初中数学几何的动点问题专题练习-附答案版

初中数学几何的动点问题专题练习-附答案版
初中数学几何的动点问题专题练习-附答案版

动点问题专题训练

1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.

(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.

①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;

②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?

(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

点P Q 、同时从2、直线3

64

y x =-+与坐标轴分别交于A B 、两点,动O 点出发,同时到达A 点,运动停止.点Q 沿线段OA

运动,速度为

每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;

(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,

求出S 与t 之间的

函数关系式;

(3)当48

5

S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四

个顶点M 的坐标. 3、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,

2BC =.点O 是AC 的中点,过点O 的直线l

从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点

D .过点C 作C

E AB ∥交直线l 于点E ,设直线l

的旋转角为α.

(1)①当α=度时,四边形EDBC 是等腰梯形,此时AD 的长为;

②当α=度时,四边形EDBC 是直角梯形,此时AD

的长为;

(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.

4、如图,在平面直角坐标系中,直线l :y =-2x -8分别

与x 轴,y 轴相交于A ,B 两点,点P (0,k )是y 轴的负半轴上的一

个动点,以P 为圆心,3为半径作⊙P .

(1)连结P A ,若P A =PB ,试判断⊙P 与x 轴的位置

关系,并说明理由;

(2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为

顶点的三角形是正三角形?

5、如图,在梯形ABCD 中,

354245AD BC AD DC AB B ====?∥,,,,∠.动点

M 从B

A

Q

C

D

B

x A

O Q P B

y

O E C

D

A

α l

O

C

A

点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.

(2)当MN AB ∥时,求t 的值.

(3)试探究:t 为何值时,MNC △为等腰三角形.

6、如图①,正方形ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设

运动的时间为t 秒.

(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)

关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;

(2)求正方形边长及顶点C 的坐标;

(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由. 7、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角

DCG ∠的平行线CF 于点F ,

求证:AE =EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把“点E

是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

8、已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C AB 交于点D .

(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;

(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;

(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.

1.解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米,

A D

C B N A

D F C G B 图1

A D F C G

B 图2 D F

C G E B

图3

x y B

O

A

y B

x

y B O A

∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.

又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,

∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,

又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4

33

BP t ==秒, ∴515

443

Q CQ v t

=

==厘米/秒. ·

································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15

32104

x x =+?, 解得80

3

x =

秒. ∴点P 共运动了80

3803

?=厘米.

∵8022824=?+,

∴点P 、点Q 在AB 边上相遇, ∴经过

80

3

秒点P 与点Q 第一次在边AB 上相遇. ········································· (12分) 2.解(1)A (8,0)B (0,6) ·············· 1分 (2)86OA OB ==, 10AB ∴=

点Q 由O 到A 的时间是

8

81

=(秒) ∴点P 的速度是

610

28

+=(单位/秒) ·· 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,

2S t = ········································································································· 1分

当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由

PD AP BO AB =,得4865

t

PD -=, ····························· 1分

21324

255

S OQ PD t t ∴=?=-+ ·

····································································· 1分 (自变量取值范围写对给1分,否则不给分.)

(3)82455P ?? ???

, ···························································································· 1分

12382412241224555555I M M 2??????-- ? ? ???????

,,,,, ···················································· 3分

3.解:(1)⊙P 与x 轴相切.

∵直线y =-2x -8与x 轴交于A (4,0),

与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =P A =8+k .

在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.

(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P

在线段OB

上时,作PE ⊥CD 于E .

∵△PCD 为正三角形,∴DE =12CD =3

2

,PD =3, ∴PE 33

. ∵∠AOB =∠PEB =90°,∠ABO =∠PBE , ∴△AOB ∽△PEB ,

33

2,45AO PE AB PB PB =即, ∴315

PB =

∴315

8PO BO PB =-= ∴315

8)P -, ∴315

8k =

-. 当圆心P 在线段OB 延长线上时,同理可得P (0,315

-8), ∴k =315

-8, ∴当k 315-8或k =315

-8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.

初中数学几何题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典难题(二) A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D B

P C G F B Q A D E 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E C B

最新中考数学复习专题《几何图形中的动点问题》

运动型问题 第17课时 几何图形中的动点问题 (58分) 一、选择题(每题6分,共18分) 1.[·安徽]如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △ PAB =S 矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )13A. B. C.5 D. 2934241 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =×5131213 ×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D. 52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩 形边上一动点P 沿A →B →C →D 的路径移动.设点P 经 过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的 函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP = x ,∴y =x 2+a 2;② 图6-1-2

当2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =∴能大致反映y {x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a

初中数学几何题(超难)及答案分析

几何经典难题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初三) 2、已知:如图,P 是正方形ABCD 内点, ∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1 的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交 MN 于E 、F . 求证:∠DEN =∠F . 5、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初三) A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D M B · A D H E M C B O

P C G F B Q A D E 6、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E , 直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初三) 7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初三 ) 8、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) · G A O D B E C Q P N M · O Q P B D E C N M · A

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

八年级几何之动点问题

中考数学动点几何问题 ※动点求最值: 两定一动型(“两个定点,一个动点”的条件下求最值。例如上图中直线l的同侧有两个定点A、B,在直线l上有一动点) 例1、以正方形为载体如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上有一动点P,使PD+PE的值最小,则其最小值是 例2、以直角梯形为载体如图,在直角梯形中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P 在BC上移动,当PA+PD取得最小值时,△APD中AP边上的高为 一定两动型(“一个定点”+“两个动点”) 例3、以三角形为载体如图,在锐角△ABC中,AB=4√2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD、AB上的动点,则BM+MN的最小值是 例4、以正方形、圆、角为载体正方形ABCD的边长为2,E为AB的中点,P是AC上的一动点.连接BP,EP,则PB+PE的最小值是

例5、⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB, ∠AOC=60°,P是OB上的一动点,PA+PC 的最小值是 例6、如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是 . 例7:在△ABC中,∠B=60°,BA=24CM,BC=16CM,(1)求△ABC的面积; (2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动。如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC的面积的一半? (3)在第(2)问题前提下,P,Q两点之间的距离是多少?A C B

初二数学经典动点问题

动点问题 1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 2、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 3、如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形? (2)当t为何值时,四边形MNCD是等腰梯形?

4、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D 出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm. (1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形; (2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形; (3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值; 如果不能,请说明理由. 5、直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O?B?A运动. (1)直接写出A、B两点的坐标; (2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式; (3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.

初中数学几何的动点问题专题练习

动点问题专题训练 1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ································································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4 33 BP t ==秒, ∴515 443 Q CQ v t = ==厘米/秒. · ·················································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15 32104 x x =+?, 解得80 3 x = 秒.

最新初中数学几何题解题技巧

最新初中数学几何题解题技巧 初中数学几何题解题技巧一.添辅助线有二种情况 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此"添线"应该叫做"补图"!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整

时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形

初三动点问题经典练习

动点问题练习 1.如图,已知在矩形ABCD 中,AD =8,CD =4,点E 从点D 出发,沿线段DA 以每秒1个单 位长的速度向点A 方向移动,同时点F 从点C 出发,沿射线CD 方向以每秒2个单位长的速度移动,当B ,E ,F 三点共线时,两点同时停止运动.设点E 移动的时间为t (秒). (1)求当t 为何值时,两点同时停止运动; (2)设四边形BCFE 的面积为S ,求S 与t 之间的函数关系式,并写出t 的取值范围; (3)求当t 为何值时,以E ,F ,C 三点为顶点的三角形是等腰三角形; (4)求当t 为何值时,∠BEC =∠BFC . 1. 解:(1)当B ,E ,F 三点共线时,两点同时停止运动,如图2所示.………(1分) 由题意可知:ED =t ,BC =8,FD = 2t -4,FC = 2t . ∵ED ∥BC ,∴△FED ∽△FBC .∴ FD ED FC BC = . ∴ 2428 t t t -=.解得t =4. ∴当t =4时,两点同时停止运动;……(3分) (2)∵ED=t ,CF=2t , ∴S =S △BCE + S △BCF = 12×8×4+1 2 ×2t ×t =16+ t 2. 即S =16+ t 2.(0 ≤t ≤4);………………………………………………………(6分) (3)①若EF=EC 时,则点F 只能在CD 的延长线上, ∵EF 2=2 2 2 (24)51616t t t t -+=-+, EC 2=222416t t +=+,∴251616t t -+=2 16t +.∴t =4或t=0(舍去); ②若EC=FC 时,∵EC 2=222416t t +=+,FC 2=4t 2,∴2 16t +=4t 2.∴4 33 t =; ③若EF=FC 时,∵EF 2=2 2 2 (24)51616t t t t -+=-+,FC 2=4t 2, ∴2 51616t t -+=4t 2.∴t 1=163+,t 2=1683-. ∴当t 的值为44 33 1683-E ,F ,C 三点为顶点的三角形是等腰三角形;………………………………………………………………………………(9分) (4)在Rt △BCF 和Rt △CED 中,∵∠BCD =∠CDE =90°,2BC CF CD ED ==, A B C D E F O 图2 A B C D E F

初中数学几何动点问题专题训练

初中数学几何动点问题专题训练 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。 例题1.梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t秒,问: (1)t为何值时,四边形PQCD是平行四边形? (2)t为何值时,四边形PQCD是直角梯形? (3)在某个时刻,四边形PQCD可能是菱形吗?为什么? (4)t为何值时,四边形PQCD是等腰梯形? 练习1. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C —D以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD也为矩形?

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

中考数学最新经典动点问题-十大题型

1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与 CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

2、直线与坐标轴分别交于两点,动点同时从点出发, 同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出 与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. 3 64 y x =-+A B 、P Q 、O A Q OA P O B A A B 、Q t OPQ △S S t 48 5 S = P O P Q 、、 M

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是 正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

中考数学几何题集锦

地区:浙江省金华市年份:2011 分值:12.0 难度:难 如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长; (2)当DE=8时,求线段EF的长; (3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E 的坐标;若不存在,请说明理由. 地区:浙江省湖州市年份:2011 分值:14.0 难度:难 如图1.已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D. (1)求点D的坐标(用含m的代数式表示); (2)当△APD是等腰三角形时,求m的值; (3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.(不必写解答过程)

地区:山东省济宁市年份:2011 分值:10.0 难度:难 如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C 的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx +3. (1)设点P的纵坐标为p,写出p随K变化的函数关系式. (2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明; (3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由. 地区:湖南省邵阳市年份:2011 分值:10.0 难度:难 如图(十一)所示,在平面直角坐标系Oxy中,已知点A(,0),点C(0,3) 点B是x轴上一点(位于点A右侧),以AB为直径的圆恰好经过点C. (1)求角ACB的度数; (2)已知抛物线y=ax2+bx+3经过A,B两点,求抛物线的解析式; (3)线段BC上是否存在点D,使△BOD为等腰三角形?若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由.

初二几何动点问题专题

初二几何动点问题专题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

1. 梯形ABCD 中,AD∥BC ,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从点A 开始,沿AD 边,以1厘米/秒的速度向点D 运动;动点Q 从点C 开始,沿CB 边,以3厘米/秒的速度向B 点运动。已知P 、Q 两点分别从A 、C 同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t 秒,问: (1)t 为何值时,四边形PQCD 是平行四边形 (2)t 为何值时,四边形PQCD 是直角梯形 (3)在某个时刻,四边形PQCD 可能是菱形吗为什么 (4)t 为何值时,四边形PQCD 是等腰梯形 2. 如右图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点P 从A 开始沿折线A —B —C —D 以4cm/s 的速度运动,点Q 从C 开始沿CD 边1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达点D 时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD 也为矩形 3:如图,在等腰直角三角形ABC 中,斜边BC=4,OA ⊥BC 于O,点E 和点F 分别在边AB 、AC 上滑动并保持AE=CF,但点F 不与A 、C 重合,点E 不与B 、A 重合。 (1)判断?OEF 的形状,并加以证明。 (2)判断四边形AEOF 的面积是否随点E 、F 的变化而变化,若变化,求其变化范围,若不变化,求它的值. (3)设AE=x ,?AEF 的面积为y ,求的y 与x 的关系式。 4:在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点, (1)写出点O 到△ABC 的三个顶点 A 、B 、C 距离的大小关系。 (2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN =BM , 请判断△ A B C D P Q F E O C B A

初中数学几何专题旋转

初中数学几何专题——旋转 一.选择题(共5小题) 1.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于() A.B.2 C.D. 2.下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A.菱形B.矩形C.等腰梯形D.正五边形 3.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为() A.4 B.8 C.16 D.8 4.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=() A.1: B.1:2 C.:2 D.1: 5.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于() A.1﹣ B.1﹣ C.D. 二.填空题(共5小题) 6.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ= 时,四边形APQE的周长最小. 7.如图,在平面直角坐标系中有一矩形ABCD,其中A(0,0),B (8,0),D (0,4),若将△ABC沿AC所在直线翻折,点B落在点E处.则E点的坐标是.

8.如图,将等边△ABC沿BC方向平移得到△A 1B 1 C 1 .若BC=3,,则BB 1 = . 9.已知一个直角三角板PMN,∠MPN=30°,MN=2,使它的一边PN与正方形ABCD 的一边AD重合(如图放置在正方形内)把三角板绕点P旋转,使点M落在直线BC上一点F处,则CF的长为. 10.如图,在矩形ABCD中,AB=9,AD=3,E为对角线BD上一点,且DE=2BE,过E作FG⊥BD,分别交AB、CD于F、G.将四边形BCGF绕点B旋转180°,在此过程中,设直线GF分别与直线CD、BD交于点M、N,当△DMN是以∠MDN为底角的等腰三角形时,则DN的长是. 三.解答题(共6小题) 14.已知,直角三角形ABC中,∠C=90°,点D、E分别是边AC、AB的中点,BC=6.(1)如图1,动点P从点E出发,沿直线DE方向向右运动,则当EP= 时,四边形BCDP是矩形; (2)将点B绕点E逆时针旋转. ①如图2,旋转到点F处,连接AF、BF、EF.设∠BEF=α°,求证:△ABF是直角三角形; ②如图3,旋转到点G处,连接DG、EG.已知∠BEG=90°,求△DEG的面积. 15.问题发现:如图1,△ABC是等边三角形,点D是边AD上的一点,过点D 作DE∥AC交AC于E,则线段BD与CE有何数量关系 拓展探究:如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立如果成立,请就图中给出的情况加以证明. 问题解决:如果△ABC的边长等于2,AD=2,直接写出当△ADE旋转到DE与AC 所在的直线垂直时BD的长. 16.如图,正方形ABCD的面积为4,对角线交于点O,点O是正方形A 1B 1 C 1 O的

初二数学动点问题练习(含答案)67532

动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想 1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从 A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动, 如果P,Q分别从A,C同时出发,设移动时间为t秒。 当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 8 2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任 意一点,则DN+MN的最小值为 5 3、如图,在Rt ABC △中,9060 ACB B ∠=∠= °,°,2 BC=.点O是AC的中点,过 点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作 CE AB ∥交直线l于点E,设直线l的旋转角为α. (1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为; ②当α=度时,四边形EDBC是直角梯形,此时AD的长为; (2)当90 α=°时,判断四边形EDBC是否为菱形,并说明理由. 解:(1)①30,1;②60,1.5; (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形 在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300. ∴AB=4,AC=2 3. ∴AO= 1 2 AC =3.在Rt△AOD中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形 4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E. O E C D A α l O C A (备用图)C B A E D 图1 N M A B C D E M A C B E D N M 图3

初中数学动点问题专题讲解整理.doc

中考动点专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式 例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=3 2 NH=2132?OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴ 2362 1 21x OH MH -== . 在Rt △MPH 中, . 222223362 1 419x x x MH PH MP +=- +=+=H M N G P O A B 图1 x y

相关文档
最新文档