f dt t f t x dx d dt t f a f x a dt t f a x t f t x t df t x dt t f t x x a x a x a x a x a -=+-='-=∴ +-=+-=-='-????? 题目2证明题 容易 。 利用积分中值定理证明 0sin lim :40 0=?→dx x n n π 解答_ 。 使 上存在点在由积分中值定理 0sin lim 0 sin lim 1sin 0sin lim 4 ]4 [0, ( )04( sin lim sin lim ,]4 ,0[, 40 00 40 =∴=∴<

定积分的证明题44题word文档良心出品

题目1证明题 容易 d x 证明丄 f (X _t) f Tt)dt = f(X)_ f (a)。 dx 'a 题目2证明题 容易 题目3证明题 一般 b 设函数 f(x)在[a,b ]内可导,且 f(a)=0,[ f(x)dx = 0 证明:在[a,b ]内至少存在一点E 使f(E )=0。 题目4证明题 一般 设f(X)= f(X +a). na 证明:当n 为正整数时 L f(x)dx= nj0f(x)dx 。 利用积分中值定理证明 :lim f 4 sin n xdx = 0。 」0

1 1 证明:x m (1-x)n dx = Lx n (1 —x)m dx 。 题目6证明题 一般 设f (x)在[a,b ]上有定义,且对[a,b ]上任意两点x, y, x — y |.则f (x)在[a,b ]上可积,且 1 2 题目7证明题 一般 设f(X)在[a,b ]上的连续,在(a,b)内可导,且f(a) = f (b) =0. 证明:4a|f(x)|dx

(a,b)内至少存在一点匕,设f (x)在[a,b]上正值,连续,则在 £ b 1 b 使J a f (x)dx = J E f (x)dx = —J a f (x)dx。 ■* 2 题目9证明题一般 丑丑 证明:0<FsinXxdxc『sin n xdx。 题目10证明题一般 1/ dx 兀 求证:一<〔<-。 20 2,3 6 2V4 —X +x 6

题目11证明题一般 设f(x)在区间(a,b)上连续,且在(a,b)内任一闭区间上积分为零,证明f(x)在(a,b)内恒等于零。 题目12证明题一般 若函数f(x)在[0,1]上连续, a 3 2 1 a2 (a A O)。 证明:J0x f(x )dx=5 J o xf (x)dx 题目13证明题一般 设函数f(x)和g(x)在[a,b]上连续, b 2 b 2 b 2 证明:[f f(x)g(x)dx]< f f (x)dx 订g (x)dx。 a a a 题目14证明题一般

定积分及其应用练习 带详细答案

定积分及其应用 题一 题面: 求由曲线2 (2)y x =+与x 轴,直线4y x =-所围成的平面图形的面积. 答案:323 . 变式训练一 题面: 函数f (x )=???? ? x +2-2≤x <0, 2cos x ? ? ???0≤x ≤π2的图象与x 轴所围成的封闭图形的面积 为( ) B .2 | C .3 D .4 答案:D. 详解: 画出分段函数的图象,如图所示,则该图象与x 轴所围成的封闭图形的面积为12×2×2+∫π 202cos x d x =2+2sin x |π20=4. 变式训练二 题面: 由直线y =2x 及曲线y =3-x 2围成的封闭图形的面积为( ) ¥ A .2 3 B .9-23 答案: 详解:

注意到直线y =2x 与曲线y =3-x 2的交点A ,B 的坐标分别是(-3,-6),(1,2),因此结合图形可知,由直线y =2x 与曲线y =3-x 2围成的封闭图形的 面积为??-3 1(3-x 2-2x )d x =? ???? 3x -13x 3-x 2??? 1 -3=3×1-13×13-12- ? ?? 3×-3-1 3×-3 3 ]- -3 2 =32 3,选D. 题二 ^ 题面: 如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ). A .1 B .1 C .1 D .17 变式训练一 题面: 函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.

定积分练习题

定积分 2.定积分的定义 函数f (x )在区间[a ,b ]上的定积分,记作____________,其中f (x )称为________________,x 称为________________,f (x )d x 称为__________, [a ,b ]为________________,a 为____________,b 为______________,“?”称为积分号. 3.?b a f (x )d x 的实质 (1)当f (x )在区间[a ,b ]上大于0时,?b a f (x )d x 表示______________________________, 这也是定积分的几何意义. (2)当f (x )在区间[a ,b ]上小于0时,?b a f (x )d x 表示________________________________. (3)当f (x )在区间[a ,b ]上有正有负时,?b a f (x )d x 表示介于x =a ,x =b (a ≠b )之间x 轴上、下相应的曲边梯形的面积的代数和. 4.定积分的运算性质 (1)?b a kf (x )d x =____________ (k 为常数). (2)?b a [f (x )±g (x )]d x =______________________. (3)?b a f (x )d x =__________________________. 5.微积分基本定理 一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么?b a f (x )d x =F (b )-F (a ).这个 结论叫做微积分基本定理,又叫做牛顿——莱布尼茨公式.可以把F (b )-F (a )记为F (x )|b a .即?b a f (x )d x =F (x )|b a =F (b )-F (a ). 6.利用牛顿——莱布尼茨公式求定积分的关键是____________________,可将基本初等函数的导数公式逆向使用. 要点梳理 2. ?b a f (x )d x 被积函数 积分变量 被积式 积分区间 积分下限 积分上限 3.(1)由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积 (2)由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积的相反数 4.(1)k ?b a f (x )d x (2)?b a f (x )d x ±?b a g (x )d x (3)?c a f (x )d x +?b c f (x )d x (a

定积分及其应用测试题10页

第五章 定积分及其应用 一、填空题 1.由[],a b 上连续曲线()y f x =,直线(),x a x b a b ==<和x 轴围成的图形的面积为 4.利用定积分的几何意义求10 d x x =? 5.积分1 213ln d x x x ?值的符号是 6.定积分()4 52 sin sin d x x x π -? 值的符号是 8.积分413 I ln d x x =?与4 223 I ln d x x =?的大小关系为 9.区间[][],,c d a b ?,且()0f x >,则()1I d b a f x x =?与()2I d d c f x x =?的大小关 系为 10.()f x 在[],a b 上连续,则()d b a f x x =? ()d a b f x x ? 11.若在区间[],a b 上,()0f x ≥,则()d b a f x x ? 0 12.定积分中值定理中设()f x 在[],a b 上连续,则至少存在一点(),a b ξ∈,使得()f ξ= 13.设()2 0,0x F x t x =>?,则()F x '= 15.设()() ()3 3sin d ,x F x t t x ??=? 可导,则()F x '=

16 .0 lim x t x →=? 18.设()()0 1d x f x t t t =-?,则()f x 的单调减少的区间是 19.函数()2 3d 1 x t f x t t t =-+?在区间[]0,1上的最大值是 ,最小值是 20.设()3 131 sin d x f x t t +=? ,则()f x '= 21.设()F x 是连续函数()f x 在区间[],a b 上的任意一个原函数,则 ()d b a f x x =? 22.1 23d x x x ?=? 23.sin 22 cos d x xe x π π-=? 24.设()f x '在[]1,3上连续,则() () 3 2 1d 1f x x f x '=+? 25.2 x π π=? 26.20cos d x x π =? 27.21 01 d 1 x x e x e -=-? 28 .20sin d x x π =? 29.2 1 e =? 30.235 4 5 sin d 1x x x x -=+? 31.设()f x 在[],a a -上连续,则()()sin d a a x f x f x x -+-=????? 32.设()21,0 ,0 x x f x x x +

定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ))(2 122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、 3 23xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 23xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π ? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==? 若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、1 2

定积分的应用练习题

定积分的应用练习题 Final revision by standardization team on December 10, 2020.

题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤-上的一段弧所围成的图形面积 为 . 6.椭圆)0,0(1sin 1 cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( )

探讨定积分不等式的证明方法

探讨定积分不等式的证明方法 摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效证明方法。 关键词:定积分 不等式 证法 不等式的证明在高等数学的学习中很常见,但关于定积分不等式的证明却一直是一个难点。要证明定积分不等式,首先要看被积函数,其性质确定证明方法。本文根据被积函数的连续性、单调性、可导性等分别给出几种证法。 1.运用定积分中值定理证明 定积分中值定理是将定积分转化为连续函数在该区间上某点的函数值与该区间长度的乘积,即将定积分转化为函数来证明不等式。 例1:设)(x f 在[0,1]上连续且单调不增,证明a ?∈[0,1]有? a dx x f 0 )(≥? 1 )(dx x f a . 证明:由原不等式变形得 ? a dx x f 0 )(≥??+1 ))()(dx x f dx x f a a (, 即是要证:? -a dx x f a 0 )() 1(≥?1 )(dx x f a , 对左式,)(x f 在[0,1]上连续,

故 由定积分中值定理知: [] a ,01∈?ξ使 )()1()()110 ξf a a dx x f a a -=-?(, 同理对右式:[]12,a ∈ ?ξ使)()1()(2 1 ξ f a a dx x f a -=?, 显然,ξ1<ξ2又f(x)在[0,1]上单调不增, ∴f (ξ1)≥f (ξ2) 故原不等式 ? a dx x f 0 )(≥?1 )(dx x f a 成立. 定积分中值定理的运用直观易懂,它的条件也极其简单,易于掌握。 2.运用辅助函数证明 构造辅助函数F(x)证明不等式,首先是做函数将要证结论中的积分上限(下限)换成x ,移项使不等式的一边为零,另一边的表达式即是辅助函数。然后再求F ’(x),并运用单调性及区间端点值特性证明不等式。 例2:设)(x f 在[a ,b]上连续,且)(x f >0. 试证:2b )() (1 )(a b dx x f dx x f a b a -≥?? 证明:构造辅助函数2)() (1 )()(a x dt t f dt t f x F x a x a --= ? ? (将b 换成x ), 则??--+=x a x a a x dt t f x f dt t f x f x F )(2)() (1)(1)()('

定积分的证明题

定积分的证明题https://www.360docs.net/doc/392100870.html,work Information Technology Company.2020YEAR

题目1证明题 容易 。证明 )()()()(a f x f dt t f t x dx d x a -='-? 解答_ 。 )()()()()()()()()()()()() ()()()( a f x f x f a f dt t f t x dx d dt t f a f x a dt t f a x t f t x t df t x dt t f t x x a x a x a x a x a -=+-='-=∴ +-=+-=-='-????? 题目2证明题 容易 。 利用积分中值定理证明 0sin lim :400=?→dx x n n π 解答_ 。 使 上存在点在由积分中值定理 0sin lim 0 sin lim 1sin 0sin lim 4 ]4 [0, ( )04( sin lim sin lim ,]4 ,0[, 40 00 40 =∴=∴<

定积分练习题1.doc

定积分练习题 一.选择题、填空题 1.将和式的极限 lim 1p 2 p 3p ....... n p 0) 表示成定积分 n P 1 ( p ( ) n 1 1 1 p dx 1 1 p dx 1 x p dx A .dx B . x C .() D . () 0 x 0 x n 2.将和式 lim ( 1 1 ......... 1 ) 表示为定积分 . n n 1 n 2 2n 3.下列等于 1 的积分是 ( ) A . 1 xdx B . 1 C . 1 1 1 ( x 1)dx 1dx D . dx 2 1 2 4 | dx = 4. | x ( ) A . 21 B . 22 23 25 3 3 C . 3 D . 3 5.曲线 y cos x, x [0, 3 ] 与坐标周围成的面积 ( ) 2 5 A .4 B .2 D . 3 C . 2 1 e x )dx = 6. (e x ( ) A . e 1 B .2e 2 D . e 1 e C . e e 7.若 m 1 e x dx , n e 1 dx ,则 m 与 n 的大小关系是( ) 1 x A . m n B . m n C . m n D .无法确定 8. 9 y x 2 1 和 x 轴围成图形的面积等于 S .给出下列结果: .由曲线 1 1)dx ; ② 1 1 ①( x 2 (1 x 2 )dx ; ③ 2 ( x 2 1)dx ; ④ 2 (1 x 2 )dx . 1 1 1 则 S 等于( ) A . ①③ B . ③④ C . ②③ D . ②④ 10. y x cost sin t)dt ,则 y 的最大值是( (sin t ) A . 1 B . 2 C . 7 D . 0 2 17 f ( x) 11. 若 f (x) 是一次函数,且 1 1 2 dx 的值是 f ( x) dx 5 , xf ( x)dx 6 ,那么 x 1 . 15.设 f (x ) sin x 3 x ,则 f (x) cos2 xdx ( ) 其余

定积分的应用练习题,DOC

欢迎阅读 题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤- 上的一段弧所围成的图形面积为 . 6.椭圆)0,0(1sin 1cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( ) A . 2 a a e e -+ B . 2a a e e -- C . 12++-a a e e D .12-+-a a e e 4. 由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

最新定积分的简单应用测试题

一、选择题 1. 如图所示,阴影部分的面积为() 2. 如图所示,阴影部分的面积是() 面积(如图)是( A. 2(x2—1)dx '0 B . | 2(x2—1)dx| ■ 0 C. 2|x2 —1|dx D. '(x2—1)dx + 2(x2—1)dx J c J ▲ 0 1 4.设f(x)在[a, b]上连续,则曲线f(x)与直线x= a, x= b, y= 0 围成图形的面积为() A. b f(x)dx B. | b f(x)dx| 'a ' a 精品文档 A. b f(x)dx 'a C. b[f(x) —g(x)]dx 'a B. b g(x)dx 'a D. b[g(x)—f(x)]dx -a C.32 肿5 D.35 3.由曲线y= x2—1、直线x= 0、x= 2和x轴围成的封闭图形的

C. b |f(x)|dx 'a D .以上都不对 5. 16 曲线y =1—w 与x 轴所围图形的面积是() D.5 1 2 比较积分值0 e x dx 和 1 2 1 — U x dx 大于 0e x dx 2 1 C . U x dx 等于 0 7.由曲线y = x 2, y = x 3围成的封闭图形面积为( ) B.1 D. 12 6. 1 x >e dx fe"dx 的大小() 1 2 , 1 B . o e xdx 小于 ° 1 2 1 - D . o e x dx 和°e Xjx 不能比较 e dx A-12 Cl 8.求 1 /dx 的解( ) C . -1 9.求 12 x 2dx 的解( ) A.* C .- 3 10 .过原点的直线I 与抛物线y =x 2— 2ax (a>0)所围成的图形面 积 为9a 3,则直线I 的方程为( ) A . y = iax B . y = ax C . y = — ax D . y = — 5ax

定积分的证明题

题目1证明题 容易 d X 证明 (x -t) f (t)dt = f (x) - f (a) dx J a 解答_ X a (x-t)f (t)dt X = [(X —t)df(t) X X =(X 一 t)f(t) a + [ f(t)dt X = (^-X) f (a) + [ f (t)dt d X ^X a (X -t)f(t)dt --f(a) f(x) f (x) - f (a)。 题目2证明题 容易 由积分中值定理,在[0,…]上存在点',使 4 Iim 4 Sin n XdX= Iim Sin n ( 0) G 三[0,] n 》::0 n 匚 4 4 Iim Sin n 4 J 0 Q 0 . sin :: 1 .Iim Sin n =0 n _O π .Iim 4 Sin n XdX= 0。 —0 0 题目3证明题 一般 b 设函数 f (x)在[a,b ]内可导,且 f(a)=0, f(x)dx = 0 -a 证明:在[a,b ]内至少存在一点?使f 「)=0。 解答_ 由积分中值定理,在(a,b)存在一点'1,使 b [ f (x)dx = f (: 1)(b -a) = 0 f ( 1 ) =0 在区间[a , 1]上,应用罗尔定理,可知存 在一点 二(a , ' 1) (a,b)使f ( J=0b 题目4证明题 一般 设 f (x) = f (x +a), na a 证明:当n 为正整数时 0 f (x)dx = n .°f(x)dx 解答 利用积分中值定理证明 解答 π :Ijm 4 Sin n XdX 二 0 n 0 0

(完整版)定积分典型例题精讲

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ) )(2122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、 3 2 3xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 2 3xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==?若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、 1 2

2076字定积分中的几何证明方法与证明

定积分中的几何直观方法与不等式的证明 摘要:一些高指数的不等式,如果借助算术—几何均值不等式或者通过分解因式再进行放缩的话,一般都要分01p <<与1p >进行讨论证明,往往证明起来很麻烦,若借助数学分析中的定积分来进行证明的话,会大大简化其证明工序,也很简单,灵活的选取合适的初等函数进行定积分,再求和会得到意想不到的效果。 关键词:高指数;不等式;算术—几何均值;定积分;数列 1 引言 文[1]中给出了一个不等式: 11 2(11)21n i n n i =+-<<-∑ (1n >) (1) 田寅生对(1)进行了指数推广,其结果是 命题1【2】 设p R ∈且0p >,1p ≠,1n >,则有 1111111[(1)1]1111n p p p k n n p k p p --=+-<<-+---∑ (2) 文[2]的证明方法是借助于算术—几何均值不等式,分01p <<与1p >进行讨论证明,读者不难看出,不仅过程繁琐,而且对其证明思路难以把握。文[3] 中利用微分中值定理给出了它的另一种证法。 文[4]借助定积分的方法,给出了一种很自然的证明【4】: 命题1的证明【4】 当0p >,1k ≥时,对于1k x k <<+,有(1)p p p k x k <<+,即 111 (1)p p p k x k <<+,

两边取积分,得 1 111 11(1) k k k p p p k k k d x d x d x k x k +++<<+? ??, (3) 即得 11111[(1)](1)1p p p p k k k p k --<+-<+- (4) 对(3)两边分别求和,即得 111 1111[(1)1]1111n p p p k n n p k p p --=+-<<-+---∑ (5) 命题1得证。 该证明方法简单自然,几何意义直观。不等式(3)的几何意义是:如图1,以1 p y x = 为边的曲边梯形的面积介于两个矩形的面积之间,根据定积分的几何意义,即知上面不等式中三部分分别代表了它们的面积。 (图1) 在文[5]中,又把(1)式推广为: 命题2【5】 已知{}n a 为等差数列且10a >,公差0d >,则 1111 1221 ()()n n i n i a a a a a d d a +=-<<-+∑ (6) 其证明方法与文[1]本质上是一样的。本文将借鉴[4]中方法,即利用定积分的几何直观方法,把有关结果作进一步的推广。

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

定积分的证明题44题

题目1证明题 容易 。证明 )()()()(a f x f dt t f t x dx d x a -='-? 题目2证明题 容易 。利用积分中值定理证明 0sin lim :400=?→dx x n n π 题目3证明题 一般 。使内至少存在一点证明:在,内可导,且在设函数0) (f ],[0)(0)(],[)(='==?ξξb a dx x f a f b a x f b a 题目4证明题 一般 。为正整数时证明:当, 设??=+=a na dx x f n dx x f n a x f x f 0 0 )()( )()(

题目5证明题 一般 。证明: )1()1(1 0 1 0 ??-=-dx x x dx x x m n n m 题目6证明题 一般 。且 上可积在则有上任意两点且对上有定义在设2)(21)()()(,],[)( .)()(, ,],[,],[)(a b a f a b dx x f b a x f y x y f x f y x b a b a x f b a -≤---≤-? 题目7证明题 一般 。其中证明且内可导在上的连续在设 )(sup ,)()(4 :. 0)()(,),(,],[)( 2x f M a b M dx x f b f a f b a b a x f b x a b a '=-≤==<

题目8证明题 一般 。使, 内至少存在一点上正值,连续,则在在设???==b b dx x f dx x f dx x f b a b a x f a a )(21)()( ),( ],[ )(ξξξ 题目9证明题 一般 。证明: sin sin 0 202 01??<<+ππ xdx xdx n n 题目10证明题 一般 。求证:?<+-<1032 6421πx x dx

相关文档
最新文档