高考数学大一轮复习 空间直角坐标系精品试题 文(含模

高考数学大一轮复习 空间直角坐标系精品试题 文(含模
高考数学大一轮复习 空间直角坐标系精品试题 文(含模

精品题库试题

文数

1.(北京市海淀区2014届高三年级第一学期期末练习)如图所示,正方体

的棱长为,,是线段上的动点,过点做平面的垂线交平面于点,则点到点距离的最小值为

A.B. C.D.

[解析] 1.平面,所以平面平面,在上运动,建立如图所示的空间直角坐标系,则,设,,即

,所以,,所以当时,

2.(2013课标Ⅱ,9,5分) 一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0, 1), (1,1, 0), (0,1, 1), (0,0, 0), 画该四面体三视图中的正视图时, 以zOx平面为投影面, 则得到的正视图可以为( )

[解析] 2.在空间直角坐标系中, 易知O(0,0, 0), A(1,0, 1), B(1,1, 0), C(0,1, 1) 恰为单位正方体的四个顶点. 因此该几何体以zOx平面为投影面所得的正视图为A.

3. (2011全国, 20, 12分)如图, 四棱锥S-ABCD中, AB∥CD, BC⊥CD, 侧面SAB为等边三角形. AB=BC=2, CD=SD=1.

(Ⅰ)证明:SD⊥平面SAB;

(Ⅱ)求AB与平面SBC所成的角的大小.

3.

4.(2010湖北, 18, 12分)如图, 在四面体ABOC中, OC⊥OA, OC⊥OB, ∠AOB=120°, 且OA=OB=OC=1.

(Ⅰ)设P为AC的中点, Q在AB上且AB=3AQ.

证明:PQ⊥OA;

(Ⅱ)求二面角O-AC-B的平面角的余弦值.

4.

5. (2010江西, 20, 12分)如图, △BCD与△MCD都是边长为2的正三角形, 平面MCD⊥平面BCD, AB⊥平面BCD, AB=2.

(Ⅰ)求直线AM与平面BCD所成角的大小;

(Ⅱ)求平面ACM与平面BCD所成二面角的正弦值.

5.

6.(2010江苏, 16, 14分)如图, 在四棱锥P-ABCD中, PD⊥平面ABCD, PD=DC=BC=1, AB=2, AB∥DC, ∠BCD=90°.

(Ⅰ)求证:PC⊥BC;

(Ⅱ)求点A到平面PBC的距离.

6.

7. (2010全国Ⅱ, 19, 12分)如图, 直三棱柱ABC-A1B1C1中, AC=BC, AA1=AB, D为BB1的中点, E为AB1上的一点, AE=3EB1.

(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;

(Ⅱ)设异面直线AB1与CD的夹角为45°, 求二面角A1-AC1-B1的大小.

7.

8.(2013江苏,22,10分) 如图, 在直三棱柱A1B1C1-ABC中, AB⊥AC, AB=AC=2, A1A=4, 点D 是BC的中点.

(1) 求异面直线A1B与C1D所成角的余弦值;

(2) 求平面ADC1与平面ABA1所成二面角的正弦值.

8.

答案和解析

文数

[答案] 1.B

[解析] 1.平面,所以平面平面,在上运动,建立如图所示的空间直角坐标系,则,设,,即

,所以,,所以当时,

[答案] 2.A

[解析] 2.在空间直角坐标系中, 易知O(0,0, 0), A(1,0, 1), B(1,1, 0), C(0,1, 1) 恰为单位正方体的四个顶点. 因此该几何体以zOx平面为投影面所得的正视图为A.

[答案] 3.解法一:(Ⅰ)取AB中点E, 连结DE, 则四边形BCDE为矩形, DE=CB=2.

连结SE, 则SE⊥AB, SE=.

又SD=1, 故ED2=SE2+SD2,

所以∠DSE为直角. (3分)

由AB⊥DE, AB⊥SE, DE∩SE=E, 得AB⊥平面SDE, 所以AB⊥SD,

SD与两条相交直线AB、SE都垂直,

所以SD⊥平面SAB. (6分)

(Ⅱ)由AB⊥平面SDE知, 平面ABCD⊥平面SDE.

作SF⊥DE, 垂足为F, 则SF⊥平面ABCD, SF==.

作FG⊥BC, 垂足为G, 则FG=DC=1.

连结SG, 则SG⊥BC. 又BC⊥FG, SG∩FG=G, 故BC⊥平面SFG, 平面SBC⊥平面SFG. (9分) 作FH⊥SG, H为垂足, 则FH⊥平面SBC.

FH==, 即F到平面SBC的距离为.

由于ED∥BC, 所以ED∥平面SBC, E到平面SBC的距离d也为.

设AB与平面SBC所成的角为α, 则sin α==,

α=arcsin. (12分)

解法二:以C为坐标原点, 射线CD为x轴正半轴, 建立如图所示的空间直角坐标系C-xyz. 设D(1, 0, 0), 则A(2, 2, 0)、B(0, 2, 0).

又设S(x, y, z), 则x>0, y>0, z>0.

(Ⅰ)=(x-2, y-2, z), =(x, y-2, z), =(x-1, y, z),

由||=||得

=, 故x=1.

由||=1得y2+z2=1,

又由||=2得x2+(y-2)2+z2=4,

即y2+z2-4y+1=0, 故y=, z=. (3分)

于是S,

=,

==·=0, ·=0.

故DS⊥AS, DS⊥BS, 又AS∩BS=S, 所以SD⊥平面SAB. (6分)

(Ⅱ)设平面SBC的法向量a=(m, n, p),

则a⊥, a⊥, a·=0, a·=0.

又==(0, 2, 0),

故(9分)

取p=2得a=(-, 0, 2). 又=(-2, 0, 0), cos<, a>==.

故AB与平面SBC所成的角为arcsin. (12分)

3.

[答案] 4.解法一:(Ⅰ)在平面OAB内作ON⊥OA交AB于N, 连结CN. 在△AOB中, ∵∠AOB=120°且OA=OB,

∴∠OAB=∠OBA=30°.

在Rt△AON中, ∵∠OAN=30°, ∴ON=AN.

在△ONB中, ∵∠NOB=120°-90°=30°=∠OBN,

∴NB=ON=AN.

又AB=3AQ, ∴Q为AN的中点.

在△CAN中, ∵P, Q分别为AC, AN的中点,

∴PQ∥CN.

由OA⊥OC, OA⊥ON知:OA⊥平面CON.

又NC?平面CON, ∴OA⊥CN.

由PQ∥C N, 知OA⊥PQ.

(Ⅱ)连结PN, PO.

由OC⊥OA, OC⊥OB知:OC⊥平面OAB.

又ON?平面OAB, ∴OC⊥ON.

又由ON⊥OA知:ON⊥平面AOC.

∴OP是NP在平面AOC内的射影.

在等腰Rt△COA中, P为AC的中点,

∴AC⊥OP.

根据三垂线定理, 知:AC⊥NP.

∴∠OPN为二面角O-AC-B的平面角.

在等腰Rt△COA中, OC=OA=1, ∴OP=.

在Rt△AON中, ON=OAtan 30°=,

∴在Rt△PON中, PN==,

∴cos∠OPN===.

解法二:(Ⅰ)取O为坐标原点, 以OA, OC所在的直线为x轴, z轴, 建立空间直角坐标系O-xyz(如图所示).

则A(1, 0, 0), C(0, 0, 1), B.

∵P为AC的中点,

∴P.

新课标高考数学模拟试题文科数学(含答案)

新课标高考模拟试题 数学文科 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分。考试时间120分钟。 参考公式: 样本数据n x x x ,,21的标准差??锥体体积公式 ])()()[(122221x x x x x x n S n -++-+-= Sh V 3 1= 其中x 为样本平均数 ??其中S 为底面面积,h 为高 柱体体积公式?? 球的表面积、体积公式 Sh V =?? 323 4 ,4R V R S ππ== 其中S为底面面积,h 为高 ?其中R 为球的半径 第Ⅰ卷(选择题 共60分) 一、选择题 1.已知集合2 {|1},{|20}A x x B x x x =≤=-<,则A B =?( ) A .(0,1) B. C.(]0,1?D .[)1,1- 2.若(1,1),(1,1),(2,4)a b c ==-=-,则c 等于 ( ) A.-a+3b B.a-3b ?C .3a-b D .-3a+b 3.已知四棱锥P —ABC D的三视图如右图所示,则四棱锥P—ABCD 的体积为( ) A. 13 ?B . 23 ?C .3 4 ?D .38 4.已知函数()sin()(0,0,||)2 f x A x A π ω?ω?=+>><的部分图象如图所示,则()f x 的 解析式是( ) A.()sin(3)()3f x x x R π =+ ∈ B .()sin(2)()6 f x x x R π =+∈ ?C.()sin()()3f x x x R π =+ ∈?D.()sin(2)()3 f x x x R π =+∈ 5.阅读下列程序,输出结果为2的是( )

最新空间直角坐标系专题学案(含答案解析)

第九讲 空间直角坐标系 时间: 年 月 日 刘老师 学生签名: 一、 兴趣导入 二、 学前测试 要点考向1:利用空间向量证明空间位置关系 考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。 2.题型灵活多样,难度为中档题,且常考常新。 考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。 2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。 例1:如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =, 90BFC ∠=?,BF FC =,H 为BC 的中点。 (1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求二面角B DE C --的大小。 【命题立意】本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 【思路点拨】可以采用综合法证明,亦可采用向量法证明。 【规范解答】 E F B C D H G X Y Z

,,//,,,,,,,. ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC AB BC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥Q Q I I 四边形为正方形,又且,平面又为中点,且平面 H HB GH HF u u u r u u u r u u u r 如图,以为坐标原点,分别以、、的方向为x 轴、y 轴、z 轴的正方向建立坐标系, 1,(1,2,0),(1,0,0),(1,0,0),(1,2,0),(0,1,1),(0,0,1).BH A B C D E F =-----令则 (1) (0,0,1), (0,0,1),////HF HF GE HF HF ∴==∴??∴u u r u u u r u u r u u u r Q 设AC 与BD 的交点为G ,连接GE 、GH,则G (0,-1,0),GE 又GE 平面EDB,平面EDB,平面EDB (2) (2,2,0),(0,0,1),0,. AC AC AC AC AC =-=∴=∴⊥⊥∴⊥u u u r u u r u u u r u u r Q g I GE GE GE 又BD,且GE BD=G ,平面EBD. (3) 1111111(1,,),(1,1,1),(2,2,0). 010,10,220011,0y z BE BD BE y z y z y BD ==--=--?=--+=??=-=??--==? ??∴=-u u r u u u r u u u r Q u u u r u u r g u u u r u u r g u u r 1111设平面BDE 的法向量为n n 由即,得,n n (,) 2222222(1,,),(0,2,0),(1,1,1). 00,01,10010,-1y z CD CE CD y y z y z CE ==-=-?==??==-??-+==? ??∴=u u r u u u r u u u r Q u u u r u u r g u u u r u u r g u u r 2222设平面CDE 的法向量为n n 由即,得,n n (,) 121212121 cos ,,2||||,60,n n n n n n n n ∴<>===∴<>=o o u r u u r u r u u r g u r u u r u r u u r 即二面角B-DE-C 为60。 【方法技巧】1、证明线面平行通常转化为证明直线与平面内的一条直线平行; 2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直; 3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。 4、以上立体几何中的常见问题,也可以采用向量法建立空间直角坐标系,转化为向量问

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

高考数学模拟试题

高考数学模拟试题 (第一卷) 一、选择题:(每小题5分,满分60分) 1、已知集合A={x|x 2+2ax+1=0}的真子集只有一个,则a 值的集合是 A .(﹣1,1); B .(﹣∞,﹣1)∪[1,+∞]; C .{﹣1,1}; D .{0} 2、若函数y=f(x)的反函数y=f -1(x)满足f -1(3)=0,则函数y=f(x+1)的图象必过点: A .(0,3); B .(-1,3); C .(3,-1); D .(1,3) 3、已知复数z 1,z 2分别满足| z 1+i|=2,|z 2-3-3i|=3则| z 1-z 2|的最大值为: A .5; B .10; C .5+13; D .13 4、数列 ,4 3211,3211,211++++++ ……的前n 项和为: A .12+n n ; B .1+n n ; C .222++n n ; D .2+n n ; 5、极坐标方程ρsin θ=sin2θ表示的曲线是: A .圆; B .直线; C .两线直线 D .一条直线和一个圆。 6、已知一个复数的立方恰好等于它的共轭复数,则这样的复数共有: A .3个; B .4个; C .5个; D .6个。 7、如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 是异面直 线AC ,A 1D 的公垂线,则EF 和ED 1的关系是: A . 异面; B .平行; C .垂直; D .相交。 8、设(2-X)5=a 0+a 1x+a 2x+…+a 5x 5, 则a 1+a 3+a 5的值为: A .-120; B .-121; C .-122; D .-243。 9、要从一块斜边长为定值a 的直角三角形纸片剪出一块圆形纸片,圆形纸片的最大面积为: A .2 πa 2; B .24223a π-; C .2πa 2; D .2)223(a π- 10、过点(1,4)的直线在x,y 轴上的截距分别为a 和b(a,b ∈R +),则a+b 的最小值是: A .9; B .8; C .7; D .6; 11、三人互相传球,由甲开始发球并作为第一次传球。经过5次传球后,球仍回到甲手中,则不同的传球方式共有: A .6种; B .8种; C .10种; D .16种。 12、定义在R 上的偶函数f(x)满足f(x+2)=f(x -2),若f(x)在[﹣2,0]上递增,则 A .f(1)>f(5.5) ; B .f(1)

空间直角坐标系

4.3 空间直角坐标系 重点难点 教学重点:在空间直角坐标系中确定点的坐标. 教学难点:通过建立适当的直角坐标系确定空间点的坐标,以及相关应用. 新知探究: ①在初中,我们学过数轴是规定了原点、正方向和单位长度的直线.决定数轴的因素有原点、正方向和单位长度.这是数轴的三要素.数轴上的点可用与这个点对应的实数x来表示. ②在初中,我们学过平面直角坐标系,平面直角坐标系是以一点为原点O,过原点O分别作两条互相垂直的数轴Ox和Oy,xOy称平面直角坐标系,平面直角坐标系具有以下特征:两条数轴:①互相垂直;②原点重合;③通常取向右、向上为正方向;④单位长度一般取相同的.平面直角坐标系上的点用它对应的横、纵坐标表示,括号里横坐标写在纵坐标的前面,它们是一对有序实数(x,y). ③在空间,我们也可以类比平面直角坐标系建立一个坐标系,即空间直角坐标系,空间中的任意一点也可用对应的有序实数组表示出来. ④观察图2,OABC—D′A′B′C′是单位正方体,我们类比平面直角坐标系的建立来建立一个坐标系即空间直角坐标系,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长度,建立三条数轴Ox,Oy,Oz称为x轴、y轴和z轴,这时我们说建立了一个空间直角坐标系O—xyz,其中O叫坐标原点,x轴、y轴和z轴叫坐标轴.如果我们把通过每两个坐标轴的平面叫做坐标平面,我们又得到三个坐标平面xOy平面,yOz平面,zOx 平面. 由此我们知道,确定空间直角坐标系必须有三个要素,即原点、坐标轴方向、单位长. 图1 图1表示的空间直角坐标系也可以用右手来确定.用右手握住z轴,当右手的四个手指从x 轴正向以90°的角度转向y轴的正向时,大拇指的指向就是z轴的正向.我们称这种坐标系为右手直角坐标系.如无特别说明,我们课本上建立的坐标系都是右手直角坐标系.

空间直角坐标系练习题含详细答案

空间直角坐标系(11月21日) 一、选择题 1、有下列叙述: ①在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c); ②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0,b,c); ③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c); ④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)。 其中正确的个数是(C ) A、1 B、2 C、3 D、4 2、已知点A(-3,1,4),则点A关于原点的对称点的坐标为(C ) A、(1,-3,-4) B、(-4,1,-3) C、(3,-1,4) D、(4,-1,3) 3、已知点A(-3,1,-4),点A关于x轴的对称点的坐标为(A ) A、(-3,-1,4) B、(-3,-1,-4) C、(3,1,4) D、(3,-1,-4) 4、点(1,1,1)关于z轴的对称点为(A ) A、(-1,-1,1) B、(1,-1,-1) C、(-1,1,-1) D、(-1,-1,-1) 5、点(2,3,4)关于xoz平面的对称点为(C ) A、(2,3,-4) B、(-2,3,4) C、(2,-3,4) D、(-2,-3,4) 6、点P(2,0,3)在空间直角坐标系中的位置是在(C) A.y轴上B.xOy平面上C.xOz平面上D.x轴上 7、以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为(C ) A、(1 2 ,1,1)B、(1, 1 2 ,1)C、(1,1, 1 2 )D、( 1 2 , 1 2 ,1) 8、点P( 2 2, 3 3,- 6 6)到原点的距离是(B) A.30 6B.1 C. 33 6 D. 35 6 9、点M(4,-3,5)到x轴的距离为(B) A.4 B.34 C.5 2 D.41 10、在空间直角坐标系中,点P(1,2,3),过点P作平面xOy的垂线PQ,垂足为Q,则Q的坐标为(D) A.(0,2,0) B.(0,2,3) C.(1,0,3) D.(1,2,0) 11、点M(-2,1,2)在x轴上的射影的坐标为(B) A.(-2,0,2) B.(-2,0,0) C.(0,1,2) D.(-2,1,0) 12、在长方体ABCD-A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则对角线AC1的长为(B) A.9 B.29 C.5 D.2 6 二、填空题 1、在空间直角坐标系中, 点P的坐标为(1, 3 2,),过点P作yOz平面的垂线PQ, 则垂足Q 的坐标是________________. 2、已知A(x, 5-x, 2x-1)、B(1,x+2,2-x),当|AB|取最小值时x的值为_______________. 3、已知空间三点的坐标为A(1,5,-2)、B(2,4,1)、C(p,3,q+2),若A、B、C三点共线,则p =_________,q=__________. 4、已知点A(-2, 3, 4), 在y轴上求一点B , 使|AB|=7 , 则点B的坐标为________________.

2017年高考数学空间几何高考真题

2017年高考数学空间几何高考真题

2017年高考数学空间几何高考真题 一.选择题(共9小题) 1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() A.B.C. D. 2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.πB.C.D. 3.在正方体ABCD﹣A 1B 1 C 1 D 1 中,E为棱CD的中点,则() A.A 1E⊥DC 1 B.A 1 E⊥BD C.A 1 E⊥BC 1 D.A 1 E⊥AC 4.某三棱锥的三视图如图所示,则该三棱锥的体积为() A.60 B.30 C.20 D.10

5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是() A.+1 B.+3 C.+1 D.+3 6.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D ﹣QR﹣P的平面角为α、β、γ,则() A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α 7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A.90πB.63πC.42πD.36π

1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为() A.10 B.12 C.14 D.16 2.已知直三棱柱ABC﹣A 1B 1 C 1 中,∠ABC=120°,AB=2,BC=CC 1 =1,则异面直线 AB 1与BC 1 所成角的余弦值为() A. B.C.D. 二.填空题(共5小题) 8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为. 9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为. 10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为. 11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.

高考数学模拟试题文科数学(含答案)

1 新课标高考模拟试题 数学文科 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分。考试时间120分钟。 参考公式: 样本数据n x x x ,,21的标准差 锥体体积公式 ])()()[(1 22221x x x x x x n S n -++-+-= Sh V 31= 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式 Sh V = 3 23 4,4R V R S ππ= = 其中S 为底面面积,h 为高 其中R 为球的半径 第Ⅰ卷(选择题 共60分) 一、选择题 1.已知集合2{|1},{|20}A x x B x x x =≤=-<,则A B = ( ) A .(0,1) B . C . (]0,1 D .[)1,1- 2.若(1,1),(1,1),(2,4)a b c ==-=-,则c 等于 ( ) A .-a+3b B .a-3b C .3a-b D .-3a+b 3.已知四棱锥P —ABCD 的三视图如右图所示,则四棱锥P —ABCD 的体积为( ) A . 1 3 B . 23 C . 34 D . 38 4.已知函数 ()sin()(0,0,||)2 f x A x A π ω?ω?=+>>< 的部分图象如图所示,则() f x 的解析式是( ) A .()sin(3)()3f x x x R π=+∈ B .()sin(2)()6f x x x R π =+∈ C . ()sin()()3 f x x x R π =+∈ D . ()sin(2)()3 f x x x R π =+∈ 5.阅读下列程序,输出结果为2的是( ) 6.在ABC ? 中,1tan ,cos 2A B == ,则tan C 的值是 ( ) A .-1 B .1 C D .-2 7.设m ,n 是两条不同的直线,,,αβγ是三个不同的平面,有下列四个命题: ①若,,;m m βα βα?⊥⊥则 ②若//,,//;m m αβαβ?则 ③若,,,;n n m m αβαβ⊥⊥⊥⊥则 ④若,,,.m m αγβγαβ⊥⊥⊥⊥则 其中正确命题的序号是 ( ) A .①③ B .①② C .③④ D .②③ 8.两个正数a 、b 的等差中项是5,2 ,a b >且则双曲线22 221x y a b -=的离 心率e 等于 ( )

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

2018年高考数学空间几何高考真题

2017年高考数学空间几何高考真题 ?选择题(共9小题) 1 ?如图,在下列四个正方体中,A, B为正方体的两个顶点,M , N, Q为所在 棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() 2. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上, 则该圆柱的体积为() A. n B. C. D. 3. 在正方体ABCD- A i B i CD i中,E为棱CD的中点,贝U( ) A. A i E± DC i B. A i E丄BD C A i E丄BG D. A i E丄AC 4. 某三棱锥的三视图如图所示,则该三棱锥的体积为( A. 60 B. 30 C. 20 D . i0 侧〔左)视圄 C

5?某几何体的三视图如图所示(单位:cm ), 则该几何体的体积(单位:cm 2) 是( ) 6?如图,已知正四面体 D -ABC (所有棱长均相等的三棱锥),P 、Q 、R 分别为 AB 、BC CA 上的点,AP=PB ==2,分别记二面角 D- PR- Q , D- PQ- R, D - A .产 aV B B. aV 产 B C ? a< Y D. p< 产 a 7. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图, 该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A . 90 n B. 63 n C. 42 n D . 36 n 1 .某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三 D . +3 +1

4 角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中 有若干个是梯形,这些梯形的面积之和为( ) A . 10 B. 12 C. 14 D . 16 2. 已知直三棱柱 ABC- A 1B 1C 1中,/ ABC=120, AB=2, BC=CC=1,则异面直线 AB 1与BG 所成角的余弦值为( ) A . B. C. D. 二.填空题(共5小题) 8. 已知三棱锥S-ABC 的所有顶点都在球0的球面上,SC 是球0的直径.若平 面SCAL 平面SCB SA=AC SB=BC 三棱锥S-ABC 的体积为9,则球0的表面 积为 _______ . 9. 长方体的长、宽、高分别为3, 2,1,其顶点都在球0的球面上,则球0的 表面积为 _______ . 10. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18, 则这个球的体积为 ________ . 11. 由一个长方体和两个亍圆柱体构成的几何体的三视图如图,则该几何体的

高三文科数学模拟试题含答案

高三文科数学模拟试题 满分:150分 考试时间:120分钟 第Ⅰ卷(选择题 满分50分 一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.复数31i i ++(i 是虚数单位)的虚部是( ) A .2 B .1- C .2i D .i - 2.已知集合{3,2,0,1,2}A =--,集合{|20}B x x =+<,则()R A C B ?=( ) A .{3,2,0}-- B .{0,1,2} C . {2,0,1,2}- D .{3,2,0,1,2}-- 3.已知向量(2,1),(1,)x ==a b ,若23-+a b a b 与共线,则x =( ) A .2 B .12 C .12 - D .2- 4.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么 这个几何体的表面积为( ) A .4π B . 3 2 π C .3π D .2π 到函 5.将函数()sin 2f x x =的图象向右平移6 π 个单位,得数()y g x =的图象,则它的一个对称中心是( ) A .(,0)2 π- B . (,0)6 π- C . (,0)6 π D . (,0) 3 π 6.执行如图所示的程序框图,输出的s 值为( )A .10 - B .3- C . 4 D .5 7. 已知圆22:20C x x y ++=的一条斜率为1的切线1l 与1l 垂直的直线2l 平分该圆,则直线2l 的方程为(正视图 侧视图 俯视图

A. 10x y -+= B. 10x y --= C. 10x y +-= D. 10x y ++= 8.在等差数列{}n a 中,0>n a ,且301021=+++a a a , 则65a a ?的最大值是( ) A .94 B .6 C .9 D .36 9.已知变量,x y 满足约束条件102210x y x y x y +-≥ ?? -≤??-+≥? ,设22z x y =+,则z 的最小值是( ) A. 12 B. 2 C. 1 D. 13 10. 定义在R 上的奇函数()f x ,当0≥x 时,?????+∞∈--∈+=) ,1[|,3|1) 1,0[),1(log )(2 1x x x x x f ,则函数)10()()(<<-=a a x f x F 的所有零点之和为( ) A .12-a B .12--a C .a --21 D .a 21- 第Ⅱ卷(非选择题 满分 100分) 二、填空题:(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置) 11. 命题“若12

空间直角坐标系整理

2.3.1 空间直角坐标系 一、教材知识解析 1、空间直角坐标系的定义:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz ,点O 叫做坐标原点,x 轴、y 轴和z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy 平面、yOz 平面和xOz 平面。 2、右手直角坐标系及其画法: (1)定义:在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方 向,若中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系。教材上所指的都是右手直角坐标系。 (2)画法: 将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成135°,而z 轴垂直于y 轴,y 轴和z 轴的长度单位相同,x 轴上的单位长度为y 轴(或z 轴)的长度的一半,这样,三条轴上的单位长度在直观上大体相等。 3、空间中点的坐标表示:点在对应数轴上的坐标依次为x 、y 、z ,我们把有序实数组(x , y ,z )叫做点A 的坐标,记为A (x ,y ,z )。 二、题型解析: 题型1、在空间直角坐标系下作点。 例1、在空间直角坐标系中,作出M(4,2,5). 解:法一:依据平移的方法,为了作出M(4,2,5), 可以按如下步骤进行:(1)在x 轴上取横坐 标为4的点1M ;(2)将1M 在xoy 平面内沿与y 轴平行的方向向右移动2个单位,得到 点2M ;(3)将2M 沿与z 轴平行的方向向上 移动5个单位,就可以得到点M (如图)。 法二:以O 为一个顶点,构造三条棱长分别为4,2,5的长方体,使此长方体在点O 处的三 条棱分别在x 轴的正半轴、y 轴的正半轴、z 轴的正半轴上,则长方体与顶点O 相对的顶点即为所求的点M 。 法三:在x 轴上找到横坐标为4的点,过此点作与x 垂直的平面α;在y 轴上找到纵坐标为2 的点,过此点作与y 垂直的平面β;在z 轴上找到竖坐标为5的点,过此点作与z 垂直的平面γ;则平面αβγ,,交于一点,此交点即为所求的点M 的位置。 【技巧总结】:(1)若要作出点M 000(,,)x y z 的坐标有两个为0,则此点是坐标轴上的点,可 直接在坐标轴上作出此点; (2)若要作出点M 000(,,)x y z 的坐标有且只有一个为0,则此点不在坐标轴上,但在某一坐 标平面内,可以按照类似于平面直角坐标系中作点的方法作出此点。 (3)若要作出点M 000(,,)x y z 的坐标都不为0,则需要按照一定的步骤作出该点,一般有三 种方法:①在x 轴上取横坐标为0x 的点1M ;再将1M 在xoy 平面内沿与y 轴平行的方向向左(00y <)或向右(00y >)平移0||y 个单位,得到点2M ;再将2M 沿与z 轴平

建立空间直角坐标系-解立体几何题

建立空间直角坐标系,解立体几何高考题 立体几何重点、热点: 求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等. 常用公式: 1 、求线段的长度: 222z y x AB ++==()()()2 12212212z z y y x x -+-+-= 2、求P 点到平面α的距离: PN = ,(N 为垂足,M 为斜足,为平面α的法向量) 3、求直线l 与平面α所成的角:|||||sin |n PM ?= θ,(l PM ?,α∈M ,为α的法向量) 4、求两异面直线AB 与CD 的夹角:cos = θ 5、求二面角的平面角θ:|||||cos |21n n ?= θ,( 1n ,2n 为二面角的两个面的法向量) 6、求二面角的平面角θ:S S 射影 = θ cos ,(射影面积法) 7、求法向量:①找;②求:设, 为平面α内的任意两个向量,)1,,(y x =为α的法向量, 则由方程组?????=?=?0 n b n a ,可求得法向量.

高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键是建立一个适当的空间直角坐标系。 一﹑直接建系。 当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。 例1. (2002年全国高考题)如图,正方形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<

《空间直角坐标系》典型例题解析

《空间直角坐标系》典型例题解析 例1:在空间直角坐标系中,作出点M(6, -2, 4)。 点拨点M 的位置可按如下步骤作出:先在x 轴上作出横坐标是6的点1M ,再将1M 沿与y 轴平行的方向向左移动2个单位得到点2M ,然 后将2M 沿与z 轴平行的方向向上移动4个单位 即得点M 。 解答M 点的位置如图所示。 总结对给出空间直角坐标系中的坐标作出这个点、给出具体的点写出它的空间直角坐标系中的坐标这两类题目,要引起足够的重视,它不仅可以加深对空间直角坐标系的认识,而且有利于进一步培养空间想象能力。 变式题演练 在空间直角坐标系中,作出下列各点:A(-2,3,3);B(3,-4,2);C(4,0,-3)。 答案:略 例2:已知正四棱锥P-ABCD 的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标。 点拨先由条件求出正四棱锥的高,再根据正 四棱锥的对称性,建立适当的空间直角坐标系。 解答 正四棱锥P-ABCD 的底面边长为4,侧 棱长为10, ∴正四棱锥的高为232。 以正四棱锥的底面中心为原点,平行于AB 、BC 所在的直线分别为x 轴、y 轴,建立如图所示 的空间直角坐标系,则正四棱锥各顶点的坐标分别为A(2,-2,0)、B(2,2,0)、C(-2,2,0)、D(-2,-2,0)、P(0,0,232)。 总结在求解此类问题时,关键是能根据已知图形,建立适当的空间直角坐标系,从而便于计算所需确定的点的坐标。 1M 2M M (6,-2,4) O x y z 6 2 4 O A B C D P x y z

变式题演练 在长方体1111D C B A ABCD -中,AB=12,AD=8,1AA =5,试建立适当的空间直角坐标系,写出各顶点的坐标。 答案:以A 为原点,射线AB 、AD 、1AA 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则A(0,0,0)、B(12,0,0)、C(12,8,0)、D(0,8,0)、1A (0,0, 5)、1B (12,0,5)、1C (12,8,5)、1D (0,8,5)。 例3:在空间直角坐标系中,求出经过A(2,3,1)且平行于坐标平面yOz 的平面α的方程。 点拨求与坐标平面yOz 平行的平面的方程,即寻找此平面内任一点所要满足的条件,可利用与坐标平面yOz 平行的平面内的点的特点来求解。 解答 坐标平面yOz ⊥x 轴,而平面α与坐标平面yOz 平行, ∴平面α也与x 轴垂直, ∴平面α内的所有点在x 轴上的射影都是同一点,即平面α与x 轴的交点, ∴平面α内的所有点的横坐标都相等。 平面α过点A(2,3,1),∴平面α内的所有点的横坐标都是2, ∴平面α的方程为x=2。 总结对于空间直角坐标系中的问题,可先回忆与平面直角坐标系中类似问题的求解方法,再用类比方法求解空间直角坐标系中的问题。本题类似于平面直角坐标系中,求过某一定点且与x 轴(或y 轴)平行的直线的方程。 变式题演练 在空间直角坐标系中,求出经过B(2,3,0)且垂直于坐标平面xOy 的直线方程。 答案:所求直线的方程为x=2,y=3.

2020年高考数学 空间几何体解答题 专练(含答案)

2020年高考数学空间几何体解答题专练 1.如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为 棱AB、PD的中点. (1)求证:AF∥平面PCE; (2)求证:平面PCE⊥平面PCD; (3)求三棱锥C-BEP的体积. 2.如图,在直三棱柱ABC-A B1C1中,AB=AC,P为AA1的中点,Q为BC的中点。 1 (1)求证:PQ//平面A1BC1; (2)求证:BC⊥PQ。

3.如图,在直三棱柱ABC-A B1C1中,AC⊥BC,A1B与AB1交于点D,A1C与AC1交于点E.求证: 1 (1)DE∥平面B1BCC1; (2)平面A1BC⊥平面A1ACC1. 4.如图,四棱锥P—ABCD的底面ABCD是平行四边形,平面PBD⊥平面ABCD,PB=PD,PA⊥PC, CD⊥PC,O,M分别是BD,PC的中点,连结OM. (1)求证:OM∥平面PAD; (2)求证:OM⊥平面PCD.

5.如图,在直四棱柱ABCD–A B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点. 1 (1)求证:AC1∥平面PBD; (2)求证:BD⊥A1P. 6.如图,直四棱柱ABCD–A B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC, 1 BB1,A1D的中点. (1)证明:MN∥平面C1DE; (2)求二面角A?MA1?N的正弦值.

7.在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=2AB,E,F是线段BC,AB的中 点. (1)证明:ED⊥PE; (2)在线段PA上确定点G,使得FG∥平面PED,请说明理由. 8.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面是棱长为1的菱形,∠ADC=60°,, M是PB的中点. (1)求证:PD∥平面ACM; (2)求直线CM与平面PAB所成角的正弦值.

高考文科数学模拟试题

高考文科数学模拟题 一、选择题: 1.已知集合{}{} 12,03A x x B x x =-<=<<,则A B =() A .{} 13x x -<”是“0<

空间直角坐标系专题学案含答案解析

第九讲空间直角坐标系 时间:年月日刘老师学生签名: 一、兴趣导入 二、学前测试 要点考向1:利用空间向量证明空间位置关系 考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。 2.题型灵活多样,难度为中档题,且常考常新。 考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。 2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。 例1:如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF FB ⊥,2 AB EF =,90 BFC ∠=?,BF FC =,H为BC的中点。 (1)求证:FH∥平面EDB; (2)求证:AC⊥平面EDB; (3)求二面角B DE C --的大小。 【命题立意】本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 【思路点拨】可以采用综合法证明,亦可采用向量法证明。 【规范解答】 E F B C D H G X Y Z

,,//,,,,,,,. ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC AB BC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥Q Q I I 四边形为正方形,又且,平面又为中点,且平面 H HB GH HF u u u r u u u r u u u r 如图,以为坐标原点,分别以、、的方向为x 轴、y 轴、z 轴的正方向建立坐标系, 1,(1,2,0),(1,0,0),(1,0,0),(1,2,0),(0,1,1),(0,0,1).BH A B C D E F =-----令则 (1) (0,0,1), (0,0,1),////HF HF GE HF HF ∴==∴??∴u u r u u u r u u r u u u r Q 设AC 与BD 的交点为G ,连接GE 、GH,则G (0,-1,0),GE 又GE 平面EDB,平面EDB,平面EDB (2) (2,2,0),(0,0,1),0,. AC AC AC AC AC =-=∴=∴⊥⊥∴⊥u u u r u u r u u u r u u r Q g I GE GE GE 又BD,且GE BD=G ,平面EBD. (3) 1111111(1,,),(1,1,1),(2,2,0). 010,10,220011,0y z BE BD BE y z y z y BD ==--=--?=--+=??=-=??--==? ??∴=-u u r u u u r u u u r Q u u u r u u r g u u u r u u r g u u r 1111设平面BDE 的法向量为n n 由即,得,n n (,) 2222222(1,,),(0,2,0),(1,1,1). 00,01,10010,-1y z CD CE CD y y z y z CE ==-=-?==??==-??-+==? ??∴=u u r u u u r u u u r Q u u u r u u r g u u u r u u r g u u r 2222设平面CDE 的法向量为n n 由即,得,n n (,) 121212121 cos ,,2||||,60,n n n n n n n n ∴<>===∴<>=o o u r u u r u r u u r g u r u u r u r u u r 即二面角B-DE-C 为60。 【方法技巧】1、证明线面平行通常转化为证明直线与平面内的一条直线平行; 2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直; 3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。 4、以上立体几何中的常见问题,也可以采用向量法建立空间直角坐标系,转化为向量问

相关文档
最新文档