《量子力学》课程研究生入学考试大纲

《量子力学》课程研究生入学考试大纲
《量子力学》课程研究生入学考试大纲

《量子力学》课程研究生入学考试大纲

一、考试性质

量子力学考试是长春理工大学物理学科为招收全国统一入学考试硕士研究

生而设置的具有选拔性质的专业课考试科目,其目的是科学、公平、有效地测试考生掌握量子力学课程大学本科阶段专业基础知识、基本理论、基本方法的水平和分析问题、解决问题的能力,评价的标准是高等学校本科物理相关学科优秀毕业生所能达到的及格或及格以上水平,以利于所在专业择优选拔,保证招生质量。

二、考查目标

量子力学是物理类和信息类的一门基础理论课,是学习相关专业课程的专业基础课。要求考生系统掌握量子力学的基本理论、基本知识和基本方法,能够运用所学的基本理论、基本知识和基本方法分析和解决有关理论问题和实际问题。

三、考试内容

1. 波函数和薛定谔方程

波粒二象性,量子现象的实验证实,波函数及其统计解释,薛定谔方程,态叠加原理。

2.一维势场中的粒子

一维势场中粒子能量本征态的一般性质,一维方势阱的束缚态,方势垒的穿透,δ--函数和δ-势阱中的束缚态,一维简谐振子。

3.力学量用算符表示

坐标及坐标函数的平均值,动量算符及动量值的分布概率,算符的运算规则及其一般性质,厄米算符的本征值与本征函数,共同本征函数,不确定关系,角动量算符,力学量平均值随时间的演化,量子力学的守恒量。

4.中心力场

两体问题化为单体问题,球对称势和径向方程,自由粒子和球形方势阱,三维各向同性谐振子,氢原子及类氢离子。

5.量子力学的矩阵表示与表象变换

态和算符的矩阵表示,狄拉克符号,表象变换。

6.自旋

电子自旋态与自旋算符,总角动量的本征态,碱金属原子光谱的双线结构与反常塞曼效应,电磁场中的薛定谔方程,自旋单态与三重态,光谱线的精细和超精细结构,自旋纠缠态。

7.定态问题的近似方法

定态非简并微扰轮,定态简并微扰轮,变分法。

8.多体问题

全同粒子系统

四、考试要求:

1.波函数和薛定谔方程

1)了解波粒二象性假设的物理意义及其主要实验事实,

2)熟练掌握波函数的标准化条件:有限性、连续性和单值性。深入理解波函数的概率解释。

3)理解态叠加原理以及任何波函数按不同动量的平面波展开的方法及其物理意义.

4)熟练掌握薛定谔方程的建立过程。深入了解定态薛定谔方程,定态与非定态波函数的意义及相互关系。了解连续性方程的推导及其物理意义。

2.一维势场中的粒子

1)熟练掌握一维薛定谔方程边界条件的确定和处理方法。

2)熟练掌握一维无限深方势阱的求解方法及其物理讨论,掌握一维有限深方势阱束缚态问题的求解方法。

3)熟练掌握势垒贯穿的求解方法及隧道效应的解释。

4)熟练掌握一维谐振子的能谱及其定态波函数的一般特点及其应用。

5)了解 --函数势的处理方法。

3.力学量用算符表示

1)掌握算符的本征值和本征方程的基本概念。

2)熟练掌握厄米算符的基本性质及相关的定理。

3)熟练掌握坐标算符、动量算符以及角动量算符,包括定义式、相关的对易关系及本征值和本征函数。

4)熟练掌握力学量取值的概率及平均值的计算方法。理解两个力学量同时具有确定值的条件和共同本征函数。

5)熟练掌握不确定度关系的形式、物理意义及其一些简单的应用。

6)理解力学量平均值随时间变化的规律。掌握如何根据哈密顿算符来判断该体系的守恒量。

4.中心力场

1)熟练掌握两体问题化为单体问题及分离变量法求解三维库仑势问题。

2)熟练掌握氢原子和类氢离子的能谱及基态波函数以及相关的物理量的计算。

3)了解球形无穷深方势阱及三维各向同性谐振子的基本处理方法。

5.量子力学的矩阵表示与表象变换

1)理解力学量所对应的算符在具体表象的矩阵表示。

2)了解表象之间幺正变换的意义和基本性质。

3)掌握量子力学公式的矩阵形式及求解本征值、本征矢的矩阵方法。

4)了解狄拉克符号的意义及基本应用。

6. 自旋

1)了解斯特恩—盖拉赫实验.电子自旋回转磁比率与轨道回转磁比率。

2)熟练掌握自旋算符的对易关系和自旋算符的矩阵形式(泡利矩阵)、与自旋相联系的测量值、概率和平均值等的计算以及其本征值方程和本征矢的求解方法。

3)了解电磁场中的薛定谔方程和简单塞曼效应的物理机制。

4)了解自旋-轨道藕合的概念、总角动量本征态的求解及碱金属原子光谱的

精细和超精细结构。

5)熟练掌握自旋单态与三重态求解方法及物理意义,了解自旋纠缠态概念。

7.定态问题的近似方法

1)了解定态微扰论的适用范围和条件,

2)掌握非简并的定态微扰论中波函数一级修正和能级一级、二级修正的计算。

3)掌握简并微扰论零级波函数的确定和一级能量修正的计算.

4)掌握变分法的基本应用。

8.多体问题

1)了解量子力学全同性原理及其对于多体系统波函数的限制。

2)了解费米子和波色子的基本性质和泡利原理。

五、考试基本题型

基本题型可能有:选择题、填空题、判断题、简答题、证明题、计算题和分析论述题等。

量子力学论文

量子理论及技术的发展 【摘要】本文简述了在量子力学的发展过程中所带动的激光、半导体、扫描 隧道显微镜、量子信息等技术的形成及影响,并借此强调了基础理论对于技术发明的重要性。 【关键词】量子力学激光半导体扫描隧道显微镜量子信息 回顾科技史,以量子论、相对论为代表的近代物理学掀起了以能源、材料、信息为代表的现代技术革命,其中量子理论在形成中便带动了相关技术群的出现并促进了自身研究的深入和拓展。 一、从“光量子假说”到激光技术 1900年,德国物理学家普朗克为了解决有关热辐射现象的“黑体辐射”难题,提出了“普朗克假设”,其“能量子”概念的提出标志着量子力学的诞生。随后,爱因斯坦于1905年提出了“光量子假说”以解释“光电效应”,使人们对能量量子化的认识更深入了一步的认识。1916年,爱因斯坦指出辐射有两种形式:自发辐射和受激辐射,从而为激光器的发明奠定了理论基础。 激光器在技术上的最终实现得益于二战后对与雷达相关的微波的深人研究。其中标志性的工作有:1933年拉登伯格观测到了负色散现象;1939年法布里坎特指出辐射放大的必要条件是实现粒子数反转;1946年布洛赫观察到了粒子数反转的信号;1951年珀塞尔第一次在实验中实现了粒子数反转并观察到了受激辐射;1951年汤斯首次提出实现微波放大的可能性;1954年汤斯等人成功地制成了世界上第一台“辐射的受激发射微波放大”的装置(简称脉塞Maser);1958年汤斯和肖洛论证了把微波激射技术扩展到 论的又一重大课题。在量子力学建立前,特鲁特于1900提出了经典的金属自由电子气体模型,定性的解释了金属的电导和热导行为,但得到的定量比热关系在低温时与实验 偏离较大。1907年爱因斯坦应用了量子假说,所得结果得到了能斯特的实验验证和大力宣传,使量子论开始被人们认识,从而打开了迅速发展的局面。从1913年玻尔提出半 经典的量子论原子模型到1928年狄拉克发表电子的相对红外区和可见光区的可能性。最终,美国休斯研究所的梅曼于1960年成功制造并运转了第一台激光器——红宝石脉冲激光器,同年12月贾万研制出第一台气体激光器——氦氖激光器。 这两种激光器的相继问世引起了全世界科技界研究激光的热潮,各种激光器陆续出现。其中有可获得大功率脉冲的钕激光器,连续输出大功率的二氧化碳激光器,可在室温下工作的小型半导体激光器,从化学反应获得能量的化学激光器,光谱线很宽的可以连续改变激光输出波长的染料激光器。后来,还出现了自由电子激光器、准分子激光器、离子激光器等等。激光的波长范围已扩展到从红外到紫外以至x射线的所有波段,激光的应用更涉及到从日常生活到高新科技各个领域.如工业上的激光切割、焊接、打孔、表面改性、测距、大气污染分析;生物上的激光育种、水产养殖、品种改良、生命活细胞的全息照相;医疗上的激光外科手术、诊断;军事上的激光制导炸弹、强激光武器;此外,激光还应用于通信、光盘、分离同位素、激光核聚变等许多方面。

硕士研究生入学考试初试考试大纲

2020年博士研究生招生考试初试考试大纲 科目代码:3012 科目名称:人机工程学 适用专业:机械工程 参考书目:《人机工程学》丁玉兰编著,北京理工大学出版社,2011. 考试时间:3小时 考试方式:笔试 总分:100分 考试范围: 一、人机工程学概述: 人机工程学的命名及定义、起源与发展、研究内容与方法、体系及应用。二、人体测量与数据应用: 人体测量的基本知识、主要统计函数,常用的人体测量数据及人体测量数据的应用。 三、人体感知与信息处理: 人在系统中的功能,视觉机能及其特征,听觉机能及其特征,其他感觉机能及其特征,神经系统机能及其特征,人的信息处理系统 四、人的心理与行为特征: 心理现象与行为构成,感觉与知觉特征,注意与记忆特征,想象与思维特征,创造性心理特征。 五、人体生物力学与施力特征: 人体运动与骨杠杆,人体生物力学模型,人体的施力特征,合理施力的设计思路。 六、人机的信息界面设计: 人机信息界面的形成,视觉信息显示设计,听觉信息传示设计,操纵装置设计,操纵与显示相合性。 七、工作台椅与工具设计: 控制台设计,办公台设计,工作座椅设计主要依据,工作座椅设计,手握式工具设计。 八、作业岗位与空间设计:

作业岗位的选择,手工作业岗位设计,视觉信息作业岗位设计,作业空间的人体尺度,作业空间的布置。 九、人与环境的界面设计: 人体对环境的适应程度,人与热环境,人与光环境,人与声环境,人与振动环境,人与毒物环境。 十、人的可靠性与安全设计: 人的可靠性,人的失误,人的失误事故模型,安全装置设计,防护装置设计,安全信息设计。 十一、人机系统总体设计: 总体设计的目标,总体设计的原则,总体设计的程序,总体设计的要点,总体设计的评价。 十二、人机工程发展新趋势: 非物质化人机工程,网络化人机工程,虚拟化人机工程,数字化人机工程,智能化人机系统。

量子力学考试大纲

876 量子力学考试大纲 一、考试性质与范围 本《量子力学》考试大纲用于北京科技大学物理学相关各专业硕士研究生的入学考试。本科目考试的重点是要求熟练掌握波函数的物理解释,薛定谔方程的建立、基本性质和精确的以及一些重要的近似求解方法,理解这些解的物理意义,熟悉其实际的应用。掌握量子力学中一些特殊的现象和问题的处理方法,包括力学量的算符表示、对易关系、不确定性关系、态和力学量的表象、电子的自旋、粒子的全同性、泡利不相容原理、量子跃迁及光的发射与吸收的半经典处理方法等,并具有综合运用所学知识分析问题和解决问题的能力。 二、考试基本要求 (一)波函数和薛定谔方程 1.了解波粒二象性的物理意义及其主要实验事实。 2.熟练掌握波函数的标准化条件:有限性、连续性和单值性。深入理解波函数的概率解释。 3.理解态叠加原理及其物理意义。 4.熟练掌握薛定谔方程的建立过程。深入了解定态薛定谔方程,定态与非定态波函数的意义及相互关系。了解连续性方程的推导及其物理意义。 (二)一维势场中的粒子 1.熟练掌握一维无限深方势阱的求解方法及其物理讨论,掌握一维有限深方势阱束缚态问题的求解方法。 2.熟练掌握势垒贯穿的求解方法及隧道效应的解释。掌握一维有限深方势阱的反射、透射的处理方法。 3.熟练掌握一维谐振子的能谱及其定态波函数的一般特点及其应用。 4.了解 --函数势的处理方法。 (三)力学量的算符表示 1. 掌握算符的本征值和本征方程的基本概念。 2.熟练掌握厄米算符的基本性质及相关的定理。 3.熟练掌握坐标算符、动量算符以及角动量算符,包括定义式、相关的对易关系及本征值和本征函数。 4.熟练掌握力学量取值的概率及平均值的计算方法,理解两个力学量同时具有确定值的条件和共同本征函数。 5.熟练掌握不确定性关系的形式、物理意义及其一些简单的应用。 6.理解力学量平均值随时间变化的规律。掌握如何根据哈密顿算符来判断该体系的守

量子力学论文

从波函数到薛定谔方程 摘要:本文从波函数出发,阐述薛定谔的推导过程,并且根据哈特里福克方程,克莱因戈尔登方程完善薛定谔方程的泡利不相容原理,洛伦兹不变性。 关键词:波函数薛定谔方程哈特里福克方程克莱因戈尔登方程 一.波函数: 微观粒子的运动状态称为量子态,是用波函数来描述的,这个波函数所反映的微观粒子波动性,这个波函数所反映的微观粒子波动性,就是德布罗意波。(量子力学的基本假设之一)并且,玻恩指出:德布罗意波或波函数不代表实际物理量的波动,而是描述粒子在空间的概率分布的概率波。 (1)推导过程: 在波动学中,描述波动过程的数学函数都是空间、时间二元函数一列沿X轴正向传播的平面单色简谐波的波动方程,即: 应用欧拉公式,可以推广到复数域: 再通过德布罗意公式,可以得到自由粒子的波函数: (2)波函数性质 1.自由粒子的能量和动量为常量,其波函数所描述的德布罗意波是平面波。 2.对于处在外场作用下运动的非自由粒子,其能量和动量不是常量,其波函数所描述的 德布罗意波就不是平面波。 3.外场不同,粒子的运动状态及描述运动状态的波函数也不相同。 (3)波函数的统计假设 设描述粒子运动状态的波函数为,则 1.空间某处波的强度与在该处发现粒子的概率成正比; 2.在该处单位体积内发现粒子的概率(概率密度)与 的模的平方成正比。 (4)波函数统计意义的具备条件 1.连续- 因概率不会在某处发生突变,故波函数必须处处连续; 2.单值- 因任一体积元内出现的概率只有一种,故波函数一定是单值的; 3.有限- 因概率不可能为无限大,故波函数必须是有限的;

二.薛定谔方程: 1.1925年德国物理学家薛定谔提出的非相对论性的量子力学基本方程,质量为m的粒 子,在势能函数为的势场中运动,当其运动速度远小于光速时,它的波函数 所满足的方程为: 这就是薛定谔方程,它反映微观粒子运动状态随时间变化的力学规律,又称含时薛定谔方程。 其中,为哈密顿算符。 2.若粒子所在的势场只是空间函数,那么对应于一个可能态有一个能量值E,即可得到定态薛定谔方程: 3.定态是指波函数具有的形式。它的特点是其概率密度与时间无关。 4.定态波函数中振幅函数满足统计的条件: (1)连续,单值,有限的标准条件 (2)归一化条件 (3)对坐标的一阶导数存在并且连续 5.可以看出定态波函数和定态薛定谔方程可以通过势能函数互相导出。 三.哈特里-福克方程: 1.为了解决多电子体系薛定谔方程近似求解的问题量子化学家道格拉斯·哈特里在1928年提出了哈特里假设,他将每个电子看做是在其他所有电子构成的平均势场中运动的粒子,并且首先提出了迭代法的思路。哈特里根据他的假设,将体系电子哈密顿算子分解为若干个单电子哈密顿算子的简单代数和,每个单电子哈密顿算子中只包含一个电子的坐标,因而体系多电子波函数可以表示为单电子波函数的简单乘积,这就是哈特里方程。 2.由于哈特里没有考虑电子波函数的反对称要求,事实上他的方程还是有问题的。1930年,哈特里的学生弗拉基米尔·福克,提出了考虑泡利原理的自洽场迭代方程和单行列式型多电子体系波函数,这就是今天的哈特里—福克方程。 3.所以,在薛定谔没有解决的情况下,哈特里福克方程使得量子力学是满足泡利原理的。

高等量子力学复习题

上册 1.3 粒子在深度为0V ,宽度为a 的直角势阱(如图1.3)中运动,求 (a)阱口刚好出现一个束缚态能级(即0V E ≈)的条件; (b)束缚态能级总和,并和无限深势阱作比较 . 解 粒子能量0V E 小于时为游离态,能量本征值方程为: []0)(22''=-+ ψψx V E m (1) 令002k mV = ,β=- )(20E V m (2) 式(1)还可以写成 ?? ???≥=-≤=+)(阱外)(阱内4)(2,03)(2,022''2''a x a x mE ψβψψψ 无限远处束缚态波函 数应趋于0,因此式(4)的解应取为()2,a x Ce x x ≥=-βψ 当阱口刚好出现束缚态能级时,0,0≈≈βV E ,因此 2,0)('a x Ce x x ≥≈±=-ββψ (6) 阱内波函数可由式(3)解出,当0V E ≈解为 ()()2,s i n ,c o s 00a x x k x x k x ≤?? ?==ψψ奇宇称 偶宇称 (7) 阱内、外ψ和ψ应该连续,而由式(6)可知,2a x =处,0'=ψ, 将这条件用于式(7),即得 ,5,3,,02cos ,6,4,2,02 sin 0000ππππππ====a k a k a k a k 奇宇称偶宇称(8) 亦即阱口刚好出现束缚能级的条件为 ,3,2,1, 0==n n a k π (9) 即2 22202π n a mV = (10) 这种类型的一维势阱至少有一个束缚能级,因此,如果 2 2202π< a mV ,只存在一个束缚态,偶宇称(基态)。如果22202π = a mV ,除基态外,阱口将再出现一个能级(奇宇称态),共两个能级。如() 222022π= a mV ,阱口将出现第三个能级(偶宇称)。依此类推,由此可知,对于任何20a V 值,束缚态能级总数为 其中符号[A]表示不超过A 的最大整数。 当粒子在宽度为a 的无限深方势阱中运动时,能级为 ,3,2,1,212 =?? ? ??=n a n m E n π 则0V E ≤的能级数为 120-=?? ????=N mV a n π (12) 也就是说,如果只计算0V E ≤的能级数,则有限深)(0V 势阱的能级数比无限深势阱的能级数多一个。注意,后者的每一个能级均一一对应的高于前者的相应能级。

硕士研究生入学考试大纲

目录 I 考查目标 (2) II 考试形式和试卷结构 (2) III 考查内容 (2) IV. 题型示例及参考答案 (3)

全国硕士研究生入学统一考试 生态学考试大纲 I 考查目标 目的是科学、公平、有效地测试考生是否具备攻读生态学专业硕士所必须的基本素质、一般能力和培养潜能,以利用选拔具有发展潜力的优秀人才入学,为国家的经济建设培养具有良好职业道德、法制观念和国际视野、具有较强分析与解决实际问题能力的高层次、应用型、复合型的生态学专业人才。考试要求是测试考生有关生态学概念、试验技能的掌握情况及利用生态学原理分析问题的能力。 具体来说。要求考生: 1.掌握生态学的有关概念。 2.掌握生态学的原理和方法。 3.掌握室内外生态调查方法。 4.具有运用生态学原理分析和解决实际问题的能力。 II 考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考试时间180分钟。 二、答题方式 答题方式为闭卷、笔试。 三、试卷内容与题型结构 生态学150分,有以下三种题型: 概念题7题,每小题5分,共35分 问答题5题,每小题15分,共75分 论述题1题,每小题40分,共40分 III 考查内容 1 环境的概念及类型 2 生态因子作用的一般特征 3 最小因子定律和耐性定律 4 主要生态因子的生态作用及生物的适应 5 种群的概念及种群增长模型 6 种群自动调节学说 7 种群的繁殖策略和性选择 8 他感作用 9 种间竞争模型 10 群落概念及群落基本特征 11 群落结构及季相 12 干扰理论

13 岛屿生态 14 群落演替类型及演替顶级学说 15 生态系统的基本概念 16生态系统的组成及结构 17 食物链和食物网 18 营养级及生态金字塔 19 生态效率及林达曼定律 20 初级生产及次级生产及其生产量的测定 21 生态系统内不同层次上的能量流动 22 生态系统中的信息及其传递 23 生态系统的能流模型 24 生态系统中的水循环、、气体型循环、沉积型循环和有毒物质循环。 25 全球变化 26 生物多样性 27 可持续发展 28生态风险评估及生态规划 IV. 题型示例及参考答案 一概念题(35分) 1 生态因子和生存因子 2 r-对策者和K-对策者 3 生态型和生活型 4 捕食食物链和碎屑食物链 5 中度干扰假说 6 种间协同进化 7 可持续发展 二问答题(75分,每题15分) 1 种群年龄结构定义、类型及各结构类型种群的动态特点。 2 何谓生态金字塔?生态金字塔的基本类型及研究生态金字塔的意义。 3 简述生态系统的层次结构划分及其特点。 4 简述碳循环的主要途径及碳循环产生的环境问题。 5 何谓生态平衡和生态失调?试述生态系统维持平衡的自我调节机制,并举例说明。 三论述题(40分) 粮食安全问题是我国面临的一个严重的现实问题,关系到社会、经济和政治各个领域。试依据林德曼“十分之一定律”,分析合理的人类膳食结构调整和畜牧业结构调整对确保我

量子物理课程教学大纲

量子物理课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子物理 所属专业:材料物理 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论和相对论是20世纪物理学取得的两个最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人类认识客观 世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍非相对论量子力学的基本概念、基本原理和基本方法。 首先从量子力学发展简史、黑体辐射实验等出发,讲述量子力学Schrodinger 方程和一维定态问题,着重讲述周期场和Bloch定理、能带结构。在此基础 上讲述量子力学的基本原理,包括波函数统计解释、线性厄米算符、本征值 问题、测不准关系、力学量完全集、Heisenberg方程等。中心力场部分主 要讲电磁场相互作用下氢原子的能级结构。矩阵力学主要讲力学量算符的矩 阵表示和本征值问题。定态微扰论和量子跃迁主要讲原子的几个效应和量子 系统在外场微扰情况下的光的吸收和辐射。最后讲多粒子全同性问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.掌握电子在周期势场情况下的运动规律,为学习固体物理打好基础。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一了 光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19世纪 末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及紫外 灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与半经典 理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。《数学物 理方法》中所学习的复变函数论和微分方程的解法都在量子力学中有广泛的 应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特空间的理论 基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 曾谨言,《量子力学》I,第四版,科学出版社, 2006年 [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章绪论 第一节量子论发展简史 第二节黑体辐射实验与Plank常数的量纲分析,原子物理中的量纲结构(一)教学方法与学时分配:课堂讲授;4学时 (二)内容及基本要求 主要内容:主要介绍量子力学的发展简史、研究对象和微观粒子的基本特性及其量纲分析。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射 实验;

量子力学论文

量子力学论文 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

量子理论及技术的发展 【摘要】本文简述了在量子力学的发展过程中所带动的激光、半导体、扫描隧道显微镜、量子信息等技术的形成及影响,并借此强调了基础理论对于技术发明的重要性。 【关键词】量子力学激光半导体扫描隧道显微镜量子信息 回顾科技史,以量子论、相对论为代表的近代物理学掀起了以能源、材料、信息为代表的现代技术革命,其中量子理论在形成中便带动了相关技术群的出现并促进了自身研究的深入和拓展。 一、从“光量子假说”到激光技术 1900年,德国物理学家普朗克为了解决有关热辐射现象的“黑体辐射”难题,提出了“普朗克假设”,其“能量子”概念的提出标志着量子力学的诞生。随后,爱因斯坦于1905年提出了“光量子假说”以解释“光电效应”,使人们对能量量子化的认识更深入了一步的认识。1916年,爱因斯坦指出辐射有两种形式:自发辐射和受激辐射,从而为激光器的发明奠定了理论基础。激光器在技术上的最终实现得益于二战后对与雷达相关的微波的深人研究。其中标志性的工作有:1933年拉登伯格观测到了负色散现象;1939年法布里坎特指出辐射放大的必要条件是实现粒子数反转;1946年布洛赫观察到了粒子数反转的信号;1951年珀塞尔第一次在实验中实现了粒子数反转并观察到了受激辐射;1951年汤斯首次提出实现微波放大的可能性;1954年汤斯等人成功地制成了世界上第一台“辐射的受激发射微波放大”的装置(简称脉塞Maser);1958年汤斯和肖洛论证了把微波激射技术扩展到 论的又一重大课题。在量子力学建立前,特鲁特于1900提出了经典的金属自由电子气体模型,定性的解释了金属的电导和热导行为,但得到的定量比热关系在低温时与实验 偏离较大。1907年爱因斯坦应用了量子假说,所得结果得到了能斯特的实验验证和大力宣传,使量子论开始被人们认识,从而打开了迅速发展的局面。从1913年玻尔提出半 经典的量子论原子模型到1928年狄拉克发表电子的相对红外区和可见光区的可能性。最终,美国休斯研究所的梅曼于1960年成功制造并运转了第一台激光器——红宝石脉冲激光器,同年12月贾万研制出第一台气体激光器——氦氖激光器。 这两种激光器的相继问世引起了全世界科技界研究激光的热潮,各种激光器陆续出现。其中有可获得大功率脉冲的钕激光器,连续输出大功率的二氧化碳激光器,可在室温下工作的小型半导体激光器,从化学反应获得能量的化学激光器,光谱线很宽的可以连续改变激光输出波长的染料激光器。后来,还出现了自由电子激光器、准分子激光器、离子激光器等等。激光的波长范围已扩展到从红外到紫外以至x射线的所有波段,激光的应用更涉及到从日常生活到高新科技各个领域.如工业上的激光切割、焊接、打孔、表面改性、测距、大气污染分析;生物上的激光育种、水产养殖、品种改良、生命活细胞的全息照相;医疗上的激光外科手术、诊断;军事上的激光制导炸弹、强激光武器;此外,激光还应用于通信、光盘、分离同位素、激光核聚变等许多方面。 激光技术是以量子理论为主的现代物理学和现代技术相结合孕育出来的一门科学技术,它的发展历史不仅充分显示出物理科学理论对技术发明的预见性,而且它本身又作为现代科学技术家族中的一个优等生,大大促进和推动着现代物理学和现代科学技术的发展。 二、从“费米统计”到半导体技术 继黑体辐射和光电效应之后,固体比热的研究是量子论的又一重大课题。在量子力学建立前,特鲁特于1900提出了经典的金属自由电子气体模型,定性的解释了金属的电导和热导行

高等量子力学习题汇总(可编辑修改word版)

2 i i i j i j ± 第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是 Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是 Hillbert 空间内的厄米算符( A ? );2、物理量所能取的值是相应算符 A ? 的本征值;3、 一个任意态总可以用算符 A ? 的本征态 a i 展开如下: = ∑C i a i i C i = a i ;而 物理量 A 在 中出现的几率与 C i 成正比。原理三 一个微观粒子在直角坐标下的位置 算符 x ? 和相应的正则动量算符 p ? 有如下对易关系: [x ? , x ? ]= 0 , [p ? , p ? ] = 0 , [x ?i , p ? j ]= i ij 原理四 在薛定谔图景中,微观体系态矢量 (t ) 随时间变化的规律由薛定谔方程给 i ? ?t (t ) = H ? (t ) 在海森堡图景中,一个厄米算符 A ?(H ) (t ) 的运动规律由海森堡 方程给出: d A ?(H ) (t ) = 1 [A ?(H ), H ? ] 原理五 一个包含多个全同粒子的体系,在 dt i Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答: (x, t ) =< x |(t )>式中态矢随时间而变而 x 不含 t ,结果波函数ψ(x ,t )中的宗量 t 来自 ψ(t ) 而 x 来自 x ,这叫做薛定谔图景. ?1 ? ? 0? 3、 已知 = ?,= ?. 0 1 (1)请写出 Pauli 矩阵的 3 个分量; (2)证明σ x 的本征态 ? ? ? ? 1 ?1 ? 1 | S x ± >= ? = ? 1? (± ). 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求 证: 2 2

硕士研究生入学考试大纲

硕士研究生入学考试大纲 考试科目名称:单考数学考试科目代码:[701] 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟。 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构(以下结构供参考) 函数、极限、连续20% 一元函数微积分学60% 二元函数微积分学10% 无穷级数5% 常微分方程5% 四、试卷题型结构(以下结构供参考) 单选题6小题,每题5分,共30分 填空题6小题,每题5分,共30分 解答题(包括证明题) 7小题,共90分 五、考试内容 (一)函数、极限、连续 考试内容 函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;复合函数、反函数、分段函数和隐函数;基本初等函数的性质及其图形;初等函数;函数关系的建立。数列极限与函数极限的定义及其性质;函数的左极限和右极限;无穷小量和无穷大量的概念及其关系;无穷小量的性质及无穷小量的比较;极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则;两个重要极限。 函数连续的概念;函数间断点的类型;初等函数的连续性;闭区间上连续函数的性质。 考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。 2.了解函数的有界性、单调性、周期性和奇偶性。 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4.掌握基本初等函数的性质及其图形,了解初等函数的概念。 5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

6.掌握极限的性质及四则运算法则。 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。 (二)一元函数微分学 考试内容 导数和微分的概念;导数的几何意义和物理意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;导数和微分的四则运算;基本初等函数的导数;复合函数、反函数、隐函数以及参数方程所确定的函数的微分法;高阶导数;一阶微分形式的不变性;微分中值定理;洛必达(L’Hospital)法则;函数单调性的判别;函数的极值;函数图形的凹凸性、拐点及渐近线;函数图形的描绘;函数的最大值与最小值。 考试要求 1.理解导数的概念,函数左导数与右导数的概念以及函数导数存在与左、右导数之间的关系;理解函数的可导性与连续性之间的关系。 理解微分的概念,理解导数与微分的关系。 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3.了解高阶导数的概念,会求简单函数的高阶导数.。 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值,了解并会用泰勒(Taylor)公式。 6.掌握用洛必达法则求未定式极限的方法。 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。 (三)一元函数积分学 考试内容 原函数和不定积分的概念;不定积分的基本性质;基本积分公式;定积分的概念和基本

《量子力学》课程教学大纲

《量子力学》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子力学 所属专业:物理学专业 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人 类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公 设)及表述形式。在此基础上,逐步深入地让学生认识表述原理的数学结构, 如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结 构。本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中 的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原 理。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基 本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。 本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态 问题和量子跃迁的处理以及弹性散射问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一 了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19 世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及 紫外灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与 半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。 《数学物理方法》中所学习的复变函数论和微分方程的解法都在量子力学中 有广泛的应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特 空间的理论基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 苏汝铿, 《量子力学》, 高等教育出版社; [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章微观粒子状态的描述 第一节光的波粒二象性 第二节原子结构的玻尔理论 第三节微观粒子的波粒二象性 第四节量子力学的第一公设:波函数 (一)教学方法与学时分配:课堂讲授;6学时 (二)内容及基本要求 主要内容:主要介绍量子力学的实验基础、研究对象和微观粒子的基本特性及其状态描述。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射

量子力学课程论文由薛定谔方程引发的深思

量子力学课程论文题目:《由薛定谔方程引发的深思》 学院:数理信息工程学院 专业:物理112班 学生姓名:徐盈盈王黎明 学号:11260124 11180216 完成时间: 2013年12月20日

由薛定谔方程引发的深思 【摘要】 薛定谔方程的提出揭示了微观物理世界物质运动的基本规律,它是原子物理学中处理一切非相对论问题的有力工具[1]。作为量子力学之魂,薛定谔方程完整的向我们诠释了微观世界的魅力。为更加深入地学习薛定谔方程和量子力学,我们将分析薛定谔方程的推导过程、介绍其在求解粒子问题中的应用以及其在原子物理、核物理、固体物理等学科的应用,最后谈谈自己的想法。 【引言】 随着“任何粒子都具有波粒二象性”的德布罗意假说成功被戴维森-革末实验所证实,薛定谔思考着会有一个波动方程可以反应粒子的这种量子行为。于是,基于众多前人研究成果,薛定谔于1926年提出薛定谔方程,完美的解释了波函数的行为。正是因为薛定谔方程在量子力学进程中起着举足轻重的作用,所以我们必须深入学习其推导过程和应用。并且由薛定谔方程出发,深刻思考我们在物理学习过程中所必须具备的思维方式和学习态度。 【关键词】 薛定谔方程玻尔理论波函数深思 【正文】 一、薛定谔方程的提出与推导 1、薛定谔方程的历史背景 爱因斯坦认为普朗克的量子为光子,并且提出了奇妙的“波粒二象性”。1924年,路易·德布罗意提出“物质波”的概念,认为任何粒子都具有波粒二象性,并且这个假说于1927年成功被戴维森-革末实验所证实。薛定谔由此认为一定会有一个波动方程能够恰当的描述粒子的这种性质。最后他借助于经典力学的哈密顿原理以及光学的费马原理,将牛顿力学与光学类比,并且以哈密顿-雅克比方程为工具,成功建立了薛定谔方程,并且准确的计算了氢原子的谱线。 2、薛定谔方程的推导思路 ①首先自由粒子可用平面波来表示,可当粒子收到随时间或位置变化的力场的作用时,应该用波函数来表示。波函数描写体系的量子状态。波函数是指在空间中某一点的强度和在该点找到粒子的概率成比例[2]。 ②当讨论粒子状态随时间变化所遵从的规律时,必须建立波函数随时间变化的方程。 ③用平面波描写自由粒子的波函数ψ(r,t)=Ae i(p.r-Et)/h,并且对时间求偏微商,对位置求二次偏微商,再利用能量和动量的关系式E=p2/2m+V(r),最终可得到薛定谔方程: ④从一维薛定谔方程出发,可以得出三维薛定谔方程和定态薛定谔方程:

北京大学物理学院量子力学系列教学大纲

北京大学物理学院量子力学系列教学大纲 课程号: 00432214 新课号: PHY-1-044 课程名称:量子力学 开课学期:春、秋季 学分: 3 先修课程:普通物理(PHY-0-04*以上)、理论力学(PHY-1-051)、电动力学(PHY-1-043)基本目的:使得同学掌握量子力学的基本原理和初步的计算方法,适合于非物理类专业的同学选修。 内容提要: 1.量子力学基本原理:实验基础、Hilbert空间、波函数、薛定谔方程、算符、表象变换、对称性与守恒律 2.一维定态问题:一般讨论、自由粒子、一维方势阱、谐振子、一维势垒3.轨道角动量与中心势场定态问题:角动量对易关系、本征函数、中心势、三维方势阱、三维谐振子、氢原子 4. 量子力学中的近似方法:定态微扰论、跃迁、散射。 5.全同粒子与自旋:全同性原理、自旋的表述、自旋与统计的关系、两个自旋的耦合、磁场与自旋的相互作用 教学方式:课堂讲授 教材与参考书: 曾谨言,《量子力学教程》,北京大学出版社, 1999. 学生成绩评定方法:作业10%、笔试90% 课程号: 00432214 新课号: PHY-1-054 课程名称:量子力学I 开课学期:春、秋季 学分: 4 先修课程:普通物理(PHY-0-04*以上)、高等数学、数学物理方法(PHY-1-011或以上)基本目的: 使得同学掌握量子力学的基本理论框架和计算方法。适合物理学院各类型同学以及非物理类的相关专业同学选修。 内容提要: 1.量子力学基本原理:实验基础、Hilbert空间、波函数、薛定谔方程、算符、表象变换、对称性与守恒律 2.一维定态问题:一般讨论、自由粒子、一维方势阱、谐振子、一维势垒3.轨道角动量与中心势场定态问题:角动量对易关系、本征函数、中心势、

量子力学复习提纲

1. 粒子的双缝实验的结论是什么? 答:粒子具有波动性 2. 在量子力学中,波函数的波动方程是什么?它是定态薛定谔方程吗? 答:量子力学中波函数的波动方程是),()](2[),(2 2t r r V m t r t i →→→+?- =??ψψ ,它不是定态薛定谔方程,定态薛定谔方程是假设势能V 不显含时间t ,其形式是: )()](2[)(2 2→→→ +?-=r r V m r E ψψ 3. 波函数除了归一化要求之外的三个标准条件是什么? 答:单值、连续、有限。 4. 写出一维无限深方势阱的能量本征函数及能量本征值。 答: 5. 写出一维线性谐振子的能量本征函数及能量本征值。 答: 6. 什么叫做粒子的共振穿透?请举例说明。 答:当粒子射入势阱时,将发生反射和折射,当粒子的能量满足一定的条件时会使透 2 ,1n n a μ={} 2 2 22222 21 ()2?,()()()(),0,1,2, ?11 (),0,1,2,2 ?22 n n n x n n n n x U x x H x E x x P H x N H x e n E n n α μωψμωψψ ωμα-= ====+ ==+

射系数T=1,这种现象就叫做共振穿透。如上图所示,粒子在有限深势阱中,我们设 22222 1 ) (2,2 o V E k E k -==μμ则透射系数l k k k k k k k T 22 2222122212 221sin )(44-+= 当πn L k =2即02 2)(2V L n E n += πμ 时,1=T ,产生共振穿透。 7. 什么叫做粒子的遂穿效应?请举例说明。 答:粒子在能量E 小于势垒高度时仍能贯穿势垒的现象,称为隧道效应。金属电子冷发射和ɑ衰变等现象等都是隧道效应产生的,还有基于两字隧道效应的扫描隧道显微镜。 8. 粒子的共振穿透与粒子的遂穿效应有何区别? 答:共振穿透的物理意义是,入射粒子进入势阱后,碰到两侧阱壁时将发生反射和透 射,如粒子能量合适,使它在阱内波长'λ满足a n 2' =λ(a 为阱的宽度),则经过各次反射而透射出去的波的相位相同,因而彼此相干叠加,使透射波波幅大增,从而出现共振透射。而遂穿效应其实是粒子具有波动性的表现。 9. 什么叫做厄米算符?它有什么性质? 答:如果算符∧F 满足??()F dv F dv ψ?ψ?* *=??,则称算符∧ F 为厄米算符。厄米算符 有三点性质,一是体系的任何状态下,其厄米算符的平均值必为实数;二是厄米算符 的本征值必为实数;三是厄米算符属于不同本征值的本征函数彼此正交。 10. 量子力学中两个基本力学量是什么?在坐标表象中,用什么算符表示? 答: 量子力学中两个基本力学量是坐标→r 和动量→p ,在坐标表象中,坐标→r 用坐标算符∧ r 表示,动量用动量算符?-=∧ 2 p 表示。 11. 动量算符的本征函数和本征值是什么?其本征函数如何归一? 答:动量算符的本征函数是:)ex p( ) 2(1)(2 3r p i r p ?= πψ ,其本征值为p 。其只能归以为函数δ函数,即 )()()('*' p p d r r p p -=?∞ δτ??。 12. 在三维直角坐标系中,角动量算符的表示式是什么?动量(矢量)算符的本征函数和 本征值是什么? 答:???????????????x z y y x z z y x L yp zp i y z z y L zp xp i z x x z L xp yp i x y y x ????=-=-- ? ????????=-=-- ?????????=-=-- ? ???? h h h

计算物理课程论文

微分方程的数值模拟及应用 本文介绍了matlab、Mathematica等软件在微分方程数值模拟上的应用。作为基础论文首先介绍了用库塔-龙格方法和有限元差分方法求解一阶微分方程组及高阶微分方程的方法并给出了实现的matlab代码,在了解解微分方程的基本原理之后,本文用Mathematica 软件研究了一维深势阱、谐振子的波函数以及有心力场下的量子力学现像,如原子轨道、分子轨道。接着介绍了一类特殊的微分方程—非线性薛定谔方程NLSE,这类方程不同与其他微分方程之处在于它存在孤子解,比较复杂。本文介绍了求这类方程数值解得有限元差分方法及分步傅里叶方法,并给出了一个后者的matlab实例代码。最后用mathematica对其进行了数值模拟,研究了其在光波导和光孤子中的应用。 1.求解一阶微分方程组及高阶微分方程的方法。 (1)亚当斯预测-校正法求一阶常微分方程。 function [k,X,Y,wucha,P]=dAdamsyx(funfcn,x0,b,y0,h) x=x0;y=y0;p=128; n=fix((b-x0)/h); if n<5, return, end; X=zeros(p,1); Y=zeros(p,length(y)); f=zeros(p,1);k=1; X(k)=x; Y(k,:)=y'; for k=2:4 c1=1/6;c2=2/6;c3=2/6; c4=1/6;a2=1/2; a3=1/2; a4=1;b21=1/2;b31=0;b32=1/2; b41=0;b42=0;b43=1; x1=x+a2*h; x2=x+a3*h; x3=x+a4*h; k1=feval(funfcn,x,y); y1=y+b21*h*k1; x=x+h; k2=feval(funfcn,x1,y1); y2=y+b31*h*k1+b32*h*k2; k3=feval(funfcn,x2,y2); y3=y+b41*h*k1+b42*h*k2+b43*h*k3; k4=feval(funfcn,x3,y3);

《量子力学》课程研究生入学考试大纲

《量子力学》课程研究生入学考试大纲 一、考试性质 量子力学考试是长春理工大学物理学科为招收全国统一入学考试硕士研究 生而设置的具有选拔性质的专业课考试科目,其目的是科学、公平、有效地测试考生掌握量子力学课程大学本科阶段专业基础知识、基本理论、基本方法的水平和分析问题、解决问题的能力,评价的标准是高等学校本科物理相关学科优秀毕业生所能达到的及格或及格以上水平,以利于所在专业择优选拔,保证招生质量。 二、考查目标 量子力学是物理类和信息类的一门基础理论课,是学习相关专业课程的专业基础课。要求考生系统掌握量子力学的基本理论、基本知识和基本方法,能够运用所学的基本理论、基本知识和基本方法分析和解决有关理论问题和实际问题。 三、考试内容 1. 波函数和薛定谔方程 波粒二象性,量子现象的实验证实,波函数及其统计解释,薛定谔方程,态叠加原理。 2.一维势场中的粒子 一维势场中粒子能量本征态的一般性质,一维方势阱的束缚态,方势垒的穿透,δ--函数和δ-势阱中的束缚态,一维简谐振子。 3.力学量用算符表示 坐标及坐标函数的平均值,动量算符及动量值的分布概率,算符的运算规则及其一般性质,厄米算符的本征值与本征函数,共同本征函数,不确定关系,角动量算符,力学量平均值随时间的演化,量子力学的守恒量。 4.中心力场 两体问题化为单体问题,球对称势和径向方程,自由粒子和球形方势阱,三维各向同性谐振子,氢原子及类氢离子。 5.量子力学的矩阵表示与表象变换 态和算符的矩阵表示,狄拉克符号,表象变换。 6.自旋 电子自旋态与自旋算符,总角动量的本征态,碱金属原子光谱的双线结构与反常塞曼效应,电磁场中的薛定谔方程,自旋单态与三重态,光谱线的精细和超精细结构,自旋纠缠态。 7.定态问题的近似方法 定态非简并微扰轮,定态简并微扰轮,变分法。 8.多体问题 全同粒子系统

相关文档
最新文档