结构动力学习题解答(一二章)

结构动力学习题解答(一二章)
结构动力学习题解答(一二章)

第一章 单自由度系统

1.1 总结求单自由度系统固有频率的方法和步骤。

单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。

1、 牛顿第二定律法

适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x

m ,得到系统的运动微分方程;

(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法

适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析;

(2) 利用动量距定理J ∑=M θ

,得到系统的运动微分方程;

(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法:

适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程

θ

θ??-???L L dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法

适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即

0)

(=+dt

U T d ,进一步得到系统的运动微分方程;

(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。

用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。

(2)由对数衰减率定义 )ln(

1

+=i i

A A δ, 进一步推导有 2

12ζ

πζδ-=

因为ζ较小, 所以有

π

δζ2=

。 方法二:共振法求单自由度系统的阻尼比。 (1)通过实验,绘出系统的幅频曲线, 如下图:

单自由度系统的幅频曲线

(2)分析以上幅频曲线图,得到:

4/22/max 2,1ζββ==;

于是

2

21)21(n

ωζω-=; 进一步

2

22)21(n

ωζω+=; 最后

()n n ωωωωωζ2/2/12?=-=;

1.3 叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。

用正选弦激励求单自由度系统阻尼比的方法有两个:幅频(相频)曲线法和功率法。

方法一:幅频(相频)曲线法 当单自由度系统在正弦激励t F ωsin 0作用下其稳态响应为:

)sin(αω-=t A x ,

其中: (

)()2

2

2

2

2

2

20

414ω

ζ

ωω

ωω+-=

+-=

st

n

x n m

F A ; (1)

()()21/2arctan

ωωζα-= (2)

从实验所得的幅频曲线和相频曲线图上查的相关差数,由上述(1),(2)式求得阻尼比ζ。 方法二:功率法:

(1) 单自由度系统在t F ωsin 0作用下的振动过程中,在一个周期内, 弹性力作功为 0=c W 、 阻尼力做功为 2A W c d πω-=、 激振力做作功为 απsin 0F W f -=;

(2) 由机械能守恒定理得,弹性力、阻尼力和激振力在一个周期内所作功为零, 即: c W +d W +0=f W ;

于是 παsin 0F -02=A c πω 进一步得: ωαc F A sin 0=; (3) 当ωω=n 时,1sin =α,

则 ζ2max st x A =, 得 ζβ21max =, max 2

βζ=。

1.4 求图1-35中标出参数的系统的固有频率。 (1)此系统相当于两个弹簧串联,弹簧刚度为k 1

刚度为 3248L EI

k =; 等效刚度为k;有1k =3

121

4848111l k EI EIk k k k +=

????

??+=

则固有频率为:(

)

m

l k EI EIl m

k

313

4848+==

ω; 图1-33(a )

(2)此系统相当于两个弹簧串联, 等效刚度为: 3148l

EI

k k +=则固有频率为: 3

3148ml EI

l k m

k +==

ω 图1-33(b )

(3)系统的等效刚度为

11

33

33

EI EI

k k k

l l

=+=+

则系统的固有频率为

ω==图1-33(c)

(4)

由动量距定理()θ 0

I

F

m=

∑得:

(l

k

l

l

k

l

2

1

2

1

2

1

2

1

1

1

?

?

+

?

θ)=θ 2

2

1

ml

得:0

2

1=

θ

m

k

m

k

2

1

=

ω。

图1-33(d)

1.5 求下图所示系统的固有频率。图中匀质轮A半径R,重物B的重量为P/2,弹簧刚度为k.

解:以θ为广义坐标,则

系统的动能为

()2

2

2

1

2

1

θ

I

x

m

T

T

T+

=

+

=)

轮子

重物

()2

2

2

2

2

4

4

)

2

1

(

2

1

2

2

1

x

g

P

x

g

P

R

x

R

g

P

x

g

P

+

=

?

?

?

?

?

+

=)

2

2

x

g

P

=

系统的势能能为:

2

2

1

kx

Px

U

U

U+

=

+

=

弹簧

重物

拉格朗日函数为

L=T-U ;

由拉格朗日方程0

)

(=

?

?

-

?

?

?

x

L

x

L

dt

=

+kx

x

g

P

则,

0ω=

P

kg 所以:系统的固有频率为

P

kg 1.6求图1-35所示系统的固有频率。图中磙子半径为R ,质量为M ,作纯滚动。弹簧刚度

为K 。

解:磙子作平面运动,

其动能T=T 平动 +T 转动 。22221

;2

11;222T Mx x

MR x T I R R =??????== ? ? ?????

?? 平动转动

2224

3

4121x M x M x M T =+=

; 而势能

2

2

1Kx U =

; 系统机械能

C Kx x M U T =+=

+222

1

43 ; 由

()0=+U T t

d d

得系统运动微分方程 02

3

=+Kx x M ; 得系统的固有频率

M

K

n 32=

ω ; 1.7求图1-36所示齿轮系统的固有频率。已知齿轮A 的质量为m A ,半径为r A ,齿轮B 的质量为m B ,半径为r B,杆AC 的扭转刚度为K A , ,杆BD 的扭转刚度为K B , 解:由齿轮转速之间的关系B B A A r r ωω= 得角速度 A B A B r r ωω=;转角A B

A B r r

??=; 系统的动能为:222

1

21B B A A B A J J T T T ωω+=

+= ()22222241221221A A B A B B B A A A r m m r m r m T ωωω+=???

? ??+

???? ??=

图1-36

系统的势能为:

()

2

2

2222221212121A B A B A B B A A B B A A r r K K K K K K U ????????

? ?

?+=+=+=; 系统的机械能为

()C r r K K r m m U T A B A B A A A B A =???

? ?

?+++=+2

2

2222141?? ; 由

()0=+U T t

d d

得系统运动微分方程 ()021222=???

?

?

?+++A B A B A A A B A r r K K r m m ??

; 因此系统的固有频率为:

()()

B A B A B A A

A B A B A B A n m m r r K K r r m m r r K K +???

? ?

?+=

+???

? ?

?+=

222

22212ω;

1.8已知图1-37所示振动系统中,匀质杆长为L ,质量为m ,两弹簧刚度皆为K ,阻尼系数为C ,求当初始条件00

0==θθ 时 (1)t F t f ωsin )(=的稳态解;

(2)t t t f )()(δ=的解;解:利用动量矩定理建立系统运动微分方程

θθθ

θ2

2

2

22)(22??

? ??-+??? ??-??? ??-=L K L t f L K L C J ;而 ?

?

-

-

=

==2

2

2

2

2

2

2

12L L

L

L mL dr L m r dm r J ;得 )(663222t Lf KL CL mL =++θθθ

; 化简得

)(6

63t f mL

m K m C =++θθθ

(1) (1) 求t F t f ωsin )(=的稳态解; 将t F t f ωsin )(=代入方程(1)得

t F mL

m K m C ωθθθ

sin 6

63=++ (2)

令;6;6;322mL

F h m K m C n n ===

ω 得 t h n n

ωθωθθsin 22=++ (3) 设方程(3)的稳态解为

)sin(αω-=t A x (4) 将(4)式代入方程(3)可以求得:

()

(

)

2

22

22

22

22

9664ωω

ωω

ω

C m K L F

n h

A n

+-=

+-=

2

2

2632ω

ωω

ωω

αm K C arctg

n arctg

n -=-= ;

(2) 求)()(t t f δ=的解;

将)()(t t f δ=代入方程(1)得

)(6

63t mL

m K m C δθθθ

=++ (5) 令;6

;6;322mL

h m K m C n n ===

ω 得 )(22t h n n

δθωθθ=++ (6) 方程(6)成为求有阻尼的单自由度系统对于脉冲激励)(t h δ的响应。由方程(6)可以得到初始加速度

)(0

t h δθ= ; 然后积分求初始速度

h t d t h t d t h t d ====???

+

+

+

0000

00

0)()(δδθθ ;

再积分求初位移

0)00

00

0====?

?

+

+

t d h t d θθ ; 这样方程(6)的解就是系统对于初始条件0θ 、0

θ 和0θ的瞬态响应 ()?ω+=-t Ae x d t n sin ;

将其代入方程(6)可以求得:

;0;==

?ωd m h A

最后得

()()t e m h t Ae x d t n d

d t n ωω?ωsin sin --=

+=

1.9图1-38所示盒内有一弹簧振子,其质量为m ,阻尼为C ,刚度为K ,处于静止状态,方盒距地面高度为H ,求方盒自由落下与地面粘住后弹簧振子的振动历程及振动频率。 解:因为在自由落体过程中弹簧无变形,所以振子与盒子之间无相对位移。在粘地瞬间, 由机械能守恒定理 202

1

mV mgH =

的振子的初速度gH V 20=; 底版与地面粘住后,弹簧振子的振动是对于初速度 gH V 20=的主动隔振

系统的运动微分方程为:

0=++Kx x C x

m ;

或 ;0=++x m

K

x m C x

或 ;022=++x x n x

n ω 系统的运动方程是对于初始条件的响应:()?ω+=-t Ae x d t n sin ;

d d d n gH x

x x

x A ωωωζω202

002

0==???

? ?

?++= ; 0000

=+=x x

x arctg

n d ζωω? ;

();sin 2t gH

x d d

ωω=

1.10汽车以速度V 在水平路面行使。其单自由度模型如图。设m 、k 、c 已知。路面波动情

况可以用正弦函数y=hsin(at)表示。求:(1)建立汽车上下振动的数学模型;(2)汽车振动的稳态解。 解:(1)建立汽车上下振动的数学模型;由题意可以列出其运动方程:

)()(11y y c y y k y m ----=其中:y 表示路面波动情况;y 1将其整理为:

11y c ky ky y c y m

+=++将)sin(at h y =代入得

)sin()cos(at kh at ach ky y c y

m +=++ 图1-39

(2)汽车振动的稳态解:

设稳态响应为:)sin(a t A y -=ω

代入系统运动微分方程(1)可解得:

h c m k c k A 2

2222

2)(2ω

ωω+-+=

; ))(tan(2

223

ω

ωωc m k k mc acr a +-=; 1.11.若电磁激振力可写为t H t F 02sin )(ω=,求将其作用在参数为m 、 k 、 c 的弹簧振子上的稳态响应。

解:首先将此激振力按照傅里叶级数展开:

∑∞

=++=1

0))sin()cos((2)(i i i t i b t i a a t F ωω

其中:dt t i t F T a T i ?=

0)cos()(2ω; ?=T

i dt t i t F T

b 0)sin()(2ω 因为)(sin )(02t H t F ω=是偶函数,所以0=i b 。 于是

)2cos(2

2)(0t H

H t F ω-=

)2/2sin(2)(0πω+--=

a t A k

H

t x ; 式中

2

02

2

02

16)4(2ωωωn m

H A n +-=

2

0242arctan

ωωω

-=n n a ;

m

k m c n n ==

2

,2ω 1.12.若流体的阻尼力可写为3x b F d -=,求其等效粘性阻尼。 解:(1)流体的阻尼力为3x

b F d -= ; (2)设位移为 )cos(αω-=t A x ,而 t d x

dx =; (3)流体的阻尼力的元功为 )(3t d x x

b dx F dW d d --==; (4)流体的阻尼力在一个振动周期之内所消耗的能量为:

πωωω4344

34

3)]cos([A b dt a t A b dt x b dx x b dx F W d -=--=-=-==????

(5)粘性阻尼力在一个振动周期之内所消耗的能量为:2

cA πω- (6)等效粘性阻尼:取n ωω=,令=-

πω43

4

3A b n 2A c eq n πω- 可得:22

4

3A b c n eq ω=

第二章 两个自由度系统

2.1 求如图2-11所示系统的固有频率和固有振型,并画出振型。 解:(1)系统的振动微分方程

)(2111x x k kx x

m ---=

2

122)(kx x x k x

m ---= 即 02211=-+kx kx x

m ; 02212=+-kx kx x

m ; (1) 图 2-11 (2)系统的特征方程 根据微分方程理论,设方程组(1)的解为:

)sin(11αω+=t A x ;)sin(22αω+=t A x (2)

将表达式(2)代入方程组(1)得: 0)sin()2(2112=+-+-αωωt kA kA A m

0)sin()2(2122=++--αωωt kA kA A m (3)

因为)sin(

αω+t 不可能总为零,所以只有前面的系数为零: ;

0)2(;0)2(22

1212=-+-=--A m k kA kA A m k ωω;

?

??

???=????????????

??----00222122A A m k k

k m k ωω; (4)

(3) 系统的频率方程 若系统振动,则方程有非零解,那么方程组的系数行

列式等于零,即:

0222

2

=----ω

ωm k k

k

m k ; 展开得

0342

242=+-k mk m ωω ; (5) 系统的固有频率为:

m K /1=ω ; 2;ω (6)

(4) 系统的固有振型 将1ω,2ω代入系统的特征方程(4)式中的任一式,得系统的固有振型,即各阶振幅比为:

;11)1(2

)

1(1)

1(==

A A γ

;11

)2(2

)2(1)

2(-==

A A γ

(7)

系统各阶振型如图所示:其中(a )是一阶振型,(b )是二阶振型。

+1 +1 +1

(a ) (b)

-1

(5) 系统的主振动 系统的 第一主振动为

)sin(

)sin(;)sin(

)sin(1)1(1

)

1

(11)1(2)1(21)1(111)1(1)1(1αγαωααω+=+=+=+=t m

k

A t A x t m

k

A t A x

系统的第一主振动为

)3sin(

)sin(;)3sin(

)sin(1)2(1)2(12)2(2)2(21)2(112)2(1)2(1αγαωααω+=+=+=+=t m

k

A t A x t m

k

A t A x

2.2确定图2-12所示系统的固有频率和固有振型。

解:(1)系统的动能

2

2122212

1)(21)2(21u m u m u m u m T +=+=u 2

(2)系统的势能因为弹簧上端A 、B 两点的位移

;2

;222

1211u u u u u u u B A +=+-

=所以系统的势能为2212211)2

(2)22(2u u K u u u K

V +++-=)25(4

222121u u u u K +-=

; 图2-12 (3)系统的Lagrange 函数

)25(4

212

221212221u u u u K u m u m V T L +--+

=-= (4)系统的运动微分方程 由Lagrange 方程

()

2,10==??-???

? ????j u l u

L

t d d j j 可得

;022;022********=+-=-+u K

Ku K u

m u K

Ku u

m 即

;0022

22522121??????=??????????

?

?????--

+????????????u u K K K K u u m m (6) 系统的特征方程 设系统的运动微分方程的解为

)sin(,)sin(2211αωαω+=+=t A u t A u 代入系统的运动微分方程得系统的特征方程

;022;

022********

=???

?

?+-+-=-??? ?

?+-A K m

KA

K A K A K m ωω

;002222522122

???

???=???????????

?????????? ??+---??? ??+-A A K m K K K m ωω (7)系统的频率方程 系统的特征方程有非零解得充分必要条件是其系数行列式为零

;022225222

=??? ?

?+---?

?? ??+-K m K K K m ωω 即

;02742242=+-K Km m ωω

解得

系统的固有频率

m

K

m

K

18

.1;6

.021==ωω ; (7) 系统的固有振型 将系统的固有频率代入系统的特征方程中的任何一个可得

系统的固有振型

;67.11

;

28.01

)

2()2(2

)2(1)

1()1(2

)1(1-==

==

γγA A A A

(8)系统的主振动

)6.0sin(28..0)sin(;)6

.0sin()sin(1)1(111)1(2)1(21)1(111)1(1)1(1ααωααω+=+=+=+=t m

k

A t A u t m

k

A t A u

)18

.1sin(67.1)sin(;)18

.1sin()sin(1)2(111)2(2)2(21)2(111)2(1)2(1ααωααω+-=+=+=+=t m

k

A t A u t m

k

A t A u

2.3一均质细杆在其端点由两个线性弹簧支撑(图2-13),杆的质量为m ,两弹簧的刚度分

别为2K 和K 。

(1)写出用杆端铅直位移u1和u2

(2)写出它的两个固有频率;

(3)画出它的两个固有振型;

解:(1)

均质杆的运动微分方程 C 的位移为 ();2

1

21u u u C +=

均质杆绕质心C 的转角为 ;sin 1

221

L

u u L u u -≈-=-? 图2-13 均质杆的运动微分方程 ;2

;)2(2121u KL

L Ku J u u K u

m C c -=+-=? 即 2121221212

12;)2(2

)(u KL

L Ku L u u mL u u K u u

m -=++-=+ 即

()();26;)2(2)(21212121u u K u u m u u K u u m -=++-=+ 即 ;0612;024********=+-+=+++Ku Ku u m u

m Ku Ku u m u

m (1)

(2)系统的特征方程

设运动微分方程(1)的解为 )sin(11αω+=t A u 、)sin(22αω+=t A u ,代入方程(1)

;

0612;024212212212212=+--=++--KA KA A m A m KA KA A m A m ωωωω

;00612242122

22

?

??

???=?????????????

?----A A m K K m m K m K ωωωω

(4) 系统的频率方程 系统的特征方程有非零解得充分必要条件是其系数行列式为零

;0612242

22

2

=----ω

ωωωm K K

m m K m K 即

;024122242=+-K Km m ωω

解得

系统的两个固有频率

066.3;612.121==ωω;

(5) 系统的固有振型 将系统的固有频率代入系统的特征方程中的任何一个可得

系统的两阶固有振型 ;67371;731

)2()2(2)2(1)

1()1(2

)1(1-====

γ

γA A A A (8)系统的两阶主振动

)

612.1sin(33.2)sin(;)612.1sin()sin(1)

1(1

11)

1(2

)1(2

1)1(111)1(1)1(1ααωααω+=

+=

+=+=t A t A u t A t A u

)

066.3sin(81.1)sin(;)066.3sin()sin(1)

2(1

11)2(2

)2(2

1)2(111)2(1)2(1ααωααω+-=

+=

+=+=t A t A u t A t A u

2.4确定图2-14所示系统的固有频率和固有振型,并画出固有振型。 解:(1)系统运动微分方程

;)(2;)(22122121u u K u

m u u K u

m --=-= 即 2k

;022;022*******=+-=-+Ku KKu u

m Ku Ku u

m (1)

(2)系统特征方程 图2-14

设运动微分方程(1)的解为

)sin(11αω+=t A u

和 )sin(

22αω+=t A u , 代入方程(1)

()();

022;02

2

1

21

2

=-+-=--A m K KA KA A m K ωω

;00222122?

?????=??????????????----A A m K K

K

m K ωω

(3)系统频率方程

系统的特征方程有非零解得充分必要条件是其系数行列式为零

;0222

2=----ωωm K K

K

m K

;0324=-ωωK m

解得

m

K

3;021=

=ωω; (4)系统的固有振型 将系统的固有频率代入系统的特征方程中的任何一个可得

系统的两阶固有振型

;2

11

;

11

)

2()2(2

)2(1)

1()1(2

)1(1-

==

==

γγA A A A

+1 +1 +1

-1/2

2.5图2-15所示的均质细杆悬挂成一摆,杆的质量为m ,长为L ,悬线长为L/2,求该系统的固有频率和固有振型。 解:(1)求均质细杆质心的坐标和质心的速度 ()()2121cos cos 2,sin sin 2θθθθ+=+=

L y L

x c c ; 1θ L/2 ()()

22112211sin sin 2

,cos cos 2θθθθθθθθ +-=+=L y L x

c c ; 2θ C (2)求系统的Lagrange 函数

()

()2

12222cos cos 2

12121θθθ++++=

-=mgL J y x m V T L C C C ;图2-15 ()()

()21222212122212cos cos 2

124cos 28θθθθθθθθθ+++-++=mgL mL mL ; (3)求系统的运动微分方程 由Lagrange 方程

()

2,10==??-???

? ?

???j l L t d d j j θθ 可得

;0234

;02

442

22121

22

1

2=++=++θθθθθθL mg mL mL L mg mL mL

即 ;0020

02

34

4421

2122

22???

???=???????

???

?

?????+???????????

?????

??θθθθmgL mgL

mL mL mL mL (4)系统特征方程

设运动微分方程(1)的解为 )sin(11αωθ+=t A 和)sin(22αωθ+=t A ,代入方程(1)

;0)3

2(4;

04

)42(22212222

2122=-+-=--A mL L mg A mL A mL A mL L mg ωωωω

即 ;00)32(44)42(2122222

222???

???=???????????

???

?

???----A A mL L mg mL mL mL L mg ωωωω (3)系统频率方程

系统的特征方程有非零解得充分必要条件是其系数行列式为零

2222

22

22()244

0;()423

L mL mL mg mL L mL mg ωω

ωω--=--

即 ;012142242=+-g g L ωω 解得系统的两个固有频率

;6

.3;21L

g

L

g ==

ωω; (4)系统的固有振型 将系统的固有频率代入系统的特征方程中的任何一个可得 系统的两阶固有振型

;11

131

;

11

)

2()2(2

)2(1)

1()1(2

)1(1-

==

==

γγA A A A

+1 +1 +1

-13/11 2.6两层楼用集中质量表示如图2-16所示的系统。其中2121m

m

=

;212

1

k k =;证明该系统的固有频率和固有振型为:1;2;2;2)2(2

)

2(1)1(2)1(1

11

2111-====x x x x m k m k ωω ;

解:(1)系统振动微分方程

02221122221211111=++=++x k x k x m x k x k x

m (1)

系统特征方程{

(

)

222

2212121211211

=-+=+-A m k A k A k A m k

ωω (2)

(3)系统频率方程 因为考虑系统振动的情况 ,所以要求方程(2)有非零解。而方程(2)

有非零解的充要条件是其系数行列式等于零:02

2

2212

12

1

211=--m K K K m K ωω即12

11m k ω-)(22

22m k ω-)02112=-k k

(4)系统固有频率 K2 根据已知条件 111k k =,11221k k k -==, 121223k k k k =+=,2121m m =

,2121

k k =; 图2-16 12122

3k k k k =+=,2121m m =,212

1

k k =;

代入(3)式得

0252

111142=???

?

??+???? ??-m k m k ωω , 11122m k =

ω ,1

122

2m k =ω ; (6) 系统固有振型:

将系统固有频率 代入系统特征方程(2)得系统固有振型

22

11

111

112

12

)1(2

)1(1=--=

-=

k k k k m k A A ω;

121

11

11

12212

)2(2

)2(1-=--=

-=

k k k k m k A A ω;

(7) 系统的主振动:

2)1(2

)1(1)1(2

)1(1==

A A x x ;

1)2(2

)2(1)2(2

)2(1-==

A A x x ;

证毕。

2.7 如图2-17所示的系统,设激振力为简谐形式,求系统的稳态响应。

图2-17 解: (1)建立系统运动微分方程

根据牛顿第二定律,分别对1m 和2m 列出振动微分方程:

0)()()(122222121111=-+=-++x x k x

m t f x x k x k x

m (1-1)

即:

0)sin )(22122222212111=+-=-++x k x k x

m t e m x k x k k x

m ωω (1-2)

(2求系统的稳态响应:设系统的稳态响应为 )

sin()

sin(222111a t A x t A x -=-=ωαω (1-3)

t

D t D x t C t C x ωωωωcos sin cos sin 212211+=+= (1-4)

将表达式(1-4)代入式(1-2),根据两个方程中包含t ωsin 的系数和为零及包含t ωcos 的系数和为零,可得如下方程组:

;

0)(;)(222212

121212121=-++-=-++-D k C k k m e m D k C k k m ωωω

;

0;0)(2222122212=+-=+-+-D k C k D k m C k ω (1-5)

求解方程组(1-5)得:0

22==D C

;

0;;

)

(222

22212122214212

212222121222142122221==-+--=

-+---=

D C k m k k k m k m m m ek m D k m k k k m k m m m m k e m C ωωωωωωωωωωω

(1-6)

所以在公式 )sin(,)sin(

222111a t A x t A x -=-=ωαω中有

;

0;;

)

(212

22212122214212

222

22212

122

214

2122221==-+--=

-+---=

ααωωωωωω

ωωωωωk m k k k m k m m m ek m A k m k k k m k m m m m k e m A

(1-7)

2.8在如图2-18所示的系统中,一水平力Fsin(ωt)作用于质量块M 上,求使M 不动的条件。

解:(1)系统有两个自由度,选广义坐标为x,φ (2)系统的动能

φ1)(212121222 l m X m X M T ++=

(3)系统的势能

)cos (22

1

2φ-+=

l mgl kx U (4)Lagrange 函数 ? L U T L -= 图2-18 m φφφφcos cos 2

1x m)(M 212222mgl mgl kx x ml ml L +---++=

(5)对Lagrange 函数求导

;sin sin ;cos )(;cos ;2;cos )()(;cos )(22φφφφφφφφφφ

φφφφmgl x ml L x ml ml L dt d x ml ml L kx x L ml x m M x L dt d ml x m M x L -=??-=??-=??-=??-+=??-+=??

(6)Lagrange 方程

0)(sin )(=??-??=??-??φ

φωL L dt d t F x

L

x L dt d

0sin sin cos sin 2cos )(2=+--=+-+φφφφφωφφmgl x ml x

ml ml t F kx ml x

m M

因为振动为微幅振动,所以

φφφφ≈-≈sin ,1cos 2

(8) 解方程:

设t A x ωsin =,t B ωφsin =代入方程并整理得:

2)1()(2

2

2

2

2

222=+-+-=+-++-Bmgl mlAB Aml Bml F Ak ml B m M A ωωωφωω

因为M 不动,所以A=0。而B 不能等于零,故,

022=-ml mgl ω,

解得

l

g

=

ω;

2.9在图2-19所示的系统中,轴的弯曲刚度为EJ ,圆盘质量为m ,它对其一条直径的转动惯量为I=mR 2/4,其中R=L/4。设轴在它的静平衡位置时是水平的,且忽略轴的质量。求系统的运动微分方程和固有频率。

解:(1)系统自由度、广义坐标:

结构动力学读书笔记

《结构动力学》读书报告 学院 专业 学号 指导老师 2013 年 5月 28日

摘要:本书在介绍基本概念和基础理论的同时,也介绍了结构动力学领域的若干前沿研究课题。既注重读者对基本知识的掌握,也注重读者对结构振动领域研究发展方向的掌握。主要容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构动力学的前沿研究课题。侧重介绍单自由度体系和多自由度体系,重点突出,同时也着重介绍了在抗震中的应用。 1 概述 1.1结构动力学的发展及其研究容: 结构动力学,作为一门课程也可称作振动力学,广泛地应用于工程领域的各个学科,诸如航天工程,航空工程,机械工程,能源工程,动力工程,交通工程,土木工程,工程力学等等。作为固体力学的一门主要分支学科,结构动力学起源于经典牛顿力学,就是牛顿质点力学。质点力学的基本问题是用牛顿第二定律来建立公式的。牛顿质点力学,拉格朗日力学和哈密尔顿力学是结构动力学基本理论体系组成的三大支柱。 经典动力学的理论体系早在19世纪中叶就已建立,。但和弹性力学类似,理论体系虽早已建立,但由于数学求解上的异常困难,能够用来解析求解的实际问题实在是少之又少,能够通过手算完成的也不过仅仅限于几个自由度的结构动力体系。因此,在很长一段时间,动力学的求解思想在工程实际中并未得到很好的应用,人们依然习惯于在静力学的畴用静力学的方法来解决工程实际问题。 随着汽车,飞机等新时代交通工具的出现,后工业革命时代各种大型机械的创造发明,以及越来越多的摩天大楼的拔地而起,工程界日新月异的发展和变化对工程师们提出了越来越高的要求,传统的只考虑静力荷载的设计理念和设计方法显然已经跟不上时代的要求了。也正是从这个时候起,结构动力学作为一门学科,也开始受到工程界越来越高的重视,从而带动了结构动力学的快速发展。 结构动力学这门学科在过去几十年来所经历的深刻变革,其主要原因也正是由于电子计算机的问世使得大型结构动力体系数值解的得到成为可能。由于电子计算机的超快速度的计算能力,使得在过去凭借手工根本无法求解的问题得到了解决。目前,由于广泛地应用了快速傅立叶变换(FFT),促使结构动力学分析发生了更加深刻地变化,而且使得结构动力学分析与结构动力试验之间的相互关系也开始得以沟通。总之,计算机革命带来了结构动力学求解方法的本质改变。 作为一门课程,结构动力学的基本体系和容主要包括以下几个部分:单自由度系统结构动力学,;多自由度系统结构动力学,;连续系统结构动力学。此外,如果系统上所施加的动力荷载是确定性的,该系统就称为确定性结构动力系统;而如果系统上所施加的动力荷载是非确定性的,该系统就称为概率性结构动力系统。 1.2主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模

结构动力学习题解答(一二章)

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构动力学分析

结构动力学分析 1静力分析与动力学分析的区别 静力分析是分析结构在承受稳定载荷作用下的受力特性。结构动力分析是分析结构在承受随时间变化的载荷作用下的动力学特性。 2动力学特性 动力学特性通常有下面几种类型: 2.1振动特性 即结构的振动形式和振动频率。 2.2随时间变化载荷的效应 例如,对结构位移和应力的效应。 2.3周期(振动)或随机载荷的效应 3四种动力学分析及举例 3.1模态分析 用于确定结构的振动特性,即固有频率和振型。在承受动态载荷的结构设计中,固有频率和振型是重要的参数。模态分析也是其他动力学分析前期必须完成的环节。 举例:如何避免汽车尾气排气管装配体的固有频率与发动机的固有频率相同? 3.2瞬态分析 用于确定结构在受到冲击载荷时的受力特性。 举例:怎样确保桥墩在受到撞击时的安全? 3.3谐响应分析 用于确定结构对稳态简谐载荷的响应。 举例:如何确定压缩机、电动机、泵、涡轮机械等旋转引起的轴承、支座、固定装置、部件应力? 3.4谱分析 用于确定结构在受到动载荷或随机载荷时的受力特性。 举例:如何确定房屋和桥梁承受地震载荷时的受力? 4四种动力学分析基本原理 4.1模态分析理论的基本假设 线性假设:结构的动态特性是线性的,即任何输入组合所引起的输出等于各自输出的组 合,其动力学特性可用一组线性二阶微分方程来描述。任何非线性特性,如塑性、接触单元

等,即使定义了也将被忽略。 时不变性假设:结构的动态特性不随时间而变化,微分方程的系数是与时间无关的常数。 可观测性假设:系统动态特性所需要的全部数据都是可测量的。 遵循Maxwell互易性定理:在结构的i点输入所引起的j响应,等于在j点的相同 输入所引起的i点响应。此假设使结构的质量矩阵、刚度矩阵、阻尼矩阵和频响矩阵都成了对称矩阵。 4.2谐响应分析基本原理 谐响应分析是一种线性分析,非线性特性被忽略。 输入:已知大小和频率的谐波载荷(力、压力和强迫位移);同一频率的多种载荷,可以是相同或不相同的。 输出:位移、应力、应变等。 已知动力学运动方程: [M]{u}+[C]{u}+[K]{u}={F(t)} 其中,[M] 为质量矩阵,[C]为阻尼矩阵,[K]为刚度矩阵,{u}为节点位移向量,{F(t)}载荷为时间的任意函数。对简谐运动而言,{u}和{F(t)}均为简谐形式。 4.3瞬态分析基本原理 瞬态分析也叫时间历程分析。载荷和时间的相关性使得惯性力和阻尼作用比较重要,如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。 输入:结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下随时间变化的载荷。 输出:随时间变化的位移、应力、应变等。 瞬态动力学的基本运动方程: [M]{u}+[C]{u}+[K]{u}={F(t)} 其中,[M] 为质量矩阵,[C]为阻尼矩阵,[K]为刚度矩阵,{u}为节点位移向量,{F(t)}载荷为时间的任意函数。 4.4谱分析基本原理 谱分析模态分析的扩展,是将模态分析的结果与一个已知的谱联系起来计算结构的位移和应力。 主要用于分析承受地震或其他随机载荷的建筑物及桥梁结构等。

结构动力学_克拉夫(第二版)课后习题

例题E2-1 如图E2-1所示,一个单层建筑理想化为刚性大梁支承在无重的柱子上。为了计算此结构的动力特性,对这个体系进行了自由振动试验。试验中用液压千斤顶在体系的顶部(也即刚性大梁处)使其产生侧向位移,然后突然释放使结构产生振动。在千斤顶工作时观察到,为了使大梁产生0.20in[0.508cm]位移需要施加20 kips[9 072 kgf]。在产生初位移后突然释放,第一个往复摆动的最大位移仅为0.16 in[0. 406 cm],而位移循环的周期为1.4 s。 从这些数据可以确定以下一些动力特性:(1)大梁的有效重量;(2)无阻尼振动频率;(3)阻尼特性;(4)六周后的振幅。 2- 1图E2-1所示建筑物的重量W为200 kips,从位移为1.2 in(t=0时)处突然释放,使其产生自由振动。如果t=0. 64 s时往复摆动的最大位移为0.86 in,试求 (a)侧移刚度k;(b)阻尼比ξ;(c)阻尼系数c。

2-2 假设图2- la 所示结构的质量和刚度为:m= kips ·s 2/in ,k=40 kips/in 。如果体系在初始条件 in 7.0)0(=υ、in/s 6.5)0(=υ&时产生自由振动,试求t=1.0s 时的位移及速度。假设:(a) c=0(无阻 尼体系); (b) c=2.8 kips ·s/in 。 2-3 假设图2- 1a 所示结构的质量和刚度为:m=5 kips ·s 2/in ,k= 20 kips/in ,且不考虑阻尼。如果初始条件in 8.1)0(=υ,而t=1.2 s 时的位移仍然为1.8 in ,试求:(a) t=2.4 s 时的位移; (b)自由振动的振幅ρ。

结构动力学概念题

概念题 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。 1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。 粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。 有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。一般的广义坐标中,广义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义

结构动力学习题解答一二章

第一章 单自由度系统 1、1 总结求单自由度系统固有频率的方法与步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法与能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析与动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 与势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 与势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1、2 叙述用衰减法求单自由度系统阻尼比的方法与步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

(完整版)结构动力学历年试题

结构动力学历年试题(简答题) 1.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载包括哪几种,请 简述每一种荷载的特点。P2 2.通过与静力问题的对比,试说明结构动力计算的特点。P3 3.动力自由度数目计算类 4.什么叫有势力?它有何种性质。P14 5.广义力是标量还是矢量?它与广义坐标的乘积是哪个物理量的量纲?P16 6.什么是振型的正交性?它的成立条件是什么?P105 7.在研究结构的动力反应时,重力的影响如何考虑?这样处理的前提条件是什么?P32 8.对于一种逐步积分计算方法,其优劣性应从哪些方面加以判断?P132 9.在对结构动力反应进行计算的思路上,数值积分方法与精确积分方法的差异主要表现在 哪里?第五章课件 10.利用Rayleigh法求解得到的振型体系的基本振型和频率及高阶振型和频率与各自的精确 解相比有何特点?造成这种现象的原因何在?P209 11.根据荷载是否预先确定,动荷载可以分为哪两类?它们各自具有怎样的特点?P1 12.坐标耦联的产生与什么有关,与什么无关?P96 13.动力反应的数值分析方法是一种近似的计算分析方法,这种近似性表现在哪些方面? P132及其课件 14.请给出度哈姆积分的物理意义?P81 15.结构地震反应分析的反应谱方法的基本原理是什么?P84总结 16.某人用逐步积分计算方法计算的结构位移,得到如下的位移时程的计算结果:。。。 17.按照是否需要联立求解耦联方程组,逐步积分法可以分为哪两类?这两类的优劣性应该 如何进行判断?P132 18.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载又包括哪些类型, 每种类型请给出一种实例。P2 19.请分别给出自振频率与振型的物理意义?P103 20.振型叠加法的基本思想是什么?该方法的理论基础是什么?P111参考25题 21.在振型叠加法的求解过程中,只需要取有限项的低阶振型进行分析,即高阶振型的影响 可以不考虑,这样处理的物理基础是什么?P115 22.我们需要用数值积分方法求解一座大型的高坝结构的地震反应时程,动力自由度的总数 为25000个,我们如何缩短计算所耗费的机时?P103 23.什么是结构的动力自由度?动力自由度与静力自由度的区别何在?P11及卷子上答案 24.一台转动机械从启动到工作转速正好要经过系统的固有频率(又称为转子的临界转速), 为减小共振,便于转子顺利通过临界转速,通常采用什么措施比较直接有效?简要说明理由。详解见卷子上答案 25.简述用振型叠加法求解多自由度体系动力响应的基本原理及使用条件分别是什么?若 振型叠加法不适用,可采用何种普遍适用的方法计算体系响应?详解见卷子上答案 26.振型函数边界条件。。。 27.集中质量和一致质量有限元的差异和优缺点,采用这两种有限元模型给出的自振频率与 实际结构自振频率相比有何种关系?P242及卷子上答案 28.人站在桥上可以感觉到桥面的震动,简述当车辆行驶在桥上和驶离桥面的主要振型特征 有何不同? 29.简述用Duhamel积分法求体系动力响应的基本原理,以及积分表达式中的t和τ有何差

结构动力学分析

MIDAS/GEN六层框架结构的动力分析 工程概况 建筑地点:北京市 建筑类型:六层综合办公楼,框架填充墙结构。 地质条件:根据设计任务说明地震设防烈度为8度。 柱网与层高:本办公楼采用柱距为6.0m的内廊式小柱网,边跨为6.0m,中间跨为2.7m,层高取首层为4.5m,其余为3.3m,如下图所示: 框架结构的计算简图:

典型结构单元 梁、柱、板截面尺寸的初步确定: 1、梁截面高度一般取梁跨度的1/12至1/8。本方案取1/10×6000=600mm,截面宽度取600×1/2=250mm,可得梁的截面初步定为b×h=250*600。楼板取120mm,楼梯板及休息平台板为100mm,平台梁250×400。 2、框架柱的截面尺寸 梁截面尺寸(mm) 柱截面尺寸(mm)

结构动力学分析用来求解随时间变化的载荷对结构或部件的影响。与静力分析不同,动力分析要考虑随时间变化的力载荷以及它对阻尼和惯性的影响。MIDAS/GEN可进行的结构动力学分析类型包括:瞬态动力学分析、模态分析、屈曲分析、动力非线性分析等。本文将以一个六层框架结构为例对结构进行模态分析和谱分析。 一.模态分析 模态分析是用于确定设计中的结构或机器部件的振动特性。它也是其他更详细动力学分析的起点,例如瞬态动力学分析和谱分析等,可以通过模态分析确定结构部件的频率响应和模态。一般对于动力加载条件下的结构设计而言,频率响应和模态是非常重要的参数,即使在谱分析及瞬态分析中也是需要的。 1.1动力学求解方法 MIDAS目前提供了三种特征值分析方法,它们是子空间法、分块Lanczos 算法、多重Ritz向量法。本文采用子空间法进行计算求解。子空间法使用迭代技术,求出结构的前r阶振型,它内部使用广义Jacobi迭代算法。由于该方法采用了完整的质量和刚度矩阵,因此精度很高,但计算速度较慢,特别适用于大型对称特征值求解问题。分块Lanczos法特征值求解器采用Lanczos算法,Lanczos算法是用一组向量来实现递归计算。这种方法和子空间法一样精确,但速度较快。多重Ritz向量法以变分原理为基础,直接迭加法求出的是和激发荷载向量直接相关的振型,其收敛具有严格的理论基础,在物理和、力学的微分方程中占有很重要的位置,得到广泛的应用。 1.2本工程模态分析结果 1.2.1自振周期与振型: 使用MIDAS/GEN中的模态分析计算结构的自振周期和振型。模态分析所使用的方法是子空间迭代法。高层建筑结构振型多,分布规律很难掌握,扭转振动会对结构产生教大影响,因此不能简单的取前几阶进行计算。规范中规定对于高层结构一般取3}5阶振型。为使高层建筑的分析精度有所改进,其组合的 振型个数适当增加。考虑到MIDAS/GEN软件的强大快速的数据处理能力和精度的要求,本文取30阶振型。从国内高层建筑结构设计经验来看,建议基本自振周期按以下的几个公式估计,其中N为地面以上建筑物结构层数。经验公式表达简单,使用方便,但比较粗糙,而且只有基本周期,但经常用于对理论计算值的计算与评价。 框架:T1=(0.08~0.1) N 框架一剪力墙:T1=(0.06~0.09) N 钢结构:T1=0.1N 本工程得经过MIDAS/GEN的计算得到固有周期、固有频率、振型参与质 量等的数值结果;X方向振型参与达到总质量的95.57%, Y方向振型参与达到 总质量的94.83%,经过整理取前十阶列表可得到表1

结构动力学习题资料

结构动力学习题 2.1 建立题2.1图所示的三个弹簧-质点体系的运动方程(要求从刚度的基本定义出发确定体系的等效刚度)。 题2.1图 2.2 建立题 2.2图所示梁框架结构的运动方程(集中质量位于梁中,框架分布质量和阻尼忽略不计)。

题2.2图 2.3 试建立题 2.3图所示体系的运动方程,给出体系的广义质量M、广义刚度K、广义阻尼C和广义荷载P(t),其中位移坐标u(t)定义为无重刚杆左端点的竖向位移。 题2.3图 2.4 一总质量为m1、长为L的均匀刚性直杆在重力作用下摆动。一集中质量m2沿杆轴滑动并由一刚度为K2的无质量弹簧与摆轴相连,

见题 2.4图。设体系无摩擦,并考虑大摆角,用图中的广义坐标q1和q2建立体系的运动方程。弹簧k2的自由长度为b。 题2.4图 2.5 如题2.5图所示一质量为m1的质量块可水平运动,其右端与刚度为k的弹簧相连,左端与阻尼系数为c的阻尼器相连。摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置)。

题2.5图 2.6如题2.6图所示一质量为m1的质量块可水平运动,其上部与一无重刚杆相连,无重刚杆与刚度为k2的弹簧及阻尼系数为c2的阻尼器相连,m1右端与刚度为k1的弹簧相连,左端与阻尼系数为c1的阻尼器相连。摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置,假定系统作微幅振动,sinθ=tanθ=θ)。计算结果要求以刚度矩阵,质量矩阵,阻尼矩阵的形式给出。

结构动力学简答题

结构力学简答题 1、结构动力分析的目的:是确定结构在动力荷载作用下的内力和变形,并通过动力分析确定结构的动力特性。 1、动力荷载的类型:(1)是否随时间变化:静荷载和动荷载(2)是否已预先确定:确定性荷载和非确定性荷载(3)随时间变化的规律:周期荷载:简谐荷载和非简谐周期荷载;非周期荷载:冲击荷载和一般任意荷载。 2、结构动力计算的特点:(1)动力反应要计算全部时间点上的一系列解,比静力计算复杂且要消耗很多的计算时间。(2)由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要影响。 3、结构离散化的方法:集中质量法、广义坐标法、有限元法。本质是无限自由度问题转化为有限自由度的过程。 4、有限元法:(1)与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系上插值,而是采用了分片的插值,因此形函数的表达式可以相对简单。(2)与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,与集中质量法相同。 5、广义坐标:能决定质点系几何位置的彼此独立的量。选择原则:解题方便。 6、动力自由度:结构体系在任意瞬时的一切可能的变形中,决定全部质量位置所需的独立参数的数目。动力自由度不完全取决于质点的数目,也与结构是否静定有关。静力自由度:确定体系在空间中的位置所需的独立参数的数目。前者是由于系统的弹性变形而引起的各质点的位移分量,后者是指结构中的刚体由于约束不足而产生的刚体位移。 7、有势力:(1)每一个力的大小和方向只决定于体系所有各质点的位置。(2)体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与路径无关。(3)沿任何封闭路线所作的功为零。 8、实位移:如果位移不仅满足约束方程,而且满足运动方程和初始条件,则称为体系的实位移。可能位移:满足所有约束方程的位移称为体系的可能位移。虚位移:在某一固定时刻,体系在约束许可的情况下产生的任意组微小位移。三者关系:实位移即为体系的真实位移,它必是可能位移中的一员。虚位移与可能位移的区别在于虚位移是约束冻结后许可产生的微小位移。当对于约束方程中不显含时间的稳定约束体系中虚位移与可能位移相同时,实位移必与某一虚位移重合。 9、广义力:广义力是标量而非矢量,广义力与广义坐标的乘积具有功的量纲。 10、阻尼力:引起结构能量的耗散,使结构振幅逐渐变小的这种作用。 产生原因:(1)固体材料变形时的内摩擦,或材料快速应变引起的热耗散。 (2)结构连接部位的摩擦,结构与非结构之间的摩擦。(3)结构周围外部介质引起的阻尼。 11、四种建立运动方程方法的特点 (1)达朗贝尔原理:矢量方法,直观,建立了动平衡概念。 (2)虚位移原理:半矢量方法,可处理复杂分布质量和弹性问题。 (3)哈密顿原理:标量方法,表达简洁。 (4)拉格朗日方法:标量方法,运用面广。 13、进行结构动力分析计算时,重力的影响如何考虑?这样处理的前提条件是什么? 如果重力在动荷载作用前被弹簧预先平衡,则在研究结构的动力反应时可以完全不考虑重力的影响。建立体系的运动方程,直接解出体系的动力解。若未被预先平衡,则需考虑重力的影响,应用叠加原理将动静问题分开计算,将结果相加即得到结构的真实反应。这样做的前提条件是结构是线弹性且处于小变形范围之内。重力问题的分析和动力问题的分析可以分开讨论。

《结构动力学》课程作业解析

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:结构动力学大作业教师: 姓名:学号: 专业:岩土工程类别:专硕 上课时间:2015年9 月至2015 年11 月 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师(签名)

重庆大学研究生院制 土木工程学院2015级硕士研究生考试试题 1 题目及要求 1、按规范要求设计一个3跨3层钢筋混凝土平面框架结构(部分要求如附件名单所示;未作规定部分自定)。根据所设计的结构参数,求该结构的一致质量矩阵、一致刚度矩阵; 2、至少采用两种方法求该框架结构的频率和振型; 3、输入地震波(地震波要求如附件名单所示),采用时程分析法,利用有限元软件或自编程序求出该框架结构各层的线性位移时程反应。

2 框架设计 2.1 初选截面尺寸 取所设计框架为3层3跨,跨度均为4.5m ,层高均为3.9m 。由于基础顶面离室内地面为1m ,故框架平面图中底层层高取 4.9m 。梁、柱混凝土均采用C30, 214.3/c f N mm =,423.010/E N mm =?,容重为325/kN m 。 估计梁、柱截面尺寸如下: (1)梁: 梁高b h 一般取跨度的 112 1 8 ,取梁高b h =500mm ; 取梁宽300b b mm =; 所以梁的截面尺寸为:300500mm mm ? (2)柱: 框架柱的截面尺寸根据柱的轴压比限值,按下列公式计算: ①柱组合的轴压力设计值...E N F g n β= 其中:β:考虑地震作用组合后柱轴压力增大系数; F :按简支状态计算柱的负荷面积; E g :折算在单位建筑面积上的重力荷载代表值,可近似取为 21214/KN m ; n :验算截面以上的楼层层数。 ②c N c N A u f ≥ 其中:N u :框架柱轴压比限值;8度(0.2g ),查抗震规范轴压比限值0.75N u =; c f :混凝土轴心抗压强度设计值,混凝土采用30C ,2 14.3/c f N mm =。

结构动力学习题解答(三四章)

第三章 多自由度系统 试求图3-10所示系统在平衡位置附近作微振动的振动方程。 图3-10 解:(1)系统自由度、广义坐标 图示系统自由度N=2,选x1、x2和x3为广义坐标; (2)系统运动微分方程 根据牛顿第二定律,建立系统运动微分方程如下: ;)(;)()(;)(3 4233332625323122222121111x K x x K x m x K x K x x K x x K x m x x K x K x m ---=------=---=&&&&&& 整理如下 ; 0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K x m x K x K K K K x K x m x K x K K x m &&&&&& 写成矩阵形式 ;000)(0)(0) (0 0000321433365322221321321 ?? ????????=????????????????????+--+++--++????????????????????x x x K K K K K K K K K K K K x x x m m m &&&&&&(1) (3)系统特征方程 设)sin(,)sin(,)sin(332211?ω?ω?ω+=+=+=t A x t A x t A x 代入系统运动微分方程(1)得系统特征方程 ;000)(0)(0)(321234333 2 26532222121?? ????????=????????????????????-+---+++---+A A A m K K K K m K K K K K K m K K ωωω(2) (4)系统频率方程 系统特征方程(2)有非零解的充要条件是其系数行列式等于零, 即 ;0) (0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K 展开得系统频率方程

结构动力学习题解答.docx

第一章单自由度系统 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒 定理法。 1、牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:( 1)对系统进行受力分析, 得到系统所受的合力; ( 2)利用牛顿第二定律m x F ,得到系统的运动微分方程; ( 3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:( 1)对系统进行受力分析和动量距分析; ( 2)利用动量距定理J M ,得到系统的运动微分方程; (3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:( 1)设系统的广义坐标为,写出系统对于坐标的动能T和势能U的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程( L )L =0,得到系统的运动微分方程; dt (3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:( 1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能 U 的表达式;进一步写出机械能守恒定理的表达式T+U=Const (2)将能量守恒定理T+U=Const对时间求导得零,即d(T U ) 0 ,进一步得到系 dt 统的运动微分方程; (3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:( 1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值 A i、 A i 1。 (2)由对数衰减率定义ln( A i) ,进一步推导有 A i1 2 , 2 1

结构动力学习题分析

第九章 结构动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2 (a)(b) 6、单 自 由 度 体 系 如 图 ,W =98 .kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001 .m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力 与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 , EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? () 二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 :

A .()()()y l P s in m y EI =-77683θ t /; B .()()m y EI y l P s in /+=19273 θ t ; C .()()m y EI y l P s in /+=38473θ t ; D .()()()y l P s in m y EI =-7963θ t / 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A .() 76873 EI ml k m //+; B . ()76873EI ml k m //-; C .()76873 EI ml k m //-; D . () 76873 EI ml k m //+ 。 l l /2 /2 l l /2 /2(a)(b) 7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于 A . 23k m ; B .k m 3;

结构动力学硕答案

结构动力学硕答案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

《结构动力学》试题(硕) 一、 名词解释:(每题3分,共15分) 约束 动力系数 广义力 虚功原理 达朗贝原理 二、简答:(每题5分,共20分) 1. 为什么说自振周期是结构的固有性质?它与结构哪些固有量有关? 2. 阻尼对自由振动有什么影响?减幅系数的物理意义是什么? 3. 简述用振型叠加法求解多自由度体系动力响应的基本原理及适用条件分别是 什么? 答:振型叠加法的基本原理是利用了振型的正交性,既对于多自由度体系,必有: 0T m n m φφ=,0T m n k φφ= (式中m φ、n φ为结构的第m 、n 阶振型,m 、k 为结构的质量矩阵和刚度矩阵)。 利用正交性和正规坐标,将质量与刚度矩阵有非对角项耦合的N 个联立运动微分方程转换成为N 个独立的正规坐标方程(解耦)。分别求解每一个正规坐标的反应,然后根据叠加V=ΦY 即得出用原始坐标表示的反应。 由于在计算中应用了叠加原理,所以振型叠加法只适用于线性体系的动力分析。若体系为非线性,可采用逐步积分法进行反应分析。 4. 什么是结构的动力自由度?动力自由度与静力自由度的区别何在? 答:动力自由度是指结构体系在任意瞬时的一切可能变形中,决定全部质量位置所需的独立参数的数目。 静力自由度是指确定体系在空间中的位置所需的独立参数的数目。前者是由于系统的弹性变形而引起各质点的位移分量;而后者则是指结构中的刚体由于约束不够而产生的刚体运动。 三、 计算(每题13分,共65分) 1. 图1所示两质点动力体系,用D ’Alembert 原理求运动方程。 图1 2. 图2所示,一长为l ,弯曲刚度为EI 的悬臂梁自由端有一质量为m 的小 球,小球又被支承在刚度为k2的弹簧上,忽略梁的质量,求系统的固有频率。 图2 3.图3所示,一重mg 的圆柱体,其半径为r ,在一半径为R 的弧表面上作无滑动的滚动,求在平衡位置(最低点)附近作微振动的固有频率。 图3 4.图4所示三层钢架结构,假定结构无阻尼,计算下述给定初始条件产生的自由振动。 初始条件 y(0)={0.060.050.04}m y (0)= {0.0 0.30.0 }m/s 图4

结构动力学习题解答

第一章 单自由度系统 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构动力学大作业分析

结 构 动 力 学 大 作 业 姓名: 学号:

习题1 用缩法减进行瞬态结构动力学分析以确定对有限上升时间得恒定力的动力学响应。实际结构是一根钢梁支撑着集中质量并承受一个动态荷载。 钢梁长L ,支撑着一个集中质量M 。这根梁承受着一个上升时间为t τ,最大值为F1的动态荷载F(t)。梁的质量可以忽略,需确定产生最大位移响应时间max t 及响应max y 。同时要确定梁中的最大弯曲应力bend σ。 已知:材料特性:25x E E MPa =,质量M =0.03t ,质量阻尼ALPHAD=8; 几何尺寸:L =450mm I=800.64 mm h=18mm; 荷载为:F1=20N t τ=0.075s 提示:缩减法需定义主自由度。荷载需三个荷载步(0至加质量,再至0.075s , 最后至1s ) ANSYS 命令如下: FINISH /CLE$/CONFIG,NRES,2000 /prep7 L=450$H=18 ET,1,BEAM3 ET,2,MASS21,,,4 R,1,1,800.6,18 R,2,30 !MASS21的实常数顺序MASSX, MASSY , MASSZ, IXX, IYY , IZZ MP,EX,1,2E5$MP,NUXY ,1,0.3 N,1,0,0,0 N,2,450/2,0,0 N,3,450,0,0 E,1,2$E,2,3 !创建单元 TYPE,2$REAL,2 E,2 M,2,UY FINISH /SOLU !进入求解层 ANTYPE,TRANS

TRNOPT,REDUC OUTRES,ALL,ALL$DELTIM,0.004 !定义时间积分步长 ALPHAD,8 !质量阻尼为8 D,1,UY$D,3,UX,,,,,UY !节点1Y方向,约束节点3X、Y方向约束 F,2,FY,0 LSWRITE,1 !生成荷载步文件1 TIME,0.075 FDELE,ALL,ALL F,2,FY,20 LSWRITE,2 !生成荷载步文件2 TIME,1 LSWRITE,3 !生成荷载步文件3 LSSOLVE,1,3,1 !求解荷载文件1,2,3 FINISH /SOLU EXPASS,ON$EXPSOL,,,0.10000 !扩展处理 SOLVE FINISH /POST26 NUMV AR,0 FILE,fdy,rdsp !注意,建立的项目名称为fdy,否则超出最大变量数200,结果无效NSOL,2,2,U,Y,NSOL PLV AR,2 !时间位移曲线 PRV AR,2 !得出在0.10000该时间点上跨中位移最大 /POST1 !查看某个时刻的计算结果 SET,FIRST PLDISP,1 !系统在0.10000秒时总变形图 ETABLE,Imoment,SMISC,6 !单元I点弯矩 ETABLE,Jmoment,SMISC,12 !单元J点弯矩 ETABLE,Ishear,SMISC,2 !单元I点剪力 ETABLE,Jshear,SMISC,8 !单元J点剪力 PLLS,IMOMENT,JMOMENT,1,0 !画出弯矩图 PLLS,ISHEAR,JSHEAR,,1,0 !画出剪力图 结果如下; 随着时间位移的大小:

相关文档
最新文档