三种中央空调系统风道水力计算方法

三种中央空调系统风道水力计算方法
三种中央空调系统风道水力计算方法

三种中央空调系统风道水力计算方法

如同学过流体力学的人都做过流体分析一样,做过中央空调系统的人都熟悉水力计算,也害怕水力计算。水力计算基本上是中央空调设计计算里面最繁杂的计算之一。很多设计过程中的中央空调风道水力计算,都是采用的经验公式或者估算值,下面制冷快报就为大家介绍几种中央空调风道系统水力计算的方法。

风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。

风道水力计算的主要目的是确定各管段的管径(或断面尺寸)和阻力,保证系统内达到要求的风量分配,最后确定风机的型号和动力消耗。

风道水力计算方法比较多,如假定流速法、压损平均法、静压复

得法等。对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。

1.假定流速法

假定流速法也称为比摩阻法。先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。这是低速送风系统目前最常用的一种计算方法。

2.压损平均法

压损平均法也称为当量阻力法。这种方法以单位管长压力损失相等为前提,在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。

3.静压复得法

静压复得法的含义是,当流体的全压一定时,风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。此方法适用于高速空调系统的水力计算。

空调制冷量和额定功率

轮回之殇耗电量因此1

器改变在不同使用状态下的输入功率,使它在一定的区间内波动,从而达到节能的目的。补充: 看错了。。。 空调的制冷量和功率的区别(空调小知识) 平常我们很容易将空调制冷量与耗电功率弄混,因为两者都是以千瓦为单位。 本文从原理入手,介绍两者区别。 当你问一个家庭用户,你所用空调的用电功率是多大时,他可能答比如“5千 瓦”,实际上家用哪有这么大功率呀?显然,他说的是制冷量,而耗电功率仅 约2千瓦,这是怎么回事呢? 空调的制冷量,实际上就是从使用的室内“搬出去”的热量,通过转移热量而达 到降温效果。 热量过去常用卡(cal)千卡(kcaI)表示,千卡也称大卡。现在热量统一用功 率表示,用“千瓦”(kw)。他们之间什么关系呢? 1千瓦=860千卡/小时(精确一点为859.85千卡/小时) 此外,我们还应把它与电功率建立起来联系,才能回答前面提出的问题。我们 知道: 电压的单位是:1伏(V)=1焦耳/库伦。 电流的单位是:1安(A)=1库伦/秒。 功率的单位是:单位功率=单位电压×单位电流=1伏×1安=(1焦耳/库伦) ×(1库伦/秒)=1焦耳/秒。表示每秒做功的速率。 而我们的功率一般是以小时为单位时间,并且功率单位为瓦(w)。那么我们 将1焦耳/秒的分子分母同乘以3600,得:

1瓦=(1焦耳×3600)/(1秒×3600)=3600焦耳/小时。 1千瓦=3600千焦/小时 现在要和热量建立联系。我们知道,热的功当量是: 1焦耳=0.24卡(精确一点是0.2389卡)。 1千焦=2.4×10-4千卡。 从而热量的功率为: 1千瓦=(3600千焦×2.389×10-4千卡)/小时=860千卡/小时。 或:1度电=1千瓦·小时=860千卡 那么本文开头用户所说的5千瓦相当于多少热功率呢?就是: 5千瓦=5×860千卡/小时=4300千卡/小时。 我们了解了电功率和热的关系,由铭牌或说明书上制冷量就可以计算出热大卡。如上面用户所说的机子,我们查一下空调的说明书或铭牌,他所说的应是制冷量5千瓦,查制冷量5千瓦的空调,其耗电量仅为2千瓦左右。 制冷量5千瓦的空调,其耗电量仅为2千瓦左右,这决定于“COP”也就是“能效比”或“性能系数” 。 能效比公式为: 能效比=制冷量/制冷运行所消耗的功率 注意,冬天空调制热时的公式与制冷同。

空调功率计算方法

空调功率计算方法 我们现在讲空调的大小主要用匹来表示:1匹、1.5匹。匹是指空调的消耗功率,平时我们所说的空调 是多少匹,是根据空调消耗的功率算岀空调的制冷量,而市场上常用匹来描述空调器制冷量的大小。这二者之间的换算关系为:1匹的制冷量大约为2000大卡,换算成国际单位瓦应乘以 1.162,这样,1 匹制冷量应为2000大卡X1.162 = 2324W。这里的W (瓦)即表示制冷量,而1.5匹的制冷量应为2000 大卡X1.5 X1.162 = 3486W。 通常情况下,家庭普通房间每平方米所需的制冷量为115-145W ,客厅、饭厅每平方米所需的制冷量为 145-175W 。比如,某家庭客厅使用面积为15平方米,若按每平方米所需制冷量160W 考虑,则所 需空调制冷量为:160VX 15 = 2400W。这样,就可根据所需2400W 的制冷量对应选购具有2500W 制冷量的KF-25GW型分体壁挂式空调器。所谓能效比也称性能系数,就是一台空调器的制冷量与其 耗电功率的比值。通常,空调器的能效比接近3或大于3为佳,就属于节能型空调器。 空调器的制冷量/制热量: 1、空调器在进行制冷运转时,在单位时间内,从密闭房间内排岀的热量称为空调器的制冷量。 2、空调器在进行制热运转时,在单位时间内从密闭房间内释放岀的热量称为空调器的制热量。 3、每平方米空调需要150W 制冷量:从而推出房间面积使用空调的计算公式: 制冷量/150W= 房间的面积;房间的面积+2=适应最大面积;房间的面积-2=适应最小面积 例如:KFR-2601GW/BP 制冷量:2600W 2600/150=17 17+2=19 17-2=15 所以该空调适用面 积为:15-19就的房间,空调的匹数也由此而来。 根据制冷量给空调分类: 1P : 2300W-2500W 1.25P:2600W-2800W 1.5P : 3000W-3600W 2P:4000W-5200W 2.5P:5800W-6200W 3P:6500W-7200W

鸿业暖通-风管水力计算使用说明

目录 目录 目录 (1) 第 1 章风管水力计算使用说明 (2) 1.1 功能简介 (2) 1.2 使用说明 (3) 1.3 注意 (8) 第 2 章分段静压复得法 (9) 2.1 传统分段静压复得法的缺陷 (9) 2.2 分段静压复得法的特点 (10) 2.3 分段静压复得法程序计算步骤 (11) 2.4 分段静压复得法程序计算例题 (11)

鸿业暖通空调软件 第 1 章 风管水力计算使用说明 1.1 功能简介 命令名称: FGJS 功 能: 风管水力计算 命令交互: 单击【单线风管】【水力计算】,弹出【风管水力计算】对话框,如图1-1所示: 图1-1 风管水力计算对话框 如果主管固定高度值大于0,程序会调整风系统中最长环路 的管径的高度为设置值。

第 1 章风管水力计算使用说明 如果支管固定高度值大于0,程序会调整风系统中除开最长 环路管段外的所有管段的管径的高度为设置值。 控制最不利环路的压力损失的最大值,如果程序算出的最不 利环路的阻力损失大于端口余压,程序会提醒用户。 当用户需要从图面上提取数据时,点取搜索分支按钮,根据 程序提示选取单线风管。当成功搜索出图面管道系统后,最 长环路按钮可用,单击可以得到最长的管段组。 计算方法程序提供的三种计算方法,静压复得法、阻力平衡法、假定 流速法,可以改变当前的选项卡,就会改变下一步计算所用 的方法,而且在标题栏上会有相应的提示。 计算结果显示包含搜索分支里面选取的管段的一条回路的各个管段数 据。 1.2使用说明 1.从图面上提取数据 单击按钮 2.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击按钮 从打开文件对话框从选取要计算的文件,确定即可。

空调设备负荷的电功率计算方法

空调设备负荷的电功率计算 2008-07-04 13:04:24| 分类:法规文件| 标签:|字号大中小订阅 住宅内空调设备负荷的电功率计算 从事电气设计的工程技术人员,需要对室内空调的用电负荷进行估算。这是一个有经验的电气工程师应该具有的能力。这需要了解一些相关的基础技术资料。 影响室内消耗冷负荷的因素很多,有人体散热、建筑物的吸收和向外传导、照明灯具的发热、新风 的吸收和排出室外的空气带走冷量等。 部分场所空调冷负荷的估算指标 房间类型室内人数建筑负荷人体负荷照明负荷新风量新风负荷总 负荷 人/m2 W/m2 W/m2 W/m2 m3/ 人.h W/m2 W/m2Kcal/m2 公寓住 宅0.10 70.00 14.00 20.00 50.00 54.00 158.00135.88 睡 房0.25 50.00 41.00 50.00 25.00 67.00 208.00178. 88 普通房 间0.10 50.00 14.00 20.00 25.00 36.00 145.00124. 70 客 房0.06 60.00 7.00 20.00 50.00 40.00 177.0015 2.22 饭厅客 厅0.50 35.00 70.00 20.00 25.00 40.00 190.00163. 40 6 酒 吧0.50 35.00 70.00 15.00 25.00 136.00 256.00 220.16 7 咖啡 厅0.50 35.00 70.00 15.00 25.00 136.00 256.002 20.16

8 小卖 部0.20 40.00 31.00 40.00 20.00 50.00 181.0015 6.66 9 商 店0.20 40.00 31.00 40.00 20.00 50.00 181.001 56.66 小型个人办公室 0.10 40.00 14.00 50.00 25.00 40.00 145.00124.70 11 一般办公室 0.20 40.00 28.00 40.00 25.00 45.00 178.00148.78 12 图书阅 览0.20 50.00 28.00 30.00 25.00 60.00 193.00166.00 13 会议 室0.64 60.00 89.00 40.00 25.00 136.00 350.00301 .00 14 商 场 1.00 35.00 140.00 40.00 12.00 136.00 347.002 98.00 二当量计算 1.冷量的单位:冷量(即热量)的单位有焦耳(J)、千焦耳(KJ)、瓦(W)、千瓦(KW);卡 (cal)、千卡(kcal)(大卡) 在标准大气压的状况下,将一千克的水从19.56℃加热到20.5℃所需要的热量定义为一千卡(kcal) 的热量。即1kcal/kg℃或近似等于1kcal/m3℃ 2. 冷量(即热量)的单位的换算: 1W=1J/s=0.238844cal/s 1Wh(电热)=0.86cal 3.电热当量 1KWh=860cal 三制冷机的效能比 制冷效能比η=制冷机的制冷量/制冷机的输入电功率 制热效能比η=制热装置的制热量/制热装置的输入电功率 1.别墅中央空调FWR-20B1,名义制冷量为20.10KW,输入功率为7.0KW;名义制热量为21.80KW,输入功率为6.40KW。压缩机输入功率2x 2.80KW;风侧换热器2x0.19KW;水侧换热器1x0.90KW。求空 调的制冷制热效能比。 已知:名义制冷量20.10KW,输入总功率7.00KW;名义制热量为21.80KW,输入总电功率为6.40KW。

风路系统水力计算

风路系统水力计算 1 水力计算方法简述 目前,风管常用的的水力计算方法有压损平均法、假定流速法、静压复得法等几种。 1.压损平均法(又称等摩阻法)是以单位长度风管具有相等的摩擦压力损失 m p ?为前提 的,其特点是,将已知总的作用压力按干管长度平均分配给每一管段,再根据每一管段的风量和分配到的作用压力,确定风管的尺寸,并结合各环路间压力损失的平衡进行调整,以保证各环路间的压力损失的差额小于设计规范的规定值。这种方法对于系统所用的风机压头已定,或对分支管路进行压力损失平衡时,使用起来比较方便。 2.假定流速法 是以风管内空气流速作为控制指标,这个空气流速应按照噪声控制、风管本身的强度,并考虑运行费用等因素来进行设定。根据风管的风量和选定的流速,确定风管的断面尺寸,进而计算压力损失,再按各环路的压力损失进行调整,以达到平衡。各并联环路压力损失的相对差额,不宜超过15%。当通过调整管径仍无法达到要求时,应设置调节装置。 3.静压复得法(略,具体详见《实用供热空调设计手册》之11.6.3) 对于低速机械送(排)风系统和空调风系统的水力计算,大多采用假定流速法和压损平均法;对于高速送风系统或变风量空调系统风管的水力计算宜采用静压复得法。工程上为了计算方便,在将管段的沿程(摩擦)阻力损失m P ?和局部阻力损失 j P ?这两项进行叠加时, 可归纳为下表的3种方法。 将m P ?与 j P ?进行叠加时所采用的计算方法 计算方法名称 基本关系式 备注 单位管长压力损失法(比摩阻法) 管段的全压损失 ) (2 222j m e j m P l p V l V d P l P P ?+?=+= ?+?=?ρζρ λ P ?——管段全压损失,Pa ; m p ?——单位管长沿程摩擦阻力,Pa/m 用于通风、空 调的送(回)风和排风系统的压力损失计算,是最常用的方法 当量长度法 2222ρ ζρ λV V d l e e = 风管配件的当量长度 λζ e e d l = 常见用静压 复得法计算高速风管或低速风管系统的压力损失。提供各类常用风管配

风系统水力计算

风道的水力计算 水力计算是通风系统设计计算的主要部分。它是在确定了系统的形式、设备布置、各送、排风点的位置及风管材料后进行的。 水力计算最主要的任务是确定系统中各管段的断面尺寸,计算阻力损失,选择风机。 3.2.1 水力计算方法 风管水力计算的方法主要有以下三种: (1)等压损法 该方法是以单位长度风道有相等的压力损失为前提条件,在已知总作用压力的情况下,将总压力值按干管长度平均分配给各部分,再根据各部分的风量确定风管断面尺寸,该法适用于风机压头已定及进行分支管路阻力平衡等场合。 (2)假定流速法 该方法是以技术经济要求的空气流速作为控制指标.再根据风量来确定风管的断面尺寸和压力损失.目前常用此法进行水力计算。 (3)静压复得法 该方法是利用风管分支处复得的静压来克服该管段的阻力,根据这的断面尺寸,此法适用于高速风道的水力汁算。 3.2.2水力计算步骤 现以假定流速法为例,说明水力计算的步骤: (1)绘制系统轴测示意图,并对各管段进行编号,标注长度和风量。通常把流量和断面尺寸不变的管段划为一个计算管段。 (2)确定合理的气流速度 风管内的空气流速对系统有很大的影响。流速低,阻力小,动力消耗少,运行费用低,但是风管断面尺寸大,耗材料多,建造费用大。反之,流速高,风管段面尺寸小,建造费用低,但阻力大,运行费用会增加,另外还会加剧管道与设备的磨损。因此,必须经过技术经济分析来确定合理的流速,表3-2,表3-3,表3-4列出了不同情况下风管内空气流速范围。

时应首先从最不利环路开始,即从阻力最大的环路开始。确定风管断面尺寸时,应尽量采用通风管道的统一规格。 ⑷其余并联环路的计算 为保证系统能按要求的流量进行分配,并联环路的阻力必须平衡。因受到风管断面尺寸的限制,对除尘系统各并联环路间的压损差值不宜超过10%,其他通风系统不宜超过15%,若超过时可通过调整管径或采用阀门来进行调节。调整后的管径可按下式确定 225 .0''? ? ? ????=P P D D mm 式中 'D ——调整后的管径,m ; D 一原设计的管径,m ; P ?——原设计的支管阻力,Pa ; 'P ?——要求达到的支管阻力,Pa 。 需要指出的是,在设计阶段不把阻力平衡的问题解决,而一味的依靠阀门开度的调节,对多支管的系统平衡来说是很困难的,需反复调整测试。有时甚至无法达到预期风量分配,或出现再生噪声等问题。因此,我们一方面加强风管布置方案的合理性,减少阻力平衡的工作量,另一方面要重视在设计阶段阻力平衡问题的解决。 (5)选择风机 考虑到设备、风管的漏风和阻力损失计算的不精确,选择风机的风量,风压应按下式考虑考虑 L K L L f = m 3/h P K P f f ?= Pa 式中 f L ——风机的风量,m 3 /h ; L ——系统总风量,m 3 /h ; f P ——风机的风压,Pa ; P ?——系统总阻力,Pa ; L K ——风量附加系数,除尘系统L K =-;一般送排风系统L K =;

空调设备负荷的电功率计算

住宅内空调设备负荷的电功率计算 从事电气设计的工程技术人员,需要对室内空调的用电负荷进行估算。这是一个有经验的电气工程师应该具有的能力。这需要了解一些相关的基础技术资料。 影响室内消耗冷负荷的因素很多,有人体散热、建筑物的吸收和向外传导、照明灯具的发热、新风的吸收和排出室外的空气带走冷量等。 部分场所空调冷负荷的估算指标 房间类型室内人数建筑负荷人体负荷照明负荷新风量新风负荷总负荷 人/m2 W/m2 W/m2 W/m2 m3/人.h W/m2 W/m2Kcal/m2 公寓住宅0.10 70.00 14.00 20.00 50.00 54.00 158.00135.88 睡房0.25 50.00 41.00 50.00 25.00 67.00 208.00178.88 普通房间0.10 50.00 14.00 20.00 25.00 36.00 145.00124.70

客房0.06 60.00 7.00 20.00 50.00 40.00 177.00152.22 饭厅客厅0.50 35.00 70.00 20.00 25.00 40.00 190.00163.40 6 酒吧0.50 35.00 70.00 15.00 25.00 136.00 256.00220.16 7 咖啡厅0.50 35.00 70.00 15.00 25.00 136.00 256.00220.16 8 小卖部0.20 40.00 31.00 40.00 20.00 50.00 181.00156.66 9 商店0.20 40.00 31.00 40.00 20.00 50.00 181.00156.66 小型个人办公室0.10 40.00 14.00 50.00 25.00 40.00 145.00124.70 11 一般办公室0.20 40.00 28.00 40.00 25.00 45.00 178.00148.78 12 图书阅览0.20 50.00 28.00

风系统水力计算.docx

3.2风道的水力计算 水力计算是通风系统设计计算的主要部分。它是在确定了系统的形式、设备布 置、各送、排风点的位置及风管材料后进行的。 水力计算最主要的任务是确定系统中各管段的断面尺寸,计算阻力损失,选择 风机。 3.2.1水力计算方法 风管水力计算的方法主要有以下三种: (1)等压损法 该方法是以单位长度风道有相等的压力损失为前提条件,在已知总作用压力的情况下,将总压力值按干管长度平均分配给各部分,再根据各部分的风量确定风管 断面尺寸,该法适用于风机压头已定及进行分支管路阻力平衡等场合。 (2)假定流速法 该方法是以技术经济要求的空气流速作为控制指标.再根据风量来确定风管的 断面尺寸和压力损失.目前常用此法进行水力计算。 (3)静压复得法 该方法是利用风管分支处复得的静压来克服该管段的阻力,根据这的断面尺寸,此法适用于高速风道的水力汁算。 3.2.2水力计算步骤 现以假定流速法为例,说明水力计算的步骤: (1)绘制系统轴测示意图,并对各管段进行编号,标注长度和风量。通常把流量 和断面尺寸不变的管段划为一个计算管段。 (2)确定合理的气流速度 风管内的空气流速对系统有很大的影响。流速低,阻力小,动力消耗少,运行 费用低,但是风管断面尺寸大,耗材料多,建造费用大。反之,流速高,风管段面 尺寸小,建造费用低,但阻力大,运行费用会增加,另外还会加剧管道与设备的磨 损。因此,必须经过技术经济分析来确定合理的流速,表 3-2 ,表 3-3 ,表 3-4 列出了不同情况下风管内空气流速范围。 表 3-2 工业管道中常用的空气流速(m/s) 建筑物类管道系统的 风速靠近风自然通机械通机处的极限 别部位 风风流速吸入空气的百叶 0- 1.02-4 窗 吸风道1-22-6 辅助建筑支管及垂直0.5-1. 2-510- 12风道5 水平总风道 0.5-1. 5-8 近地面的进0.2-0.0.2 -

烟气管道阻力计算

第三节 管道阻力 空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算: ρ λ 242 v R R s m ?= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ; υ——风管内空气的平均流速,m /s ; ρ——空气的密度,kg /m 3; λ——摩擦阻力系数; Rs ——风管的水力半径,m 。 对圆形风管: 4D R s = (5—4) 式中 D ——风管直径,m 。 对矩形风管 )(2b a ab R s += (5—5) 式中 a ,b ——矩形风管的边长,m 。 因此,圆形风管的单位长度摩擦阻力 ρ λ 22 v D R m ?= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下: ) Re 51 .27.3lg( 21 λλ +-=D K (5—7) 式中 K ——风管内壁粗糙度,mm ; Re ——雷诺数。 υvd = Re (5—8) 式中 υ——风管内空气流速,m /s ; d ——风管内径,m ; ν——运动黏度,m 2/s 。 在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。图5—2是计算圆形钢板风管的线解图。它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

三种中央空调系统风道水力计算方法

三种中央空调系统风道水力计算方法 如同学过流体力学的人都做过流体分析一样,做过中央空调系统的人都熟悉水力计算,也害怕水力计算。水力计算基本上是中央空调设计计算里面最繁杂的计算之一。很多设计过程中的中央空调风道水力计算,都是采用的经验公式或者估算值,下面制冷快报就为大家介绍几种中央空调风道系统水力计算的方法。 风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。 风道水力计算的主要目的是确定各管段的管径(或断面尺寸)和阻力,保证系统内达到要求的风量分配,最后确定风机的型号和动力消耗。 风道水力计算方法比较多,如假定流速法、压损平均法、静压复

得法等。对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。 1.假定流速法 假定流速法也称为比摩阻法。先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。这是低速送风系统目前最常用的一种计算方法。 2.压损平均法 压损平均法也称为当量阻力法。这种方法以单位管长压力损失相等为前提,在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。 3.静压复得法 静压复得法的含义是,当流体的全压一定时,风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。此方法适用于高速空调系统的水力计算。

空调瓦数与匹的换算

空调匹数与功率的换算 一、1P等于多少实际消耗功率? 平时所说的匹数指的是电器的消耗功率,1匹=1马力=735w ,它是指空调的实际输入功率,也就是空调的耗电量。 1P=735W 1.25P=918.7W 1.5P=1.1KW 2P=1470W 2.5=1837.5W 3P=2205W 二、按制冷功率(制冷量)来算: 国内有些空调也将制冷功率标成输出功率,实际也就是制冷量,它描述的是空调能够输出的实际能量。 1P:2300W-2500W 1.25P:2600W-2800W 1.5P:3000W-3600W 2P:4000W-5200W 2.5P:5800W-6200W 3P:6500W-7200W 三、匹数与制冷量的称呼: 一般厂家把制冷量2500W的空调叫一匹空调,适合12平米左右的房间使用。小于2500W的叫小一匹空调,大于的就叫大一匹空调;制冷量3200W的是1.2 匹空调,也有人叫小1.5匹空调,适合15平米左右的房间使用;制冷量3500W 的空调是1.5匹空调,也有人叫大1.5匹空调,适合18平米左右的房间使用,其实制冷量大于3500W的空调才叫大1.5匹空调。制冷量4500W左右的空调是小两匹空调,适合22平米左右的房间使用,而制冷量5000W的两匹空调,适合25平米左右的房间使用。 小1P:制冷量在2200W,也就是小于2500W的空调 正1P:制冷量在2500W,也就是标准的1P空调 大1P:制冷量在2800W左右 小1.5P:制冷量在3200W,实际也就是1.2P的空调 正1.5P:制冷量在3500W,也就是标准的1.5匹空调 大1.5P:制冷量>3500W的空调 小2P:制冷量在4500W左右 正2P:制冷量在5000W 正3P空调:制冷量在7200W

通风阻力计算软件使用说明书

通风阻力计算软件 用户手册 西安富凯能源科技有限责任公司 1

前言 本手册是“锅炉设计烟风阻力计算软件”的使用说明书,随软件同时提供给客户。 为了使您对该产品有一个总体的认识,方便您的使用,我们专门为您配置了 用户手册,主要对“锅炉设计烟风阻力计算软件”的主要功能、使用方法、注意事项、用户界面等进行介绍,使您能够掌握本软件的使用方法,是您使用本软件的必不可少的指南。 本手册使用用户要求具备一定的锅炉设计与工程计算的基本知识,在数据输入过程中必须要注意数值的常规范围,并符合实际情况。 使用前,请您仔细阅读本手册,对本产品有一定的了解。由于编者水平有 限,可能在程序设计、编制过程中存在缺点和错误,敬请用户批评指正。另外,在使用过程中,如果您有什么问题,请来电查询,我们定当竭诚为您服务。 2

目录 一、概述 (4) (一)计算标准方法及参考文献 (4) (二)基本使用过程描述 (4) 二、软件界面介绍 (5) (一)菜单栏区域 (5) (二)任务栏区域 (6) (三)操作区域 (6) 三、烟风阻力计算 (7) (一)锅炉基本信息 (7) (二)烟气侧部件选择及参数输入 (8) (三)空气侧部件选择及参数输入 (10) (四)计算 (10) (五)输出计算书(计算结果预览) (11) (六)输出计算书到Excel (13) 四、补充说明 (17) (一)计算结果出现0、-1或非数值 (17) (二)修改区块或部件名称 (17) 3

一、概述 (一)计算标准方法及参考文献 本程序设计主要依据及参考手册: 《锅炉设备空气动力计算》(标准方法第三版) 《工业锅炉烟风阻力计算方法》北京科林燃烧工程有限公司组织上海工业锅炉研究所编纂 (二)基本使用过程描述 烟道、风道全压降计算: ?新建项目文件 ?输入锅炉的基本信息参数 ?选择烟气侧阻力部件 ?输入烟气侧参数 ?选择空气侧阻力部件 ?输入空气侧参数 ?计算 ?输出计算书 ?输出计算书到Excel 注意:本软件将“自生通风”的计算作为一个虚拟的阻力部件,因此在计算全压降时,需要选择“自生通风”部件。 4

空调水管水力计算

一、空调水系统的设计原则: 1、力求水力平衡; 2、防止大流量小温差; 3、水输送符合规范要求; 4、变流量系统宜采用变频调节; 5、要处理好水系统的膨胀与排气; 6、解决好水处理与水过滤; 7、切勿忽视管网的保冷与保温效果。 二、冷冻水、冷却水管的计算 1、压力式水管道管径计算 D=103πνL 4(mm ) 公式中 L------水流量(m 3/s ) v-------计算流速(m/s ) 一般水管系统的管内水流速可参考表13-12的推荐值取用 表13-13选择。 2、直线管段的阻力计算 Δh=d l λ×2 2v ρ=R ×l 式中Δh---长度为l (m )的直管段的摩擦阻力(Pa ) λ---水与管内壁间的摩擦阻力系数; l----直管段的长度(m ); d----管内径(m ); ρ----水的密度(kg/m 3),当4℃时为1000kg/m 3 R-----长度为1m 直管段的摩擦阻力(Pa/m ) 三、空调设备流量计算 由Q=CM ΔT 可得出:M=Q/C*ΔT (Kg/S ) Q-----空调制冷或制热量(Kw ) C-----水的比热容,4.2KJ/Kg*℃ ΔT---进出空调设备的供回水温差,ΔT =T G -T H 四、风机盘管选择 1、计算室内空调冷负荷Q (W ),简单依单位面积指标及经验估算。 2、考虑机组的盘管用后积垢积尘对传热的影响,对空调冷负荷要进行修正,冷负荷应乘以系数a 仅冷却使用 a=1.10 作为加热、冷却两用 a=1.20 仅作为加热用 a=1.15 3、依据空调冷负荷选择风机盘,一般按中档运行能力选择。 4、校核风量:L=) (3600s n h h Q -ρ L-----风机盘管名义风量(m 3/h )

空调计算功率

一、功率单位电功率的匹数分体空调机的额定输入功率 1英制马力(HP)(匹)=0.746KW(千瓦)=746W 2公制马力(HP)(匹)=0.735KW(千瓦)=735W 1千瓦时=1度电 二、空调匹数制冷量空调机的输出功率(制冷量或制热量) 原指输入功率,包括压机、风扇电机及电控部分,因不同的品牌其具体的系统及电控设计差异,其输出的 制冷量不同故其制冷量以输出功率计算。 一般来说,1匹的制冷量大致为2000大卡,换算成国际单位应乘以1.162,故1匹之制冷量应为2000大 卡×1.16=2324(W),这里的W(瓦)即表示制冷量 空调耗电量,能在铭牌上找到。通常,输入功率1000瓦,表示这款空调每小时耗电1千瓦时。输入功率 为1400瓦,则每小时耗电1.4千瓦时。 要知道你24小时不间断的运行能用多少W多少度电,先看一下你的输入功率(空调耗电量)先 (空调输入或输出电功率数据,已经以‘瓦’为单位,刻在空调外壳的铭牌上。铭牌上有产品型号,第1位为产品代号,K表示房间空气调节器;第2位为结构代号,C表示窗机,F表示分体机;第3位为功能代号,R表示双制,空白为单制;第4位表示制冷、制热量。) 另外补充: 1匹(HP)=2500W 严格来讲是2499W,这是日本人规定的,也是根据能效比EER计算出来的. 此匹和一般说的马力完全两个概念,但这个匹就是有那个马力计算出来的. 1马力=735W,一匹的定义就是输入1马力的功率所能产生的功率大小, 这里面就有一个系数的问题,日本人规定的这个系数是3.4(日本人说这个3.4是最应该的 最小的能效比EER了) 所以1匹=735*3.4=2499W 匹 1匹等于1马力,单位为HP;1匹=0.735KW https://www.360docs.net/doc/3a11771524.html,9 ?4 j* e# N7 Y% W) T* w e- B& K 电机一般是以马力为单位的,三维|cad|机械汽车技术|ca tia|pro/e|ug|invento r|solidedge|so lidwork s|caxa5 x; p, g2 w8 D4 ~ 1HP(0.75KW) 1.5HP(1.1KW) 2HP(1.5KW) 3HP(2.2KW) 5HP(3.7KW) 7.5HP(5.5KW) 三维网技术论坛7 x+ O @) L7 e+ K( X! e 10HP(7.5KW) 三维|cad|机械汽车技术catia|p ro/e|ug|inventor|so lidedge|solidwo rks|caxa2 a1 q: D2 ^: D4 |( Y9 O+ B& a 15HP(11KW)

空调功率计算

机房空调选型估算方法 : 方法一:功率及面积法 Qt=Q1+Q2 Qt 总制冷量(KW) Q1 室内设备负荷(=设备功率×0.8) Q2 环境热负荷(=0.18kW/m2 ×机房面积) 方法二:面积法(当只知道面积时) Qt=S×P Qt 总制冷量(KW) S 机房面积( m2) P 冷量估算指标(根据不同用途机房的估算指标选取) 精密空调场所的冷负荷估算指标 电信交换机房、移动基站(300-350W/m2) IDC数据中心(600-800W/m2) 计算机房、计费中心、控制中心、培训中心(300-350W/m2) 电子产品及仪表车间、精密加工车间(300-350W/m2) 标准检测室、校准中心(250-300W/m2) UPS和电池室、动力机房(300-350W/m2) 医院和检测室、生化培养室、洁净室、实验室(200-250W/m2) 仓储室(博物馆、图书馆、档案管、烟草、食品)(150-200W/m2) 一、ups机房空调选型计算公式 1-1. BTU/小时= KCal×3.96 1-2. KCal = KVA×860 1-3. BUT/小时 = KVA(UPS容量)×860×3.96×(1-UPS效率) = KVA(UPS容量)×3400(1-UPS效率)

例:10KVA UPS一台整机效率85%,其散热量计算如下: 10KVA×3400×(1-0.85)=5100 BTU/小时 1英热单位/时(Btu/h)=0.293071瓦(W) 二、IDC机房空调选型计算公式 u . Q=W×0.8×(0.7---0.95)+{(80---200)×S}/1000 u . Q为制冷量,单位KW; u . W为设备功耗,单位KW;按用户需求暂按110KW; u . 0.8为功率因数; u . 0.7-0.95为发热系数,即有多少电能转化为热能;取0.7 u . 80-200是每平方米的环境发热量,单位是W; u . S为机房面积,单位是m2。 U 机房空调选型风量计算是,风量除以房间体积等于每小时送风循环次数

鸿业暖通_风管水力计算使用说明

目录 目录 (1) 第1 章风管水力计算使用说明 (2) 1.1 功能简介 (2) 1.2 使用说明 (3) 1.3 注意 (8) 第2 章分段静压复得法 (9) 2.1 传统分段静压复得法的缺陷 (9) 2.2 分段静压复得法的特点 (10) 2.3 分段静压复得法程序计算步骤 (11) 2.4 分段静压复得法程序计算例题 (11)

第 1 章风管水力计算使用说明 1.1功能简介 命令名称:FGJS 功能:风管水力计算 命令交互: 单击【单线风管】【水力计算】,弹出【风管水力计算】对话框,如图1-1所示: 图1-1 风管水力计算对话框 如果主管固定高度值大于0,程序会调整风系统中最长环路 的管径的高度为设置值。

如果支管固定高度值大于0,程序会调整风系统中除开最长 环路管段外的所有管段的管径的高度为设置值。 控制最不利环路的压力损失的最大值,如果程序算出的最不 利环路的阻力损失大于端口余压,程序会提醒用户。 当用户需要从图面上提取数据时,点取搜索分支按钮,根据 程序提示选取单线风管。当成功搜索出图面管道系统后,最 长环路按钮可用,单击可以得到最长的管段组。 计算方法程序提供的三种计算方法,静压复得法、阻力平衡法、假定 流速法,可以改变当前的选项卡,就会改变下一步计算所用 的方法,而且在标题栏上会有相应的提示。 计算结果显示包含搜索分支里面选取的管段的一条回路的各个管段数 据。 1.2使用说明 1.从图面上提取数据 单击按钮 2.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击按钮 从打开文件对话框从选取要计算的文件,确定即可。 3.选择要计算的方法,设置好相应的参数 静压复得法: 是最不利环路最末端的分支管(不是从最 后一根支管)的风速。

空调冷功率与电功率换算

1.空调制冷量与功率的关系:以35的为例与能效比的高低有直接关系的。 2.如用一级能效比、以制冷量是3500W的空调的、它的制冷功率只是要输入1020w[瓦],制冷量是3500W除制冷功率1020w= 3.43对应是一级能效比数值。 3.如用五级能效比、以制冷量是3500W的空调的、它的制冷功率只是要输入1340w[瓦]],制冷量是3500W。 4.冷功率1340w=2.61对应是五级能效比数值。 5.现在能效比分五级:1级=3.4以上2级=3.2 3级=3.0 4=2.8 5级=2.6。 6.也可以理解为以1级能效比=1度电能生产3400w的制冷量以5级能效比=1度电能生产2600w的制冷量。 空调的制冷量,制冷功率与电功率 空调的“匹”数,是指空调的制冷功率,或者叫制冷量(W),也就是空调的输出功率的能量。制冷功率是制冷量的1.162W,制冷量的单位是大卡。 1匹空调的制冷量大约为2000大卡,换算成制冷功率,乘以1.162W,即2000大卡×1.162=2324(W)(瓦)制冷功率,则1.5匹的应为2000大卡×1.5×1.162=3486(W),根据计算值,大致能判定空调的匹数和制冷功率, 2200W—2300W称为小一匹机,2500W称正一匹机,2600W称大一匹机。2800W的称1.25匹,3200W称小一匹半,3500W称正一匹半, 3600W称大一匹半。4500(W)—5100(W)可称为2匹,或者称小二匹机,或者正二匹机,或者大二匹机。以此类推,各种叫法,均可以。 知道了空调的制冷功率,就是空调的输出功率,我们还需要知道空调的输入功率,就是电功率,知道了电功率才可以选择电线的截面积和保护用的空气断路器,或者叫空开。 电功率是制冷功率除于能效比。能效比是输出功率与输入功率之比的值,称能效比;欧洲的能效标准,空调能效水平分为A、B、C、D、E、F、G共7个级别。其中A级最高,能效比为3.2以上;D级居中,介于2.8~2.6之间;E级以下属于低能效空调。目前我国绝大多数空调处于欧洲E级水平。而在日本国内的空调器的能效比现在一般都在4.0~5.0左右。原来制冷能效比(EER)最高的是一款东芝开利空调,其制冷能效比为6.3。目前,科龙第四代双高效空调以6.65的制冷能效比,刷新了世界最高的空调能效比纪录。据悉,其在科龙实验室测得的能效比最高值已超过7.0。这说明我国的空调行业发展还是颇具潜力的。我们国家的目前的标准是;一级能效比是空调的制冷量,制冷功率与电功率3.4以上,二级是3.2,三级3.0,四级是2.8,五级是2.6 。级别越大能耗越高。目前国家已经规定企业不再允许生产能效比在3.0以下级别的空调,该级别的空调属于淘汰产品。比如;原来的高能耗机,能效比是五级,那么,1匹空调的电功率就是 = 2000×1.162≈2324(W)/2.6≈894(W),如果是现在的一级低能耗机,那么,就是= 2000×1.162≈2324(W)/3.4≈684(W),一级比五级节省电能;894-684=211(W),如果一天制冷工作5小时计算,一个月150h×211W = 31.65度/月。因此,空调选择时,除了选择需要的制冷量,还要根据价格比和能效比选择合理的能效比档次。 电线的截面积选择,建议按照低能耗值选择,根据单相功率计算空调的额定电流,因为,空调有压缩机,风扇等电器均属于电感性电器,因此,按照感性负载计算电流,I=P/U/Cos¢,功率因数Cos¢考虑0.80,那么,I=1000/220/0.80 ≈ 5.68(A),知道了一千瓦电功率的空调机的电流是约5.7安,我们可以通过该数值,求出多少匹空调的电流了,比如,1.5匹空调的电流 I ≈ (1.5×2000×1.162/2.6)×5.7 ≈7.6(A),根据导线截面的安全载流量,1㎜2的铜芯线即可,但是,考虑到线路的机械强度及损耗和穿管敷设的散热效应等情况,建议选择1.5

空调制冷量计算公式

空调制冷量计算公式 答:空调匹数,原指输入功率,包括压机、风扇电机及电控部分,因不同的品牌其具体的系统及电控设计差异,其输出的制冷量不同故其制冷量以输出功率计算。 一般来说,1匹的制冷量大致力2000大卡,换算成国际单位应乘以1.162,故1匹之制冷量应力2000大卡×1.162=2324(w),这里的w(瓦)即表示制冷量,则1.5匹的应为2000大卡x1.5x1.162=3486(w),以此类推,根据此情况,则大致能判定空调的匹数和制冷量,一般情况下,2200W一2600W都可称为1匹,4500(w)- 5100(w)可称为2匹,3200W 一3600W可称为1.5匹。 制冷量确定后,即可根据目己家庭之实际情况估算制冷量,选择合适的空调机。 家用电器要消耗制冷量的较大部分,电视、电灯、冰箱等每w(瓦)功率要消耗制冷量1(w),门窗的方向也要消耗一定的制冷量,东面窗150W/m2,西面窗280/m2,南面窗180W/m2,北面窗100W/m2,如是楼顶及西晒可考虑适当增加制冷量。 在选择空调时,请您根据以上介绍,估算一下自己的制冷量大小,从而选到满意的空调机。 关于匹、大卡、KW等设备单位概念解释 1. 匹1匹(HP)=2500W 严格来讲是2499W,这是日本人规ǖ?也是根据能效比EER计算出来的. 此匹和一般说的马力完全两个概念,但这个匹就是有那个马力计算出来的. 1马力=735W,一匹的定义就是输入1马力的功率所能产生的功率大小, 这里面就有一个系数的问题,日本人规定的这个系数是3.4(日本人说这个3.4是最应该的 最小的能效比EER了) 所以1匹=735*3.4=2499W 2.kj 和度这两个都是能量的单位,其余几个是功率的单位 度的表示就是KWH,指的就是你家的灯泡耗了多少电量,你要记得交电费啊. 1KWH=36000kj 能量单位你最常见的是卡和千卡(cal和kcal) 1cal=4.1868j(这个最常见,初中的课本上就有的) 3.冷吨一般用RT表示,但冷吨分三中,美国冷吨,日本冷吨和英国冷吨, 我们平时说的和最常用的都是美国冷吨,用US.RT表示,US就是美国的缩写了. 1US.RT=3516.7W 那两个中英制冷吨比较大些,是3800多吧,日本的小些. 4.大卡设计院的人最喜欢说大卡了,有的厂家比如大金的机器铭牌上的数字表示的单位

75吨CFB锅炉-23-75F32 烟风阻力计算汇总表

序号名称 符号单位计算公式或来源 计算结果一烟气侧阻力(已考虑密度和沾污修正) 1炉膛出口变截面阻力及转弯阻力ΔP 1Pa 21.92分离器阻力 ΔP 2Pa 11003转向室至竖井变截面急转弯阻力ΔP 3Pa 25.24高温过热器阻力ΔP 4Pa 87.55低温过热器阻力ΔP 5Pa 185.86高温省煤器阻力ΔP 6Pa 98.67低温省煤器阻力ΔP 7Pa 235.88空气预热器阻力ΔP 8Pa 919.29 炉膛出口负压 ΔP' Pa 10010自生通风力 ΔPc Pa -153.911锅炉本体烟道全压降ΔP Pa 2927.912锅炉出口总烟气量(标态下)Q/Nm 3/h 95175.6 13锅炉出口总烟气量Q m 3/h 134℃141891.814锅炉排烟温度t py ℃ 13415烟尘初始排放浓度 mg/Nm3 55518.7 二一次风空气侧阻力(已考虑密度和沾污修正)1空气进口接管局部阻力ΔP 1Pa 45.72空气预热器本体阻力ΔP 2Pa 711.43连通箱阻力 ΔP 3Pa 57.14空气预热器管箱进出口局部阻力ΔP 4Pa 110.15空气出口接管局部阻力ΔP 5Pa 54.36一次热风道阻力ΔP 6Pa 估算650.07风室风压ΔP 7Pa 取值 8500.08自生通风力 ΔP 8Pa -22.49 一次风空气侧的总阻力 ΔP Pa 10151.010一次风空气总量(标态下)Q/ Nm3/h 49297.511一次风空气总量Q m3/h 20℃52909.012一次热空气温度 tr ℃ 144.0 三二次风空气侧阻力(已考虑密度和沾污修正)1 空气进口接管局部阻力 ΔP 1Pa 48.7 郑州锅炉股份有限公司 23-75F32 烟风阻力计算汇总表ZG-75/5.29-M3

相关文档
最新文档