盾构刀盘驱动液压系统的实验研究

盾构刀盘驱动液压系统的实验研究
盾构刀盘驱动液压系统的实验研究

盾构主要用于软土、砂砬和强风化岩层及含水的混合地层隧道掘进。主要由盾体、刀

盘及驱动系统、螺旋输送系统、液压推进系统、管片拼装系统、同步注浆系统以及盾尾密封装置等构成。

盾构掘进过程中,负载是随断面的土质状况变化的,切削硬岩和切削软土所需的切削扭矩变化很大(见表1)。

轰1上浴吃铁工程麻构推进时刀理扭矩统计表

可见,盾构刀盘驱动所需功率大且功率变化范围宽。

刀盘驱动液压系统原理

如图1所示刀盘驱动液压系统。采用电比例功率自适应泵控马达技术,实时检测刀盘

的转速,根据合适的策略控制变量缸位移,继而控制变量泵的排量,形成按负载工况变化需

要进行刀盘转速的连续实时控制。液压系统设计成开式回路,可适应两种工况,软岩工况时

蹬低速大转矩和硬岩工况时的高速小转矩。两种工况转换可通过控制电磁换向阀6来实现,

当电磁铁断电时,溢流阀7.1确定系统最高压力,此时,系统压力设定为10 MPa,输出

转矩小,但流量大(最大为300 L/min),输出转速高;当电磁铁通电时,溢流阀7.2确定系统最高压力,此时,系统压力设定为20MPa,输出转矩大,但流量小,输出转速低。刀盘

转速通过调节变量泵2的排量实现,检测液压马达的输出转速,检测信号反馈到变量泵的比例阀上,构成速度闭环控制系统。液压马达 5.1和5.2的正反转可通过电液换向阀3来控制。系统采用某公司的A11VO 260 LRDU2 恒功率比例变量泵。泵的排量在其整个范围

内可无级调节,并与比例电磁铁的控制电流成比例。恒功率控制优先于变量控制,如果设定流量或工作压力使功率曲线超过,则恒功率控制取代电控变量并按照恒功率曲线减小排量。

当低于功率曲线时,排量受控制电流的调整,泵输出的流量只与输入控制信号相关,而不受负载压力变化的影响。变量调节特性如图2所示。

3模拟盾构实验平台

实验装置如图3所示,包括模拟土箱、模拟盾构机、主顶、土体加压泵站、模拟盾构

机泵站和控制室。乩'■撼冬魅咻台击塚诊

模拟土箱内的土能够通过水囊进行加压,实现对不同土压的模拟。模拟盾构机由主顶

推进,模拟盾构泵站包括刀盘与螺旋机驱动泵站和主顶驱动泵站。模拟土箱内的多个断面布

置有压力传感器,刀盘转速通过在刀盘上布置2个接近开关进行测量,主顶的位移通过布

置在液压缸内的位移传感器测量。

4实验研究

本实验为刀盘转速开环控制实验,一个操作员调节螺旋机的转速和推进速度控制旋钮

使盾构前进并保持正面土压力与盾构土仓内压力平衡,另一操作员调节刀盘转速控制旋钮。

盾构共推进1.5 m ,平均推进速度为 2.5 cm/min 。刀盘调速电流曲线如图4a所示。

1 S 1

2 16 20

28 32 3fi 10 44 4fi 52 56 60

HH/min

4 8 ~ii f6 20 24 32 ^6 1-1 48 52 56 60

时f可/mm

U閒

56

52

4H

40

?

?cn

X10

7Qr

10

a)們构丿J盘调速

b)盾构燧輕

?

图4b所示刀盘转速有较大的波动,原因是由于没有及时加注泡沫且土质较粘,刀盘有卡住的现象。但是,刀盘转速曲线的趋势表明,刀盘转速能够按照操作员的调节作出相应的变化。图4c所示的刀盘转矩曲线表明,刀盘转矩变化大,可能是螺旋机的排土速度没有及时调节的原因。对比图

4b和图4c,说明在刀盘转矩有较大波动下,刀盘转速能够根据调速信号按比例调速。盾构刀盘驱动液压系统具有功率大、功率变化范围宽的特点,通过在模拟盾构实验台上的掘进实验,证明该系统能适应掘进中的复杂工况,实现刀盘的调速。

盾构机刀盘驱动控制系统分析和使用

盾构机刀盘驱动控制系统分析和使用 [摘要] 刀盘驱动系统是盾构机的重要组成部分,本文分析了国内盾构机中刀盘常用的几种典型的驱动方式,结合广佛地铁十二标中罗宾斯盾构机的刀盘驱动系统进行重点分析。并使用GX Developer和GT Designer2进行联合仿真,分析其控制过程,供施工人员进行学习检修作参考。 [关键词] 盾构机;刀盘驱动;PL 前言 刀盘是盾构设备的重要组成部分,是进行掘进作业的主要工作装置。虽然盾构机刀盘工作转速并不高,但是由于广佛地铁十二标地质构造复杂、刀盘作业直径较大。要求刀盘的驱动系统需具备: 大功率、大转矩输出、抗冲击、转速双向连续可调。在满足使用要求的前提下减小装机功率,具备节能降耗等工作特点。盾构机中主要使用三菱电机自动化生产的Q2大型PLC进行分布式控制,各个部分在控制系统中分工明确,整个控制系统具有一定的复杂性。因此,刀盘的驱动系统以及控制系统必须具有高可靠性和良好的操作性能。通过使用GX Developer 和GT Designer2进行联合仿真可以很好地克服整套大型设备难以开展调试、学习、检查等工作的缺点。 1刀盘驱动系统分类 刀盘驱动系统是盾构机的主要系统之一, 分析盾构机刀盘驱动系统液压驱动方式和电驱动方式, 并对两种驱动方式进行了优缺点比较,结果如表1-1所示。 表1-1 驱动方式优缺点对比表 驱动形式特点 电机驱动能源使用效率高,噪音小,价格上比液压驱动具有优势,但是在前盾中占用空间比较大。 液压驱动起动力矩大,容易同步控制,效率低,噪音高。前盾内空间宽敞,后续台车配套设备所占空间比较大。 虽然液压控制在控制精度以及起动转矩方面有一定的优势,但是随着异步电机变频控制技术的发展和完善,在刀盘驱动中使用电机驱动技术更加符合生产和设备使用和维护实际情况。刀盘采用电机驱动将会越来越普遍。 2刀盘电驱动分析 电驱动方式分为单速电机驱动方式、双速电机驱动方式和变频电机驱动方式。单速电机驱动方式不能调节速度,近年来在投入和功能的比较上,越来越缺

盾构机液压系统原理(海瑞克)

盾构机液压系统原理 一.液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1. 盾构机液压推进及铰接系统 2. 刀盘切割旋转液压系统 3. 管片拼装机液压系统 4. 管片小车及辅助液压系统 5. 螺旋输送机液压系统 6. 液压油主油箱及冷却过滤系统 7. 同步注浆泵液压系统 8. 超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1. 盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的

转弯调向及 纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 (2)推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q ma x范围内变化时,调整后的泵供油压力保持恒定。恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

ATV71变频器在盾构机刀盘驱动中的应用

AT V71变频器在盾构机刀盘 驱动中的应用 郁陈华 (施耐德电气中国投资有限公司,上海200233) 摘要:盾构机刀头由多个电机共同驱动,控制电机的变频器必须保证负载能在多个电机之间平衡。同时,盾构机施工地点环境较差,环境温度高,粉尘污染严重。介绍了施耐德电气AT V71变频器及在盾构机刀盘驱动中的应用。描述了刀盘驱动对于电机控制的具体要求,并论述了如何利用A T V 71内置的功能设计实现这些要求。同时,描述了如何合理设计变频器的控制机柜来适应盾构机的特殊使用环境。经过数个工程的实践,证明上述方法能很好地满足变频器在盾构机应用的要求。 关键词:盾构机;负荷平衡;防护 中图分类号:T P29 文献标识码:B Application of ATV71on C utter Head of Tunnel Boring Machine Y U Chen hua (Schneider Electr ic (China)I nv es tment Co.Ltd ,S hang hai 200233,China) Abstract:T he cutt er head of t unnel boring machine is driven by multi moto rs.T he A C dr ive o f t hese mo to rs must guarantee that the t orque betw een different moto rs is w ell balanced.A t the same t ime,t he environ ment of tunnel bo ring machine is harsh,t he temper ature is high and ther e is heavy dust pollutio n.T he applica tion of A T V71o n cutt er hear d of tunnel bor ing machine was intro duced.T he requir ements to the drive co ntr ol of mot or o f the cutter head was described and discussed ho w to use the int eg r at ed functio n in AT V71to design the appro pr iate driv e co ntr ol system to meet these r equirements.A t the same time,the questio n o f ho w to de sig n the panel to adapt the special env iro nment in tunnel bor ing machine w as also discussed.T he practice o f sev eral pr ojects prov e that this so lutio n can meet the requir ement o f tunnel bor ing machine. Key words:tunnel bor ing machine;load shar e;prot ection against to ug h env iro nment 作者简介:郁陈华(1971-),男,研究生,工程师,Email:chenhua.yu@schneider https://www.360docs.net/doc/3b3194486.html, 1 引言 盾构隧道掘进机(盾构机)是一种隧道掘进的专用工程机械。现代盾构掘进机集光、机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土渣、拼装隧道衬砌、测量导向纠偏等功能,盾构掘进机已广泛用于地铁、铁路、公路、市政、水电等隧道工程。 用盾构机进行隧洞施工具有自动化程度高、节省人力、施工速度快、一次成洞、不受气候影响、开挖时可控制地面沉降、减少对地面建筑物的影响和在水下开挖时不影响水面交通等特点,在隧洞洞线较长、埋深较大的情况下,用盾构机施工更为经济合理。 盾构机的基本工作原理就是一个圆柱体的钢组件沿隧洞轴线边向前推进边对土壤进行挖掘。 该圆柱体组件的壳体即护盾,它对挖掘出的还未衬砌的隧洞段起着临时支撑的作用,承受周围土层的压力,有时还承受地下水压以及将地下水挡在外面。挖掘、排土、衬砌等作业在护盾的掩护下进行。 盾构机的掘进过程大致如下:刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的渣土充满泥土仓,此时开动输送机构将切削下来的渣土排送至地面。 传统的盾构机刀盘是由液压驱动的,近几年出现了由变频器控制三相交流异步电机驱动的刀盘。显然,与液压驱动相比,电机驱动具有机械设 61 EL ECT RIC DRIV E 2010 V ol.40 N o.12电气传动 2010年 第40卷 第12期

海瑞克盾构机液压系统刀盘驱动主泵变量控制原理

海瑞克盾构机液压系统刀盘驱动主泵变量控制原理 德国力士乐A4VSG***/HD1...变量柱塞泵、变量控制原理

德国力士乐A4VSG750HD1/R***,斜轴式变量柱塞泵广泛的应用在“海端克”盾构机和中铁装备及中铁建所生产的盾构机液压系统中,,每台盾构机使用三(四)台此泵用于驱动刀盘旋转的八台A6VM500液压马达。 盾构机刀盘驱动液压泵是三台泵P口合流后,驱动八台液压马达式闭液压回路,这种群变量泵驱动群变量马达工作方式的一个重要技术指标是:三台泵输出压力、流量、变量特性及曲线一至。但在实际的工作状态下,很难做到输出压力一至、输出流量一至、变量特性一至,各种原因促使泵的技术特性不可能一至,就是新泵也不可能一至!使用到一定周期的泵差异就更大了,就是需要调整,本文作者本意是要打破技术壁垒,使盾构机液压维修人员了解此泵的变量制式,懂得泵变量油路走向,为故障提供分析检测依据,了解此泵上的各阀功能及调节参数,使盾构机能够长期的稳定无故障工作。 想了解学习此泵的变量控制人员,当先复制一份上面的液压变量原理图,手持原图与下面的沟画的图对照,了解控制油路的走向。

图一说明: 此型号的柱塞泵没有内置补油泵,需要外部提供变量控制、热油更换、稳定回油备压的油源。在盾构机液压系统中的一台螺杆泵排出的油源经过高精度过滤器后,从E口中进入到泵控制油路中。经过高精度过虑的控制压力油源,对于提高泵的使用寿命及减轻泵变量机构的磨损,维稳状态特殊重要。 在盾构机上,此刀盘泵要起动前,必需先起到补油泵,当补油泵压力建立后,系统中的压力传感器发出讯号给PLC后,才能起到刀盘泵。 刀盘泵的变量控制方式有二种状态,第一种是外控提供的压力油变量方式,第二种是自控压力油变量方式。 先谈第一种:外控提供的压力油变量方式,见上图,刀盘泵的电动机没有起动,外部提供的先导压力油已进入到泵的变量执行机构中,使泵的变量活塞保持在中位(此时:观察泵外观上的角度指示器如不在中位时、那一定是故障)。就是电动机起动带动刀盘泵运转后(泵变量的比例电磁阀的A、B没有指令,也就是没有电流值时),泵壳上的变量角度指示器也要保持在中位。 外部提供的压力油在泵壳的管路运行过程中,遇到第一个阀是“液控顺序阀”,它只在泵的A、B排油口内的油液压力小于25bar 时,起到液阻作用,由于这个顺序阀的液阻,使外供控制油源在阀前建立到25bar压力,这25bar压力油源通过比例阀、限压阀流动到变量活塞大、小控制腔内,达到活塞大、小端控制腔内压力平衡,使活塞保持在中位。 特殊说明;此型号的柱塞泵在各式变量变换中时,变量压力控制油永远直达变量活塞小瑞(小变量控制腔无任何控制方式),大瑞变量控制腔内的油液压力增大时,活塞从中位向左移动。大瑞变量控制腔内的油液压力减少时,活塞从中位向右移动。

(完整版)海瑞克盾构机液压系统说明(附电路图)

一、液压系统元件 1液压泵 液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量 泵,按输出出口方向又可以分为单向泵、双向泵。 泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作 用,控制着执行元件的运行。 在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向 变量泵,管片安装机种使用两个单向变量泵,注浆系统 中使用一个单向变量泵,辅助系统使用一个单向变量泵。

a.定量齿轮泵 注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的

c.定量叶片泵 注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定 d.斜盘式柱塞泵 注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的

2液压阀 液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。 压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。 流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。 方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。 各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。 a.单向阀 注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2 口流出,油液只能从p1流向p2

b.溢流阀 注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液 从溢流口

c.液控单向阀 注:x口接压力油时,阀芯将a与b口堵死,当x口接油箱时,若Pa大于Pb,则从a口进油,打开阀芯,流向b口,若Pb大于Pa时,则油液从b 口流向a口,

常见盾构刀盘型式及选用

常见盾构刀盘型式及选用 作者:admin 摘要:目前常见的刀盘结构有面板式和辐条式2种基本型式,以及介于2者之间的幅板式刀盘。通过文献分析和工程经验总结,首先阐述了几种型式刀盘的结构、基本配置及工程应用。随后从刀盘土舱构造、开挖面稳定、土压平衡控制、砂土的流动性、刀盘负荷、障碍物的处置、地层适应性等方面,对2种基本刀盘型式的特性进行了比较和分析。 关键词:盾构;刀盘型式;面板式刀盘;辐条式刀盘 0 引言 国内外工程实践表明,盾构在施工中会遇到各种不同地层,从淤泥、粘土、砂层到软岩及硬岩等。作为盾构机的关键部件之一,刀盘主要起到开挖土体、稳定工作面及搅拌土砂的功能,因此在掘进过程中刀盘工作环境恶劣,受力复杂。刀盘型式及结构关系到盾构的开挖效率、使用寿命及刀具费用。刀盘配置及选型主要依赖于工程地质及水文地质条件,不同的地层应采用不同的刀盘型式,但在地质适应性设计方面缺少完整的理论依据、经验数据及可靠的试验数据,在很大程度上还依赖工程经验。 1 刀盘结构型式 盾构刀盘由钢结构件焊接而成,目前其主流型式有2种:面板式和辐条式[1]。另外,还有介于2者之间的辐板式刀盘(由辐条和幅板组成)[2]。 面板式刀盘(图1、图2)一般为焊接箱形结构,其上设置刀座、刀具、开口、添加剂注入口及与主轴承连接部件。切刀布置在面板上开口的两侧,滚刀布置面板是刀座。刀盘开口率较小,在30%左右,属闭胸式。目前,中国使用的盾构大部分为面板式刀盘结构,如上海地铁施工用的是法国FCB盾构,北京、广州、深圳及南京等地用的是海瑞克盾构。 辐条式刀盘(图3、图4)主要由轮缘、辐条及布设在辐条上的刀具组成。刀具布置在辐条的两侧,一般较难布置滚刀。刀盘开口率很大,约在60%~95%之间,属开敞式。以往,辐条式刀盘应用较少。最近,在日本地铁工程中辐条式刀盘应用开始增多。中国盾构工法也开始应用辐条式刀盘,如北京地铁4号线使用的石川岛播磨Ф6.14m盾构(开口率95%)、小松Ф6.3m盾构(开口率62%)、上海地铁M6、M8使用的石川岛播磨Ф6.52m双圆盾构(开

隧道内盾构机刀盘主驱动齿圈的修复技术

隧道内盾构机刀盘主驱动齿圈的修复技术 摘要:该文介绍了海瑞克盾构机刀盘主驱动齿圈的修复。详细说明了齿圈轮齿在不拆除和狭小施工空间的情况下,对焊接材料选取、焊接工艺、检测方法等的方案制定,成功的修复了大齿圈轮齿的过程。 关键词:盾构机,齿圈,修理 Abstract: this paper introduces the Shanghai g shield construction machine cutter tooth the restoration of the Lord drive circle. Detailed description of the gear tooth circle in the preservation and narrow space construction of welding material selection, the welding process, the detection method of decision-making, the success of the big circle gear tooth repair process. Keywords: shield construction machine, tooth circle, repair 1、产生的现象 盾构正在掘进,在盾体部位隐约能听见咯噔的声响,马上进行了全面检查,发现声音出现在前盾位置,仔细观察发现,中心回转体方位指针在出现声响的时候有滑移现象,初步判定可能为刀盘主驱动问题,后经确诊为刀盘驱动轴承齿圈损坏。 2、问题产生的原因 此处为437环,处在小转弯半径(200M)的施工段,正值全断面地层,微风化花岗岩,纹理结合紧密。掘进过程中刀盘扭矩一直处在180bar以上,渣土温度很高,最高达到68℃,齿轮油温度也徘徊在60℃~70℃之间,另外由于此盾构机为德国海瑞克早期型号,工作有7年多,推进里程为9公里以上,已接近使用寿命,部分机械零件老化严重。在广州这种复合层地层中掘进,长期的满负荷工作,轴承的疲劳磨损比较严重,鉴于以上因素,使得盾构机刀盘主驱动部位(含8个减速箱和驱动马达)发生了故障,8号减速箱内轴承损坏,导致轴承滚珠掉入齿圈中,从而导致大齿圈的轮齿和其他减速箱内的轮齿断裂。 图1 大齿圈轮齿损伤照片 3、处理措施 8个减速箱可以拆卸出来维修和更换,其维修难度较小,而在盾构机上的大齿圈由于机械本身设计和空间限制无法取出来更换,因此只能在现场进行维

盾构刀盘磨损及刀具更换.docx

15刀具使用维护及更换 一般规定 15.1.1北京地铁盾构隧道施工,多在粉细砂层、圆砾层及卵石层中进行, 刀盘、刀具磨损较大,须对刀盘、刀具磨损的检测及更换等有充分的估计。 在定购盾构机时,应充分考虑北京地层条件特点,确定盾构机的面板型式 以及刀具配置等,以满足北京地铁盾构施工的需要。 盾构施工前应根据地层的磨耗性、刀盘刀具类型及配置等制定刀具使用计 划。 盾构掘进施工前,应综合考虑地层条件,地面条件等因素,确定合理的可 能换刀位置。 施工中应使用泡沫、泥浆等添加材,并采取其它减磨、降矩措施,提高刀 盘、刀具的寿命。 15.1.6刀盘、刀具的磨损与施工参数的选择、施工方法等密切相关,应充分考虑 这些因素的影响,审慎施工。施工中应密切观察推力、扭矩、渣土性状、机体 振动状态等,分析其原因,采取应对措施。 应设定异常掘进的警戒推力及扭矩值,如遇异常情况,应立即停机检查。北 京地铁盾构隧道施工中的刀盘、刀具磨损现象非常复杂,详细情况正在调查 和研究中,随着调查研究的深入及施工经验的增多,将及时做补充修订。 刀盘及刀具的选择 15.2.1刀头材质的选择 1 刀具一般采用真空烧制的 E5类钢材,对于有特殊耐磨要求的刀具宜采用耐磨能力是 E5两倍的所谓 SINTER- H1P真空烧制的 E3类钢材。 2表面硬化的方法一般是堆焊耐磨材料,可采用碳化钨或高铬堆焊焊条,堆 焊层硬度宜高于 HRC60 ;

3采用超硬重型刀,刀具背面实施硬化堆焊。 刀头种类及型状: 1主切削刀;其切入角度影响切削能力的发挥,应根据施工地层情况,选择 切入角度; 2主超前刀(也称先行刀):采用主超前刀,一般可显着增加切削土体的流动性,大大降低主切削刀的扭矩,提高刀具切削效率,减少主切削刀的磨耗。 3鱼尾刀:为改善中心部位的切削和搅拌效果,宜在刀盘中心部位设计一把 尺寸较大的鱼尾刀。 4盘圈贝型刀:实质上是超前刀,在盾构机穿越砂卵石地层特别是大粒径砂 卵石地层时宜采用。 5仿形刀:仿形刀的目的是盾构机在曲线段推进、转弯或纠偏时,通过仿形 超挖切削创造所需空间。 刀具配置 1增加刀具的数量,即增加刀具的行数及每一行的刀具布设数量; 2采用长、短刀并用法,即长刀具磨损后,短刀具开始接替长刀具磨损。其高 低差一般为 20mm~ 30mm。 3切削刀头的安装方法有销钉、螺栓及焊接等方法。预测需要更换时,须采用 装卸容易的方法进行安装。 在北京地层条件下,应加大刀盘开口率,减少切削土渣在刀盘空间的滞留时间, 以保证土渣顺利进入土舱,减少刀盘、刀具的磨损。 刀具磨损的预测及检测方法 必须充分探讨刀头的耐磨耗性,事前预测磨耗量,制定切实可行的对策,以便施 工能顺利进行。 刀具磨耗量的预测 最外圈的刀具磨耗量的推测值可按下式计算:

盾构机的刀盘的设计资料

盾构机的刀盘的设计资料 盾构机的刀盘和刀具 The Cutter Head and Tools of the Shield Machine 豳中铁七局集团第三工程有限公司何小娥/HE Xiaoe 刀盘是盾构的主要工作部件,不同地质地层应采用不同的刀盘结构形式及刀具布置,刀盘及刀具的好坏关系到盾构施工的成败,影响盾构掘进的速度和效益,甚至关系到盾构施工的成败 1 刀盘 刀盘是一个带有多个进料槽的切削盘体,位于盾构机的最前部,用于切削土体。“刀盘”的工作原理可简单比作是一把剃须刀,在前进过程中逐渐将泥土砂石变成碎块,再排放到“刀盘”后的“储藏室”内,即,土仓。 1.1刀盘的特点 的切削效果和掘进速度,甚至关系到盾构施工的成败。个性化:盾构在施工过程中会遇到各种不同地层,从淤泥、粘土、砂层到软岩及硬岩等。刀盘刀具不可能是千篇一律的,必须根据工程地质情况进行个性化设计。多样化:随着城市建设的加快,土地资源越来越珍贵,为了节省空间,越来越多的异形盾构出现,刀盘也随之变得各式各样。 1.2刀盘的功能

开挖功能:对掌子面的地层进行开挖,开挖后的渣土顺利通过渣槽,进入土舱。 稳定功能:支撑掌子面,具有稳定掌子面的功能; 重要性:刀盘的选择是否合适直接影响盾构掘进机搅拌功能:对土舱内的渣土进行搅拌,使渣土具有一力值趋于减小。在低速情况下沥青混凝土路面呈粘弹性状态,刀具前角对切屑的挤压以及后角对已加工路面的摩擦使得刀尖附近的应力值增大;随着切削速度的增大,沥青混凝土在切削过程中脆性越来越明显,产生的切屑对前刀面的挤压程度降低,从而使得刀尖附近的应力值趋于减小;当速度达到一定程度的时候,这个值趋于平稳。另外还可以看出在切削过程中刀尖前端的沥青混凝土路面主要受到刀尖对其的挤压,从而oo。和 o,,呈现为负值;o。、a,,和o,,低速慢慢随着速度的增大而不断增大,这是因为沥青混凝土的粘塑性随着切削速度变化而引起的。 表3为切削深度为60 mm的不同切削速度下的刀具切削力计算结果。可以看出,切削速度100 mm/s 逐渐增大到1 000 mm/s的过程中,刀具受力增加比较缓慢,所以刀具所受到的冲击不是很大,刀具的磨损也不会很严重。切削速度从l 000 mm/s增大到6 000 mm/s过程中,刀具受力急剧增加,所以刀具的磨损将 表3切深为60 mm时不同切削速度下的刀具切削力

盾构刀盘驱动液压系统的实验研究

盾构主要用于软土、砂砬和强风化岩层及含水的混合地层隧道掘进。主要由盾体、刀 盘及驱动系统、螺旋输送系统、液压推进系统、管片拼装系统、同步注浆系统以及盾尾密封装置等构成。 盾构掘进过程中,负载是随断面的土质状况变化的,切削硬岩和切削软土所需的切削扭矩变化很大(见表1)。 轰1上浴吃铁工程麻构推进时刀理扭矩统计表 可见,盾构刀盘驱动所需功率大且功率变化范围宽。 刀盘驱动液压系统原理 如图1所示刀盘驱动液压系统。采用电比例功率自适应泵控马达技术,实时检测刀盘 的转速,根据合适的策略控制变量缸位移,继而控制变量泵的排量,形成按负载工况变化需 要进行刀盘转速的连续实时控制。液压系统设计成开式回路,可适应两种工况,软岩工况时 蹬低速大转矩和硬岩工况时的高速小转矩。两种工况转换可通过控制电磁换向阀6来实现,

当电磁铁断电时,溢流阀7.1确定系统最高压力,此时,系统压力设定为10 MPa,输出 转矩小,但流量大(最大为300 L/min),输出转速高;当电磁铁通电时,溢流阀7.2确定系统最高压力,此时,系统压力设定为20MPa,输出转矩大,但流量小,输出转速低。刀盘 转速通过调节变量泵2的排量实现,检测液压马达的输出转速,检测信号反馈到变量泵的比例阀上,构成速度闭环控制系统。液压马达 5.1和5.2的正反转可通过电液换向阀3来控制。系统采用某公司的A11VO 260 LRDU2 恒功率比例变量泵。泵的排量在其整个范围 内可无级调节,并与比例电磁铁的控制电流成比例。恒功率控制优先于变量控制,如果设定流量或工作压力使功率曲线超过,则恒功率控制取代电控变量并按照恒功率曲线减小排量。 当低于功率曲线时,排量受控制电流的调整,泵输出的流量只与输入控制信号相关,而不受负载压力变化的影响。变量调节特性如图2所示。 3模拟盾构实验平台 实验装置如图3所示,包括模拟土箱、模拟盾构机、主顶、土体加压泵站、模拟盾构 机泵站和控制室。乩'■撼冬魅咻台击塚诊 模拟土箱内的土能够通过水囊进行加压,实现对不同土压的模拟。模拟盾构机由主顶 推进,模拟盾构泵站包括刀盘与螺旋机驱动泵站和主顶驱动泵站。模拟土箱内的多个断面布 置有压力传感器,刀盘转速通过在刀盘上布置2个接近开关进行测量,主顶的位移通过布 置在液压缸内的位移传感器测量。

盾构机刀盘驱动最优控制的分析

盾构机刀盘驱动最优控制的分析 摘要:结合盾构机实际的应用,对刀盘驱动常用的三种控制方式 的优缺点进行分析,提出的最优的控制方式。其控制效果良好,提高盾构机驱动系统的可靠性和工作效率。 关键词: 盾构机;变频驱动;最优控制 abstract: combined with the application on tunnel boring machine, analyse the advantages and disadvantages in three commonly used kinds of control mode on the cutter head drive, the optimal control mode was proposed. the control worked well, which improve the reliability of shield machine and production efficiency. key words: tunnel boring machine, optimal control, variable frequency drive 中图分类号:tu74 文献标识码:a 文章编号: 1 引言 盾构机,是一种新型的隧道掘进设备,具有安全性高、可靠性好、开挖速度快、人员劳动强度小等特点,集机械、液压、电气技术与一体,涉及地质、土木、测量、控制等多门学科技术。随着城市地下交通网络的建立,盾构法施工已经在地铁、铁路、公路、市政、水电等工程施工中广泛应用。早期的盾构机多为液压驱动,随着时代的发展和科技的进步,交流变频调速技术已经成为盾构机发展的主要趋势。变频器对电机进行控制,是根据电动机的特性参数及电

变频器在盾构机的运用

东芝变频器盾构机刀盘驱动中的应用: 盾构机刀头由多个电机共同驱动,控制电机的变频器必须保证负载能在多个电机之间平衡。同时盾构机施工地点环境较差环境温度高粉尘污染严重。介绍了东芝盾构机专用变频器及在盾构机刀盘驱动中的应用。描述了刀盘驱动对于电机控制的具体要求并论述了如何利用东芝盾构专用变频器内置的功能设计实现这些要求。同时,描述了如何合理设计变频器的控制机柜来适应盾构机的特殊使用环境。经过数个工程的实践,证明上述方法能很好地满足东芝变频器在盾构机应用的要求。关键词:盾构机负荷平衡;防护;东芝盾构变频器 1引言盾构隧道掘进机(盾构机)是一种隧道掘进的专用工程机械。现代盾构掘进机集光、机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土渣、拼装隧道衬砌、测量导向纠偏等功能,盾构掘进机已广泛用于地铁、铁路、公路、市政、水电等隧道工程。用盾构机进行隧洞施工具有自动化程度高、节省人力施工速度快、一次成洞、不受气候影响开挖时可控制地面下沉、减少对地面建筑物的影响和在水下开挖时不影响水面交通等特点,在隧洞洞线较长、埋深较大的情况下,用盾构机施工更为经济合理。盾构机的基本工作原理就是一个圆柱体的刚组建沿隧洞轴线边向前推进边对土壤进行挖掘。该圆柱体组件的壳体即护盾它对挖掘出的还未衬砌的隧洞段起着临时支撑的作用承受周围土层的压力有时还成承受下水压以及将地下水挡在外面,挖掘、排土、衬砌等作业在护盾的掩护下进行。盾构机的掘进过程大致如下刀盘旋转同时开启盾构机推进油缸将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的渣土充满泥土仓,此时开动输送机构将切削下来的渣土排送至地面。传统的盾构机刀盘是由液压驱动的,近几年出现了由变频器控制三相交流异步电机驱动的刀盘。显然,与液压驱动相比,电机驱动具有机械设计简单、安装维护容易、控制灵活方便、成本低廉等诸多优点。因此电驱动在盾构应用中有着广阔的前景。2盾构机刀盘驱动的控制要求 电驱动的刀盘通常由6~22个电机经过各自的减速箱与一个差不多和刀盘等直径的大齿轮啮合来驱动整个刀盘驱动。因此从驱动的角度看这是一个多电机驱动同一负载的应用,需要负载平衡控制,即让负载均匀地分布到所有电机上否则部分电机将会过载,因为机械设计时考虑的总功率是多个电机功率之和。与其他需要负载平衡控制的应用相比,刀盘驱动的特殊性在于:1)电机的数量较多,许多应用中的负载是在2个电机或4个电机之间平衡的,如起重、炼钢转炉等,而刀盘的驱动要求负载在6~22个电机之间平衡;2)机械传动机构复杂,传动比非常大,所以,虽然总体上来说多个电机与刀盘之间属于刚性连接,但其实每个传动点的齿隙等参数很难达到一致,这些差别在设计负载平衡控制时必须充分考虑到。同时,刀盘的体积庞大,掘进中负载变化不可预知。由于减速机构复杂且减速比大,刀盘处负载和速度的微小波动都会在电机侧被成百上千倍地放大,这种大幅度的波动有可能会造成传动机构的损坏。为此,在刀盘驱动控制中,应尽量采取办法避免波动。盾构施工的环境一般都比较恶劣,高温、高湿、多尘在所难免,因此必须考虑到变频器的防护与散热问题。 3.东芝盾构机专用变频器在刀盘驱动中的应用 东芝盾构机专用变频器是东芝机器产业最高端的一款变频器,可以实现闭环矢量控制,过载能力达到了200%,功率范围从0.75~500kW。东芝盾构机专用变频器还内置了大量的应用功能,如抱闸逻辑、多段速、限位开关管理等以适合各种各样的生产工艺。针对盾构机的特殊要求,东芝盾构机专用变频器通过灵活组合内置的负荷平衡功能、主从功能、多配置功能很好地实现了这些要求。盾构机的刀头由6~22个电机驱动,需要将负荷均匀地分配到每个电机上。通常,对于这类多电机驱动同一负载的控制有2种经典的方法。第1种,滑差自适应法。通常交流异步电机的自然特性是下垂的,见图1。 电机的实际转速与由供电频率和电机极数决定的磁场转速之间有一定的差异,称为滑差。对通常的交流异步电动机而言,在一定的范围内,滑差和负载之间有近似的线性关系,并且负载越重,滑差越大,意味着电机的转

盾构机刀盘材料选用

盾构机刀盘材料

一、工程概况 盾构机刀盘磨损主要原因为隧道穿越的地层主要为粘土沙,其中夹杂中粗砂、砾砂、卵石,砂性土摩擦阻力大,渗透性强,在盾构的推进挤压下水分很快排出,土体强度提高,故不仅盾构推进摩擦阻力大,而且开挖面土压力也较大,对刀盘的磨损会比较严重。再者外缘刮刀基体耐磨性不够,磨损后造成硬质合金脱落,从而使刀盘承受直接磨损,另外绞龙的耐磨性对刀盘和轴承止水密封面的磨损有间接影响。转场后将要面临更为严峻的地质构造。本次修复需要综合考虑以上问题,制定合理的堆焊修复盾构机刀盘材料,恢复刀盘原有外型尺寸,有效减少非正常磨损,保证后续正常的施工质量和进度。 二、编制依据 1、盾构机相关图纸和数据。 2、盾构机现有磨损情况。 3、焊材说明书与焊接技术参数。

三、修复工艺以及盾构机刀盘材料选择 1、设计尺寸: 主视图外径Ф6260mm,剖视图B-B显示:环带直径6230mm,刀盘厚度为450mm,耐磨环带宽度160 mm厚度50mm,耐磨块原有数量56块均匀分布。2、磨损情况: 周边磨损是所有盾构机的共同点,单边磨损量平均约10mm。包括刀盘A-A 剖视图斜面。盾构刀盘弧面镂空。主切刀部分磨损严重,需连同刀座一起更换。 3、盾构机刀盘材料选用: 考虑到母材为Q235,属于中碳钢,本次耐磨堆焊必须采用抗裂性优良的焊材打底,故而选用北京固本焊丝打底材料。为适应耐磨需要,耐磨层选用打击硬化材料,在盖面时采用高铬铸铁材料做盖面层,同时采用高铬铸铁材料焊接网格增加初期耐磨性。 4、测量工具: 制作辅助测量工具,以便对直径测量。 5、焊前处理: 焊接表面清洁,彻底去除泥沙、油渍,检查是否存在裂纹。 6、裸露结构部分需覆盖20MM厚钢板,然后按图纸尺寸恢复刀座位置焊接(预先割除原有边刮刀和耐磨块),其余部位除焊接耐磨块之外还要加装先行刀,包括面板,均匀分布。耐磨块材质依据提供封样样块。先行刀焊接26把。耐磨群板的割

隧道盾构机液压系统工作原理

隧道盾构机液压系统工作原理 一.液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1.盾构机液压推进及铰接系统 2.刀盘切割旋转液压系统 3.管片拼装机液压系统 4.管片小车及辅助液压系统 5.螺旋输送机液压系统 6.液压油主油箱及冷却过滤系统 7.同步注浆泵液压系统 8.超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1. 盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的

转弯调向及 1A030U001 lAOie 1A015 纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 (2)推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300 )调整,流量在0-q max范围内变化时,调整后的泵供油压力保持恒定。恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

盾构机的刀盘

盾构机的刀盘 北京固本科技有限公司胡建平 盾构机的刀盘是一种用于隧道暗挖施工,具有金属外壳,壳内装有整机及辅助设备,在钢壳体掩护下进行土体开挖、土渣排运、整机推进和管片安装等作业,而使隧道一次成形的机械。盾构机按掘进方式分为人工、半机械和机械化形式。目前机械化盾构发展较快,它由刀盘旋转切削地层,采用螺旋输送机或泥浆管运送渣土,在壳体内拼装预制管片,依靠液压千斤顶推进。 一、盾构机的刀盘 1.刀盘布置及磨损分析 1.1刀盘布置 刀盘的结构既要考虑刀盘的开挖性能,又要考虑渣土的流动性及掌子面的稳定性。刀具的布置方式需要充分考虑工程地质情况。本工程中盾构主要穿越砂性土,砂性土摩擦阻力大,渗透性强,在盾构的推进挤压下水分很快排出,土体强度提高,故不仅盾构推进摩擦阻力大,而且开挖面土压力也较大,对刀盘的磨损会比较严重。另外,盾构土仓内刀具切削下来的砂土不易搅拌成均匀的塑流体,因此需要设置渣土改良设备。鉴于上述工程实际情况,本工程盾构机采用了如图1所示的辐板式刀盘。盾构刀盘由钢结构件焊接而成,目前其主流形式有面板式、辐条式及介于二者之间的幅板式。辐板式刀盘兼有面板式和辐条式刀盘特点,由较宽的辐条和小块幅板组成,刀具分别布置在宽辐条的两侧和内部。辐板式刀盘不仅使得土压平衡更易于控制,土砂流动顺畅,不易堵塞刀盘开口,且刀盘扭矩阻力小,保证有较好的掘进性能,又能节省设备投资,而且较大的面板有利于布置较多的刀具,同时较小的开口率也有利于保护本工程中容易坍塌的砂性土围岩的稳定。 1. 2盾构机磨损情况 盾构机到达重工街站后,立即对盾构机及刀盘进行清理、检查,发现盾构机刀盘外周磨损非常严重。盾构刀盘本体外缘侧板磨损在纵向方向上呈现中间大、两头小近似V形,在

盾构机液压系统原理(海瑞克)

盾构机液压系统原理 液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1.盾构机液压推进及铰接系统 2.刀盘切割旋转液压系统 3.管片拼装机液压系统 4.管片小车及辅助液压系统 5.螺旋输送机液压系统 6.液压油主油箱及冷却过滤系统 7.同步注浆泵液压系统 8.超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1.盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的

转弯调向及 纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径 上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 (2)推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001 )和一定量泵 (1P002)组成的双联泵,功率为75KW ,恒压变量泵为盾构的前进提 供恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300) 调整,流量在0-q m ax 范围内变化时,调整后的泵供油压力保持恒定。 恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。 ■ Q V&nri^bs^/lindflr GRLIPP£_£ ■ Vortn^bsiylinder i? V^gmlesiSYS^mn

盾构机刀盘修复流程

盾构机刀盘修复流程 1、清理残根采用氧焊及气刨工具,对面板筋板残根以及刀箱刀具残根进行清理,按焊接要求打磨出坡口面,为焊接工作做好准备。 2、筋板修复(1)在残根上作出标记并进行拓样工作,根据图纸确定补贴复原筋板的泡沫塑料样板,然后按样板加工所需钢板(筋板采用50mm厚16Mn钢板);(2)将筋板残根与钢板焊接。为保证焊接质量,在对接口处加工45角坡口,采用多层焊接将坡口填平。 3、刀盘校正(1)考虑到校正刀盘时对主轴承的负面影响,将刀盘与前盾进行加固。加固区域确定在刀盘的未变形区域,既要保证对主轴的影响小又要保证未变形区域不产生二次变形。(2)将变形区域的撕裂筋板和影响刀盘校正的筋板割断,仅留背板。在其后面与土仓板间放两台液压油缸将刀盘缓慢顶出,顶到位置后用“工”字钢和角钢将刀盘与前盾焊接在一起,防止反弹。(3)在筋板割断处加工坡口进行焊接,保证焊接强度,增加支承钢板和复焊板,进行应力放散。待应力放散基本完成后将所有固定刀盘的支点拆除。 4、刀箱定位安装(1)刀盘面位置确定采用在前盾上焊接六根定位钢筋的办法确定一个与前盾面平行的平面,此平面从定位钢筋上挂线相交确定,作为刀箱定位的参考基准面。(2)刀箱定

位根据参考基准面及图纸尺寸,订出刀箱与盘面的相对位置,保证刀刃相对于盘面的高度一致。(3)边缘滚刀的安装为了满足安装的角度,结合现场条件,用木板制作所需角度的样板尺,经过使用样板尺,能保证边缘滚刀的安装角度。 5、刀具安装(1)小刮刀刀座的安装以刀盘实际测绘基准面,利用残根和图纸标定的尺寸进行刀座的定位。先在内、外两端各定一把刀座,而后利用角钢定出其它同一直线刀座的位置,刀座全部定位后进行加固焊接。(2)边缘刮刀刀座的安装保证正面区域的小刮刀在同一平面上,边缘区域与设计相符,保证开挖圆周的直径,定位后焊接牢固。 6、泡沫喷嘴的修复与保护(1)泡沫喷嘴修复当面板全部磨损,只留下泡沫管道的一部分时,需重新安装泡沫管道及喷嘴。安装泡沫管道与喷嘴只能在安装面板之前完成。(2)泡沫喷嘴保护为避免泡沫喷嘴发生堵塞现象,根据丁坝挑流的原理,对泡沫喷嘴采用环形保护,改变“土流”流向,保护喷嘴部位不受土体堵塞,使泡沫能够加入土体。 7、刀盘磨损修复检查刀盘表面是否还有严重磨损部位,如有磨损,需进行耐磨堆焊修复。首先需对磨损部位进行切割去除、打磨光滑,达到焊接的要求。采用北京固本KB680耐磨焊丝进行堆焊处理,增加其耐磨性能。北京固本KB680耐磨焊丝填充碳化钨粒子的复合焊丝,碳化钨粒子进入马氏体基质上,主要用于要

刀盘驱动的液压系统

第34卷 2006年第5期30Mining & Processing Equipment 30 采掘 盾 构机模拟试验台既可用于各种工作装置的功能模拟,又可用于控制系统的逻辑关系模 拟,其中的液压系统为各种工作装置提供动力,同时又是控制系统的主要控制对象。模拟试验台中的液压系统由刀盘驱动系统、推进系统及模拟加载系统组成,以下就刀盘驱动液压系统的设计方案与工作原理作出简单介绍。 系统由 1 台 A4VG250 双向变量泵及 2 台 A6VM- 500 变量马达组成,要求实现刀盘的转速控制、旋 转方向控制与制动控制,满足不同地层对掘进工况的不同要求。 1刀盘转速的控制 刀盘的调速可采取有级调速+无级调速的复合控制方式。有级调速由刀盘驱动变量马达实现,无级调速由刀盘驱动变量泵实现。 1.1第一种速度控制方式 (有级调速) 如图 1 所示,通过电磁换向阀的切换,可使刀盘驱动马达变量机构的先导控制油路分别工作在卸荷与带压状态。当处于卸荷状态时,马达排量最大,刀盘低速旋转,可模拟低速大扭矩工况即软岩掘进的工况。当处于带压状态时,马达的排量会减小,刀盘的 论文编号:1001-3954(2006)05-0030-31 盾构机模拟试验台中的刀盘 驱动液压系统 何於琏 中铁隧道股份公司制造公司 河南洛阳 471009 作者简介:何於琏,男,1946年生,1970年毕业于南京理工大学机械专业,高级工程师,中铁隧道股份公司制造公司副经理,国家863计划《盾构掘进机刀盘-刀具与液压驱动系统关键技术研究及其应用》课题的主要参研人员。 (上接第 29 页)密封不好,不仅会降低液压冲击器的效率,而且也会增加液压油的消耗和影响正常的使用及维护。液压冲击器密封形式的设计主要是针对冲击活塞的密封和活塞前后腔密封,主要有以下几种。 4.1组合密封 液压冲击器冲击活塞的密封在国内外主要是采用组合密封形式。组合密封考虑制造和实际密封的效果,在实际中主密封采用两种形式,如图 4 所示,辅助密封一般采用 O 型密封圈和矩形密封圈。滑环形组合密封的接触应力分布比较均匀,而阶梯形组合密封的压力梯度很大,有利于高压状态下进行密封。经试验表明,高压下密封的泄漏几乎为零,滑环组合密封的泄漏值远大于阶梯形组合,因而在冲击器中多采用阶梯形 组合密封。 4.2三段式密封 即间隙 — 低压回油 槽 — 密封圈,其结构示意图如图 5 所示。 这种结构形式的特点是将高压转变为低压泄漏能量。 紧密配合的间隙密封是高压密封的主要手段,当间隙密封的长度为10 mm 时,泄出油的压力约降低 50%;密封长度为 20 mm 时,压力约降 低 90%。经过间隙密封后少量泄漏的高压油又经低压回油槽流走,因而第三段的密封圈所承受的就是低压回油槽的压力,所以很容易实现密封。密封圈的形式很多,但 YX 型的效果较好。选用优质耐磨的材料,可提高密封圈的使用寿命。此外,提高活塞表面的光洁度也是重要措施。这种三段式的密封结构对高压油的密封有很好效果。 5结论 综上所述,液压凿岩机在进行活塞的结构设计时应着重考虑: (1) 在结构允许的情况下,尽量采用细长活塞而不用粗短活塞; (2) 断面变化应尽量减少,必须变化的断面部位应有一个圆滑的过渡区,以减少由于应力波的反射所引起的能量损失; (3) 活塞冲击端的直径应尽量与钎尾直径一致,使冲击波能够从冲击锤平稳地传递到钎杆上; (4) 为了增大冲击能量,适当增加活塞的质量会有一定的效果。但不能过重,否则将会降低冲击次数,从而减少输出能量; (5) 密封形式多采用阶梯形组合密封和三段式密封。 参 考文献 1王维华等.国外液压凿岩机.北京:煤炭工业出版社,1987.2 安顺波.现代矿山机械设备安装调试规范操作、维护保养及常见故障排除实用手册.北京:中国矿业大学出版社,2005. □ (收稿日期:2006-02-27) 图4阶梯形和滑环形组合密封 1. 密封圈 2. 回油槽3. 间隙密 封4. 缸体5. 活塞A─回程进油口B─冲程进油口 图5活塞轴向密封结构 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888 盾构机模拟试验台中的刀盘驱动液压系统

相关文档
最新文档