环境材料对铅、镉污染土壤玉米生长和重金属累积的影响(1)

环境材料对铅、镉污染土壤玉米生长和重金属累积的影响(1)
环境材料对铅、镉污染土壤玉米生长和重金属累积的影响(1)

第36卷第3期2 0 1 3年5月

河北农业大学学报

JOURNAL OF AGRICULTURAL UNIVERSITY OF HEBEI

Vol.36No.3

Jun.2 0 1 3

文章编号:1000-1573(2013)03-0020-05

环境材料对铅、镉污染土壤玉米生长

和重金属累积的影响

章智明, 黄占斌, 单瑞娟, 樊亚东

(中国矿业大学(北京)化学与环境工程学院北京100083)

摘要:为了探索环境材料对重金属污染土壤的植物生长和土壤修复效果,通过盆栽模拟试验研究了单一高分子

吸水材料(PAM)、煤基营养物质(CBN)、吸附性矿物材料(MAM)、矿物化学材料(MCM)及各材料不同组合对

重金属铅(Pb)、镉(Cd)污染土壤中玉米生长和玉米中重金属累积的影响。结果表明:单一CBN、MAM、MCM

及这3种环境材料的组合促进重金属Pb、Cd污染土壤中玉米株高、叶面积的增加和生物量的积累。MAM和

MCM抑制重金属Pb、Cd向玉米秸秆和籽粒中转移,CBN抑制重金属Pb向玉米秸秆和籽粒中转移。

关 键 词:重金属;农田土壤;环境材料;玉米;盆栽

中图分类号:S19文献标志码:A

The effect of environmental materials on maize growth in heavymetal contaminated soil and Pb,Cd accumulation in maize plantsZHANG Zhi-ming,HUANG Zhan-bin,SHAN Rui-juan,FAN Ya-dong

(School of Chemical and Environmental Engineering,China University of Mining and

Technology-Beijing,Beijing 100083,China)

Abstract:In order to explore the effects of environmental materials on plant growth and remedi-

ation of heavy metal Pb and Cd contaminated soil,the maize growth and heavy metal accumula-tion in maize under environmental materials polymer absorbent material(PAM),coal-basednutrient(CBN),mineral adsorption materials(MAM),mineral chemical materials(MCM)and their combinations were detected by pot experiment.The results showed that CBN,MAM,MCM and their combination promoted maize height,leaf area and biomass.MAM and

MCM restrained the transfer of both Pb and Cd to maize straw and grain,and CBN only re-

strained the Pb adsorption of maize plant.

Key words:heavy metal;agricultural soil;environmental material;maize;pot experiment

在我国,由于工矿“三废”排放和农药的过量使用,工矿区周围农业土壤中重金属过量积累,造成严重土壤污染[1-2]。我国重金属污染的农田土壤中,重金属铅(Pb)、镉(Cd)为最普遍的复合污染型。重金属Cd污染耕地1.3万hm2,涉及11省市的25个地区;粮食中含Pb量大于1mg/kg的产地也有11个[3]。不断增加的重金属污染已经导致了大面积土地不能耕作。

收稿日期:2013-03-26

基金项目:国家十二五“支撑计划”课题(NO.2011AA100503)

作者简介:章智明(1989-),男,河北省衡水人,在读硕士生,主要从事环境工程、土壤修复和环境材料方面的研究.通讯作者:黄占斌(1961-),男,陕西省武功人,教授,从事植物生理生态、环境材料等方面的研究.

E-mail:zbhuang2003@163.com.

第3期章智明等:环境材料对铅、镉污染土壤玉米生长和重金属累积的影响21

Cd易被农作物的根系吸收而后向籽实迁移,然后通过食物链进入人体并富集[4],对人类生命健康构成威胁。一些工业城镇郊区农田土壤中Pb含量也高于土壤背景值100多倍,研究表明,生长在污染区的稻米中Pb含量高于非污染区,且高达18倍[5]。土壤中重金属在农作物体内超标累积,不仅严重影响食品安全,并危及到人类的生命和健康。采用经济有效的治理方法解决土壤重金属污染问题,对于我国农业、环境和人民健康具有重大意义。

国内外用来修复土壤重金属污染的方法较多,在具体的应用过程中多为交叉使用,一般分为3大类,即物理修复方法、化学修复方法和生物修复方法[6]。目前国内对土壤重金属修复的研究多集中在植物修复法,而对化学改良剂固化法缺乏系统深入的研究,且对于化学固化法在农田土壤中的改良效果不明确。因此,本试验采用盆栽模拟试验,研究了高分子吸水材料(PAM)、煤基营养物质(CBN)、吸附性矿物材料(MAM)、矿物化学材料(MCM)以及4种材料的不同组合对重金属Pb、Cd复合污染土壤中玉米生长及其重金属累积的影响。旨在寻找固化土壤重金属的有效材料,为农田重金属污染的化学修复提供依据。

1 材料与方法

1.1 供试材料

环境材料:高分子吸水材料(PAM)为粒度20目的聚丙烯酸盐,由天津三农金科技有限公司提供;煤基营养物质(CBN)由内蒙古霍林河煤业集团有限责任公司提供;吸附性矿物材料(MAM)为40~60目乳白色无定形颗粒,由国药集团化学试剂有限公司提供;矿物化学材料(MCM)为200目硅酸盐矿物,由青海鸿福宝玉石有限公司提供。

供试土壤:取自北京南郊农田表层(0~20cm),其基本性质为:pH为7.35,电导率EC值为0.16ms/cm,有机质含量为6.2g/kg,Pb本底含量为17.27mg/kg,Cd本底含量为0.012mg/kg。经自然风干、剔除杂物后过2mm尼龙筛。试验中Pb、Cd的添加浓度分别为500mg/kg和20mg/kg,以Pb(NO3)2和CdCl2金属盐溶液形式均匀拌入7kg盆栽土壤中老化,15d后待用。

供试玉米:‘农大84’,该品种属中晚熟、大穗、半紧凑型。春播生育期128d左右,果穗筒形,籽粒半马齿,橙黄色。根系发达,叶色深绿,持绿性好,活秆成熟,抗倒、抗旱能力强。

试验装置:棕色塑料花盆,内径25cm,高25cm。

1.2 试验设计

本试验分为试验组和对照组(CK),其中试验组所加各材料及用量如下表所示,对照组只填加重金属而不添加任何环境材料。

表1 试验设计

Table 1 Experiment design

所加材料

Added materials

处理编号 Treatment

CK SAP HA FS SS E F G H I高分子吸水材料

(PAM 21g)

√√√√√煤基营养物质

(CBN 3.5g)

√√√√

吸附性矿物材料

(MAM 35g)

√√√√√√矿物化学材料

(MCM 35g)

√√√√

试验共计10组处理,每个处理设3个重复,试验数据采用统计分析软件SPSS19.0进行分析,在95%置信水平下,应用最小显著差异法(LSD)进行单因素方差分析。

玉米于2012年7月8日在中国矿业大学(北京)化学与环境工程学院环保楼温室种植,每盆种3穴,每穴2粒种子,定苗后每盆留3株。水分控制在最大持水量的90%。隔天称重,当水分下降到60%~70%时浇水至控制水分。夏天浇水时间为早上8:00之前或下午5:00之后。

1.3 测定指标与方法

采用玉米在苗期、拔节期和扬花期的株高和叶面积来表征玉米的生长状况,用直尺法测定。株高为土壤至植株中央最高点的距离,叶面积采用长宽系数法测定(叶面积为叶长、叶宽及系数三者的乘积),该系数为0.75[7]。

植物秸秆和籽粒测定采用称重法。通过万分之一电子天平(美国OHAUS公司产)准确测定玉米收获期的干鲜重和籽粒重量。将收获的新鲜植物体称重后放入105℃烘箱中杀青10min,然后在75℃下烘12h至恒重,即为植物的干重。将玉米籽粒自然风干至恒重,采用四分法选取百粒玉米籽粒及全部籽粒,用电子天平称量其重量。

玉米植株及籽粒中重金属Pb、Cd含量用ICP-MS测定。取0.5g玉米秸秆或籽粒样品加入消解管中,加入10ml优级纯HNO3并浸泡30min后,用MARS6(美国CEM公司产)按照植物样消解程序进行消解。然后将消解液稀释25倍,用ICP-MS(iCAP6000,美国Thermo公司产)测定样品中重金属Pb和Cd的浓度。

22 河北农业大学学报 第36卷

 

 

2 结果与分析

2.1 环境材料对玉米株高和叶面积的影响

由表2可知,在玉米苗期,各处理间玉米株高无明显差异。在拔节期,各处理之间的差异逐渐显示出来。到扬花期,HA、FS、SS及H处理的玉米株高均高于对照组CK,而其他5种处理均低于CK。其中,在拔节期,HA、FS、SS 3组处理明显高于CK,但组间无显著差异。SS处理的玉米株高最高(76.07cm),是CK的116.8%;E处理玉米株高最矮(57.07cm),是CK的87.6%。在扬花期,FS处理的玉米株高最高(156.03cm),是CK的115.4%;I处理玉米株高最矮(108.33cm),是CK的80.1%。

玉米的株高能反映出其生长情况,分析上述处理中添加的环境材料后可知,环境材料PAM、MAM、MCM或者此3种材料组合对重金属Pb、Cd污染土壤中玉米的生长有较明显的促进作用。

在此10种处理中,FS及SS处理玉米叶面积较大。尤其是在玉米生长中后期表现最为显著,

达到显著性差异。如在拔节期时,CK处理叶面积为

324.50cm2

,FS、SS处理分别为CK处理的111.8%和

119.4%;在扬花期,CK处理叶面积为522.25cm

2,FS、SS处理分别为CK处理的106.9%和107.1%。

说明FS与SS处理中的环境材料MAM和MCM能抑制重金属Pb、Cd对玉米的毒害作用,促进玉米植株的生长。

E、F和G 3个处理的玉米叶面积无太大差异,但均小于CK处理叶面积。说明在有环境材料PAM存在时,CBN和MCM对玉米叶面积基本无影响。当分析叶面积小于CK处理的组合时,发现这些组合中都含有环境材料PAM,推断PAM在其中并未起到修复作用,

这可能是由于试验土壤呈碱性,OH-与金属阳离子的化学作用力增大,减少PAM对重金属的吸附率,而且环境材料PAM粒径

较大,

当向盆栽中浇水时,其吸水膨胀破坏了土壤结构,不利于发挥固化土壤重金属的作用,进而影响玉米的生长。

表2 各处理对不同时期玉米株高和叶面积的影响

Table 2 Maize heig

ht and leaf area under different environmental materials编号Treatment

苗期

Seedling 

stage 拔节期 Elongation stage 扬花期

Flowering 

stage 株高Plant height/cm叶面积Leaf 

area/cm2

株高Plant height/cm叶面积Leaf area/cm2株高

Plant height/cm叶面积Leaf 

area/cm2

CK 33.33±1.60ab 59.02±3.75abc 65.13±2.14cd 324.50±12.02c135.23±4.40b522.25±4.14bSAP 31.23±0.87ab 47.26±5.92cd 58.63±1.83de 268.72±11.9d128.07±6.21c487.44±9.66cHA 34.40±1.42ab 68.27±6.22a75.20±1.71ab 351.46±13.5bc 147.93±3.34a545.88±8.89abFS 34.23±2.14ab 60.76±5.07ab 75.93±2.14a362.89±13.05ab 156.03±2.01a558.39±6.72aSS 35.43±1.73a62.54±4.94a76.07±1.13a387.32±10.85a151.27±2.37a559.44±11.44aE 31.83±2.32ab 48.97±2.71bcd 57.07±2.54e291.59±6.32d122.57±2.27cde 489.50±11.83cF 31.23±1.25ab 45.10±3.19d59.53±3.11de 291.77±11.16d117.37±2.64cde 4

90.37±5.69cG 32.60±2.35ab 45.46±0.67d60.00±3.12de 290.58±9.06d112.30±4.79de 4

80.08±5.83cH 35.83±0.93a64.75±3.65a68.53±2.08bc 373.19±6.72ab 147.17±2.37a543.45±9.77abI 30.47±1.41b46.14±0.70d60.47±2.52de 2

89.27±7.81d108.33±4.40e489.60±6.69c 同列不同小写字母表示差异显著(

下同)2.2 收获期玉米植株的鲜重和干重如图1所示,在收获期各处理玉米秸秆鲜重有明显差异

图1 各处理对玉米秸秆鲜重的影响

Fig.1 Maize straw wet weig

ht under different environmental materialsHA、FS及SS 

3个处理所得玉米秸秆最重,分别为CK处理(134.8g)的119.6%、131.7%和127.5%。与叶面积指标类似,E、F和G 3种处理的玉米秸秆鲜重也相差不大,由此可见在此3种处理下玉米长势无明显差异。

图2中所示的各处理玉米秸秆干重差异也比较明显,其中CK处理玉米秸秆干重为68.6g,SS处理玉米秸秆干重最重(88.5g),为CK的129%;而G处理中玉米秸秆干重最轻,仅为CK处理的82.3%。与玉米秸秆鲜重趋势不同,E、F和G 3种处理秸秆干重一次降低,说明这3种处理对玉米干物质的累

积有不同的效果。

第3期章智明等:环境材料对铅、镉污染土壤玉米生长和重金属累积的影响

23 

 

 

图2 各处理对玉米秸秆干重的影响Fig.2 Maize straw dry 

weight under differentenvironmental 

materials2.3 环境材料对玉米籽粒重及其组成影响

由图3知,FS与SS处理玉米籽粒总重较高,分别为103.2g与102.4g,为CK处理的105.6%和104.7%;SAP和F处理所产籽粒总重最轻,

分别为88.9g和87.5g。说明MAM与MCM作为改良剂能增加重金属Pb、Cd污染土壤的玉米产量

图3 各处理对玉米籽粒总重的影响Fig.3 Maize grain total weig

ht under differentenvironmental 

materials如图4所示,HA、FS和SS 3个处理的玉米百粒重较CK高,说明此3种处理生长出的籽粒比较饱满,单粒玉米较重;其他几组处理虽然总重与CK相比相差不多,但是百粒重较CK相差较多,籽粒较小且不饱满。尤其当比较E、F、G、H和I组时,

材料的效果区别明显,不含PAM的H组总重与其他

几组差不多,但是百粒重明显高于其他几组,单穗籽粒较饱满

图4 各处理对玉米籽粒百粒重的影响

Fig.4 Maize grain hundred kernel weig

ht under differentenvironmental 

materials2.4 环境材料对玉米植株及其籽粒中重金属含量

的影响

玉米主要吸收土壤中可交换态的重金属而没有吸收土壤中其他形态的重金属,

其地上部和根部的重金属浓度是极低的[8]

。由表3知,在玉米收获期,

各处理玉米籽粒中的重金属含量均比玉米秸秆中重金属含量低。

在玉米秸秆重金属含量测定中,FS和SS处理重金属Pb和Cd含量均低于CK。HA处理Pb含量低于CK,达到显著差异,而Cd含量与CK类似。玉米籽粒中的重金属含量趋势与秸秆中类似,HA、

FS、SS及H其4种处理的重金属含量均低于CK

处理,但HA与H处理籽粒中Cd含量与CK中Cd含量无显著性差异。说明FS和SS两处理效果明显优于其他处理,对土壤中重金属Pb、Cd向玉米秸秆和籽粒迁移起到显著抑制作用,HA处理能抑制重金属Pb向玉米秸秆和籽粒中迁移。

表3 玉米秸秆及籽粒中重金属含量

Table 3 Heavy metal content in maize straw and seed处理编号

Treatment秸秆Pb含量/(mg·kg-1)Pb content in straw秸秆Cd含量/(mg·kg-1)Cd content in straw籽粒Pb含量/(mg·kg-1

)Pb content in seed籽粒Cd含量/

(mg·kg-1

)Cd content in seedCK 14.98±0.39b4.59±0.23e5.83±0.03d2.21±0.08bSAP 19.89±0.52a5.87±0.27a6.19±0.12c2.88±0.12aHA 12.46±0.73c4.77±0.14de 4.99±0.10e2.12±0.07bFS 11.37±0.35cd 3.57±0.06f5.01±0.13e1.55±0.03cSS 10.71±0.21d3.45±0.14f4.95±0.09e1.57±0.03cE 18.62±0.44a5.26±0.21bcd 6.53±0.22b2.88±0.06aF 19.30±0.78a5.31±0.13bc 7.04±0.05a2.78±0.06aG 19.84±0.30a5.46±0.10ab 6.36±0.06bc 2.87±0.03aH 10.52±0.25d4.91±0.12cde 4.98±0.03e2.12±0.02bI 

19.25±0.43a5.58±0.18ab 6.25±0.07bc 

2.82±0.09a

24

 河北农业大学学报 第36卷

3 讨论与结论

一般情况下,株高能反应植物的生长状况,叶面积能反映光合面积大小和吸收光能的多少,影响到玉米的光合作用、蒸腾作用以及生物量的积累[9]。在重金属胁迫下,植物细胞膜系统会受到损害,导致植物体内一系列生理生化过程失调,并且抑制植物的细胞分裂和伸长,刺激和抑制一些酶的活性、降低光合作用和呼吸速率,从而影响物质的代谢、合成、造成营养胁迫等,最终影响植物的生长发育和农作物的产量[10]。

环境材料能促进玉米株高增长和叶面积增加,并能够抑制玉米秸秆和籽粒吸收重金属Pb、Cd。这可能与环境材料的特性有关,如吸附性矿物材料(MAM)晶体内有很多空腔[11],比表面积大、吸附性强、离子交换性高。Shi[12]和Chen[13]等研究发现吸附性矿物材料沸石能有效地减少植物对有效态重金属Pb、Cd的吸收,这与本研究结果是一致的。矿物化学材料(MCM)内部六次配位的Mg可以被金属阳离子置换[14],故其可以通过离子交换作用固化土壤中的重金属离子。Castaldi[15]研究也发现碱性物质和沸石可以分别大幅度的降低重金属Pb和Cd的活性,使其更稳定、长久地固定在土壤中,不被植物利用,Chlopecka等[16]发现沸石、磷石灰等能降低重金属Pb、Cd的移动性,且能够减少玉米和大麦对重金属Pb、Cd的吸收量,这也为本研究结果提供强有力证明。煤基营养物质(CBN)分子中含有多个羧基(-COOH)、酚羟基(-OH)和醇羟基(-OH)等官能团,固其可以通过离子交换、络合、离子还原等作用钝化土壤中重金属的活性[17]。本试验中所用高分子吸水材料PAM对重金属的固化效果较差,与彭丽成[8]的研究结果一致。但是在PAM与其他环境材料复合时,效果不如其他组合,这可能是由于试验中所用环境材料PAM颗粒过大且吸水性能极强,当向盆栽中浇水时,PAM吸水膨胀并使土壤结构膨胀,破坏了土壤原有的结构,不利于土壤在与植物竞争中对重金属的吸附。

总之,在不影响作物生长或者促进作物生长的基础上,降低重金属的生物有效性才是关键。环境材料煤基营养物质(CBN)、吸附性矿物材料(MAM)、矿物化学材料(MCM)或者此3种材料的组合在重金属Pb、Cd污染土壤中促进玉米的生长。吸附性矿物材料(MAM)和矿物化学材料(MCM)对玉米吸收重金属Pb、Cd的抑制作用显著,煤基营养物质(CBN)对Pb向玉米秸秆和籽粒中迁移有抑制作用,而对Cd的迁移无显著抑制。这3种环境材料对重金属Pb、Cd污染农田土壤中的Pb、Cd有显著的固化修复效果。参考文献:

[1] 肖鹏飞,李法云,付宝荣,等.土壤重金属污染及其植物修复研究[J].辽宁大学学报:自然科学版,2004,

31(3):279-283.

[2] 徐龙君,袁智.土壤重金属污染及修复技术[J].环境科学与管理,2006,31(8):67-69.

[3] 陈怀满,郑春荣,涂从,等.中国土壤重金属污染现状与防治对策[J].AMBIO-人类环境杂志,1999,28

(2):130-134.

[4] 顾继光,周启星.Cd污染土壤的治理及植物修复[J].生态科学,2002,21(4):352-356.

[5] 徐进,徐立红.环境铅污染及其毒性的研究进展[J].环境与职业医学,2005,22(3):271-274.

[6] 邱廷省,王俊峰,罗仙平.重金属污染土壤治理技术应用现状与展望[J].四川有色金属,2003,(2):48-52.[7] 黄震,黄占斌,孙朋成,等.环境材料对作物吸收重金属Pb、Cd及土壤特性研究[J].环境科学学报,2012,

32(10):2490-2499.

[8] 杨秀敏,任广萌,潘宇.海泡石修复重金属Pb、Zn、Cd复合污染的土壤[J].黑龙江科技学院学报,2011,21

(4):268-272.

[9] 彭丽成,黄占斌,石宇,等.环境材料对Pb、Cd污染土壤玉米生长及土壤改良效果的影响[J].中国生态农

业学报,2011,19(6):1386-1392.

[10] 郭亚平,胡曰利.土壤-植物系统中重金属污染及植物修复技术[J].中南林学院学报,2005,2:25-28.[11] 应博.4A沸石对水中Cd2+的吸附去除研究[D].沈阳:沈阳农业大学,2011.

[12] Shi W Y,Shao H B,Li H,et al.Progress in the reme-diation of hazardous heavy metal-polluted soils by

natural zeolite[J].Journal of Hazardous Materials,

2009,170(1):1-6.

[13] Chen Z S,Lee G J,Liu J C,The effects of chemical re-mediation treatments on the extractability and specia-

tion of cadmium and lead in contaminated soils[J].

Chemosphere,2000,41:235-242.

[14] 段涛,彭同江,刘琨.蛇纹石酸浸取处理的正交优化设计[J].矿产综合利用,2006(1):21-23.

[15] Castaldi P,Santona L,Melis P,Heavy metal immobi-lization by chemical amendments in a polluted soil and

influence on white lupin growth[J].Chemosphere,

2005,60:365-371.

[16] Chlopecka A,Adriano D C.Influence of zeolite,apatiteand Fe-oxide on Cd and Pb uptake by crops[J].The

Science of the Total Environment,1997,207:195-

206.

[17] Conte P,Agretto A,Spaccini R,et al.Soil remedia-tion:humic acids as natural surfactants in the wash-

ings of highly contaminated soils[J].Environmental

Pollution,2005,135:515-522.

(编辑:梁 虹)

生物炭在铅、镉污染土壤修复中的研究进展

Hans Journal of Soil Science 土壤科学, 2018, 6(4), 108-114 Published Online October 2018 in Hans. https://www.360docs.net/doc/3d11568436.html,/journal/hjss https://https://www.360docs.net/doc/3d11568436.html,/10.12677/hjss.2018.64014 Research Progress of Biochar in Soil Restoration of Lead and Cadmium Composite Contaminated Soil Ling Chen, Qingwei Zhang, Xiucai Yang, Xiaoli Wang* College of Agriculture, Guizhou University, Guiyang Guizhou Received: Sep. 19th, 2018; accepted: Oct. 8th, 2018; published: Oct. 15th, 2018 Abstract Biochar is a kind of highly aromatic refractory solid material which is formed by carbonization of organic materials under anaerobic conditions. It has good structure, large specific surface area and adsorption capacity. Numerous studies had shown that biochar, as a new passivating agent, can reduce the acid extractable lead (Cd) and cadmium (Pb) in soil by a series of reactions such as complexation, precipitation, adsorption and ion exchange with heavy metals. This paper summa-rized the researches of biochar in soil remediation of Cd and Pb pollution in recent years, and ex-plored the difference between the effect of biochar remediation of Cd and Pb combined pollution and single contaminated soil from the aspects of curing heavy metals, repairing effect and influen-cing factors in order to provide the basis for the research on heavy metal combined pollution re-mediation of biochar. The long-term effect of biochar on heavy metal combined pollution should be strengthened in the future. Keywords Biochar, Cd, Pb, Soil Recovery 生物炭在铅、镉污染土壤修复中的研究进展 陈领,张青伟,杨秀才,王小利* 贵州大学农学院,贵州贵阳 收稿日期:2018年9月19日;录用日期:2018年10月8日;发布日期:2018年10月15日 *通讯作者。

土壤镉污染的治理方法

土壤镉污染的治理方法 目前,镉污染治理方法的研究概括起来,主要有四种治理措施。 1、工程治理方法 工程治理是指用物理或物理化学的原理来治理土壤锅污染。土壤中镉元素的形态是可逆的。随着酸性污水的侵袭,被固定的镉又被活化为交换态。因此对锅污染土壤最彻底的改良方法是铲除其表土。如沈阳张士灌区对土壤锅污染的改良方法,根据镉元素在土壤中的分布状况,铲除表土5-10cm,即可使米镉下降25%-30%,铲土15-30 cm,米镉下降50%,但需要一定量投资,其效果更佳。此外还可以在污染的土壤上加上未污染的新土或将污染的土壤移走换上新土等。以上措施具有效果彻底、稳定等优点,但实施复杂、治理费用高和易引起土壤肥力降低等缺点。 2、生物治理方法 生物治理是指利用生物的某些习性来适应、抑制和改良镉污染。主要有:动物治理:①利用土壤中的某些低等动物蚯蚓、鼠类等吸收土壤中的镉。②生物治理:利用土壤中的某些微生物对镉产生吸收、沉淀、氧化和还原等作用,降低土壤中镉形成难溶磷酸盐;原核生物(细菌、放线茵)比真核生物(真菌)对镉更敏感,格兰氏阳性菌可吸收镉。 3、化学治理方法 化学治理就是向污染土壤投入改良剂、抑制剂,增加土壤有机质、阳离子代换量和粘粒的含量,改变pH、Eh和电导等理化性质,使土

壤锅发生氧化、还原、沉淀、吸附、抑制和拮抗等作用,以降低锅的生物有效性。①施用石灰,此法提高土壤PH,又增加了土壤表面对镉的吸附,使镉的毒性降低,是抑制植株吸收镉的有效措施。②施加有机物(OM),增大土壤的吸附能力或生成CdS沉淀,从而减轻危害。 ③化学沉淀方便简单,实际应用较多,如在水田条件下施正磷酸盐化合物使之形成沉淀。例如沉淀法就是指土壤溶液中金属阳离子在介质发生改变(PH、OH- 、S042-、等)时,形成金属的沉淀物而降低土壤镉的污染,如向土壤中投放钢渣易被氧化成铁的氧化物,对镉的离子有吸附和共沉淀作用,从而使镉固定。④离子拮抗利用,Mn2+、Ca2+等阳离子对C d2+的拮抗作用,可减少植物对福的吸收。此外,电动修复镉污染土壤也是一个比较良好的方法,Marceau等研究了小规模的镉污染土壤的电动修复,用硫酸控制阴极区的酸度,提高镉溶出率,经过3000多小时的电动修复,镉的起始浓度为882 mg/kg 污染土壤,最终98. 5%的镉清除,效果较好。化学治理措施优点是治理效果和费用都适中,缺点是容易再度活化。 4农业治理方法 农业治理是因地制宜的改变一些耕作管理制度减轻锅的危害,在污染土壤种植不进入食物链的植物。主要途径有:①通过控制土壤水分来调节其氧化还原电位(Eh),达到降低镉污染的目的;②在不影响土壤供肥的情况下,选择最能降低土壤锅污染的化肥;③曾施有机肥固定土壤中锅的化合物以降低土壤锅的污染;④选择抗污染的植物和不在镉污染的土壤种植进入食物链的植物。例如在含镉

数学建模A题 城市表层土壤重金属污染分析(基础教资)

2011高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮 件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问 题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他 公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正 文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反 竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):重庆交通大学 参赛队员 (打印并签名) :1. 陈训教 2. 范雷 3. 陈芮 指导教师或指导教师组负责人 (打印并签名):胡小虎 日期:2011 年9 月 12日赛区评阅编号(由赛区组委会评阅前进行编号):

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

城市表层土壤重金属污染分析 摘要 本文针对城市表层土壤重金属污染做出了详细的分析,对于本题中所提出的问题一,我们利用MATLAB软件对所给的数值进行空间作图,然后分别作出了八种重金属元素的空间分布特征,然后,我们利用综合指数(内梅罗指数)评价的方法,对五个区域进行了综合评价,得出结果令人满意。对于问题二,我们根据第一问和题目所给的数据进行综合分析,得出了重金属污染的主要原因来自于交通区含铅为主的大量排放,和工业区污水的大量排放等等。对于问题三,我们通过对问题一中的八张重金属元素空间分布的图可以看出,发现大多数金属都呈中心发散性传播,同时经过分析,我们发现,如果考虑大气传播和固态传播,很难得出结论,在交通区,由于是汽车尾气造成的传播,发现重金属的传播无规律可循等,所以,我们考虑液态形式的传播,以针对地表水污染物的物理运动过程,以偏微分方程为建模基础,通过和假设和模型参数的估计,得出了可能污染源位置,最后,我们对模型进行了稳定性检验即灵敏性分析和拟合检验,发现在参数变化在10%左右,模型的稳定性良好。最后我们全面分析了模型的优缺点,,最后可以用MATLAB软件得出相应的结果。为更好地研究城市地质环境的演变模式,测定污染源范围还应收集该地区的每年生活、工业等重要污染源的垃圾排放量,地下水流动方向以及每年的生物降解量,降雨量对重金属元素扩散的影响。一但有污染证据,我们可以在该污染源附近沿地下水流动方向设定更多采样点,由此,我们可以构造一个三维公式来计算污染物质浓度的浮动就可以模拟三维空间内的重金属分布影响。 关键字:表层土壤重金属污染 MATLAB 内梅罗指数偏微分方程稳定性检验灵敏性分析地质演变生物降解量

镉污染土壤修复

《镉污染土壤修复技术研究进展_易泽夫》 简单描述了镉污染对粮食安全、生活环境和人体健康的危害;详细介绍了国内外包括农业生态修复、物理修复、化学修复和生物修复在内的镉污染土壤修复技术的概念、优势及制约因素;着重阐明了植物修复技术的研究现状和应用前景,为镉污染土壤修复提供参考和基础。 镉污染土壤修复的复杂性和高难度使得目前尚无一种真正稳定高效的修复技术能满足现实生产的需求;物理修复和化学修复能较快实现土壤中镉含量的降低,但其仅改变了土壤中镉的存在形式而没有将其彻底清除,往往还存在成本昂贵、工程量巨大、二次环境污染的问题;动物修复和微生物修复作为一种绿色修复技术相比于其他修复方式具有经济、方便、不改变土壤固有理化性质的特点,但其修复速度慢、见效时间长、对土壤环境要求高的问题限制了其大面积的推广应用。利用植物修复被镉污染的环境,不仅成本低廉,而且有良好的综合生态效益,尤其适合大面积推广。寻求更多的镉污染超积累植物资源,研究镉超积累植物与根际微生物共存体系,利用分子生物学和基因工程克服镉污染超积累植物自身的生物学缺陷,从而彻底实现镉污染土壤修复的高效、稳定、绿色是研究的主要方向。 《棉秆炭对镉污染土壤的修复效果_周建斌》 采用盆栽方法,研究了棉秆炭对镉污染土壤的修复效果及对镉污染土壤上小白菜(Brassica chinensis)镉吸收的影响。结果表明:以微孔为主的棉秆炭能够通过吸附或共沉淀作用降低土壤中镉的生物有效性。在轻度镉污染时,棉秆炭处理土壤对镉的吸附速率较快,随着镉污染程度的增加,吸附速率逐渐减慢,吸附量逐渐增加。棉秆炭能够明显降低镉污染土壤上小白菜可食部和根部的镉积累量,可食部镉质量分数降低49.43%~68.29 %,根部降低64.14%~77.66 %,说明棉秆炭具有修复土壤镉污染,降低蔬菜镉含量的作用,可提高蔬菜品质。

我国土壤中镉污染的研究进展

我国土壤中镉污染的研究进展 摘要:在大量研究资料的基础上,对目前受关注程度较高的镉(Cd)污染进行了概述,简要分析了国内土壤Cd污染状况;并对土壤重金属污染的一般治理方法进行了论述,在此基础上对生态修复理论进行了探讨。 关键词:土壤;镉污染;修复方法;生态修复 1 引言 当今世界环境污染问题已成为全世界最受关注的问题之一,而土壤中重金属的污染已是全球面临的重大环境污染之一。土壤重金属因其特有的生物的毒性和已积累性,对生态系统和人类的健康已构成严重的威胁,其中重金属镉更易被农作物吸收和积累,并通过食物链富集,进而对农产品品质安全和人类健康安全构成威胁。农产品质量不仅关系到城乡居民健康、营养与安全,而且关系到为我国农业与食品的国际竞争力。据研究表明我国农田土壤中的重金属含量持续增加,蔬菜地土壤受重金属的污染日益严重胡超[1]。 目前针对土壤重金属污染的治理,以修复被污染土壤为目的的技术体系主要有:①农业生态工程措施,即在被污染的土壤上种植不进入食物链的植物,或者栽植观赏苗木、铺设草皮等;②土壤改良措施,包括排土、客土、淋洗、增加土壤有机物、施加土壤改良剂等;③现代物理化学方法,如污染土壤固化、玻璃化、热处理;④生物修复(净化),即利用特殊植物或微生物体系清除土壤和水体中的污染物或降低污染物的毒性,使受污环境得到恢复。这些治理途径都有各自的优点和不足。利用客土、淋洗等各种物理、化学方法进行重金属污染土壤修复耗能大,操作费用高,对环境存在一定的二次污染性。而相应的利用生物修复技术则成本低、回收和处理富集重金属的植物较为容易,且在清理土壤重金属污染物的同时,可清除土壤周围大气和水体中的污染物,有较高的环境美化价值,有利于生态环境改善[2]。自20世纪90年代以来,植物修复技术已成为环境污染治理研究领域的一个前沿课题。植物修复过程依赖于植物的能力从而吸收和代谢毒性较低的污染物。不同的植物对污染物的吸收、积累和降解能力不同。植物的生长率和生物量是决定了该种植物能否被选为植物修复的植物,以及它们对污染物有一定的承受力和生物积累,它们根区的深度,和它们潜在的蒸腾能力。用于植物修复的植物不仅要有积累,降解或挥发污染物,但也应该有在不同的条件下迅速成长的能力。 2 我国土壤中镉污染状况 随着工业迅猛发展,大量的重金属严重污染了农田。我国大多数城市近郊土壤都受到了

水稻重金属镉污染研究综述

水稻重金属镉污染研究综述 镉(Cadmium,Cd)是一种毒性极强的重金属元素,也是人体和植物非必需元素。Cd 由于其在环境中具有很强的迁移转化特性及对人体的高度危害性而被列为《国家重金属污染综合防治“十二五”规划》重点关注的5大重金属污染元素之一(孙聪,2014)。镉通过食物链进入人体后,会对人体肾、肺、肝、睾丸、脑、骨骼及血液系统等产生损伤,造成急性或慢性中毒,甚至癌变。镉过量会抑制植物的生长。水稻是中国第一大粮食作物,全国约有65%人口以稻米为主食,稻米的安全品质与人类健康密切相关,目前水稻生产正受到镉污染土壤的严重威胁(孟桂元,2015)。与其它重金属元素相比,镉(Cd)对水稻显示出更大的毒性,镉的活性较强,容易被水稻吸收和富集,可以在不影响水稻正常生长的情况下积累较高含量的镉,重金属Cd通过灌溉在土壤中累积,且主要累积在0-20cm表层土壤(姜国辉,2012),经过根、茎、叶的吸收,最终迁移到稻米中,直接影响人类的健康。据不完全统计,我国受镉污染的农田面积已超过20万hm2,每年生产镉含量超标的农产品达14.6亿kg(杨双,2015),由于重金属污染导致的粮食每年减产1000多万t,受污染粮食多达1200多万t,经济损失达200多亿元。如在湖南安化县境内的某铀矿区,每年因污灌带入农田的镉达2-3kg/hm2,使近40km2的农田受到不同程度污染。严重危害了广大人民群众的身体健康(贺慧,2014)。目前土壤镉污染问题已成为国内外学者研究的热点之一(李启权,2014)。国内、外关于土壤Cd污染对水稻的生态风险进行了大量的研究,主要集中在不同水稻对Cd的富集机理、Cd在土壤-水稻系统迁移转化的根际过程及分子机理与遗传规律、Cd诱导胁迫的生理生化特征及Cd污染土壤的生态修复等。 1、不同水稻对Cd的富集机理 大量研究表明,由于遗传特性的不同,水稻对镉的吸收存在着很大差异,这种差异不仅表现在水稻的不同类型之间,也表现在不同品种之间。李坤权等研究表明,水稻糙米中的镉浓度与水稻类型有关,即籼型>新株型>粳型(李坤权,2003)。李正文等采用田间试验的方法,研究了江苏省目前栽种的57个水稻品种,揭示了杂交稻Cd吸收极显著高于常规稻(李正文,2003)。徐燕玲等认为,在低污染水平土壤上,水稻对Cd的累积品种间存在一定的稳定性,而水稻类型间Cd含量没有显著差异,因此按照水稻类型来筛选是不可行的,应针对品种来筛选并对筛选出来的稳定的品种进行重点研究(徐燕玲,2009)。孙聪研究发现,不同水稻品种对土壤中Cd毒性胁迫有显著性差异,虽然Cd属于非必需元素,但不同水稻品种对低剂量Cd表现出不同的刺激效应。经过Burr-III模型的计算得到基于保护95%水稻品种的土壤中Cd50%抑制浓度值(HC550%)为4.93mg·kg-1(孙聪,2014)。 孟桂元以湘中地区主要栽培的26个水稻品种为材料,研究了镉胁迫(0.5mmol/L)对不同水稻品种种子萌发及根芽生长的影响。结果表明,镉胁迫对水稻种子的发芽率、发芽指数影响不显著,对种子活力指数及根芽生长具有显著影响;镉胁迫对根的抑制作用明显大于对芽的抑制。不同品种对镉胁迫的耐性存在较大差异(孟桂元,2015)。刘侯俊研究东北地区水稻生长、籽粒产量和Cd在水稻植株不同部位的分配规律。结果表明,土壤中添加Cd后,多数水稻籽粒产量和植株总生物量下降,只有少数品种籽粒产量和生物量有所上升。Cd在水稻植株中的含量遵循根系>茎叶>颖壳>籽粒的规律(刘侯俊,2011)。张锡洲比较水稻亲本材料的镉耐性差异,筛选镉低积累水稻种质资源,为水稻镉安全品种(Cd-safecultivars,CSCs)

土壤重金属污染现状及其治理方法

论文课题土壤重金属污染现状及其治理方法 小组组长12549025 李思远 小组成员12549026 李康 12549028 王鑫 12549030 吴义超 土壤重金属污染现状及其治理方法随着社会的快速发展,土壤重金属污染日益严重。针对此,涌现了许多修复技术,而生物修复前景广阔,正日益受到重视。 现代工农业等快速发展的同时,土壤重金属污染的形势也越来越严峻。其治理方法很多,而生物修复以其无可比拟的优势正受到关注,应用前景广阔。但生物修复仍存在许多问题待解决,如超积累植物吸收重金属的机理还未研究清楚。所有这些,都阻碍了生物修复的大规模应用。 土壤重金属污染是指土壤中重金属过量累积引起的污染。污染土壤的重金属包括生物毒性显著的元素如Cd、Pb、Hg、Cr、As,以及有一定毒性的元素如Cu、Zn、Ni。这类污染范围广、持续时间长、污染隐蔽、无法被生物降解,将导致土壤退化,农作物产量和质量下降,并通过径流、淋失作用污染地表水和地下水。过量重金属将对植物生理功能产生不良影响,使其营养失调。汞、砷能抑制土壤中硝化、氨化细菌活动,阻碍氮素供应。重金属可通过食物链富集并生成毒性更强的甲基化合物,毒害食物链生物,最终在人体内积累,危害人类健康。 1现状 1.1国内

国家环境保护部抽样监测30万公顷基本农田保护区土壤,发现有3.6万公顷土壤重金属超标,超标率达12.1%。 据国土资源部消息,目前全国耕地面积的10%以上已受重金属污染,约有1.5亿亩,污水灌溉污染耕地3250万亩,固体废弃物堆积占地和毁田200万亩,其中多数集中在经济相对发达地区。 据我国农业部调查数据,在全国约140万公顷的污灌区中,受重金属污染的土地面积占污灌区面积的64.8%,其中轻度污染46.7%,中度污染9.7%,严重污染8.4%。 华南部分城市50%的耕地遭受镉、砷、汞等有毒重金属污染;长三角地区有些城市大片农田受多种重金属污染, 10%的土壤基本丧失生产力。 2005年,长三角等地土壤重金属污染严重的情况,曾见诸报端,并引发舆论普遍关注和争议。土壤污染立法迫在眉睫。 对浙北、浙东和浙中的236.5万公顷农用地调查发现,不适合种农作物的农用地面积为47.2万公顷,占20%;浙北、浙中、浙东沿海三个区域中,属轻度、中度与重度重金属污染的面积分别占38.12%、9.04%、1.61%,城郊传统的蔬菜基地、部分基本农田都受到了较严重的影响。 第九届亚太烟草和健康大会中一项名为《中国销售的香烟:设计、烟度排放与重金属》的研究报告称:13个中国品牌国产香烟中铅、砷、镉等重金属成分含量严重超标,其含量最高超过拿大产香烟3倍以上! 2009年8月,陕西凤翔县发现大量儿童血铅含量严重超标,后确认是附近的陕西东岭冶炼公司的铅排放所导致。 1.2国外 英国早期开采煤炭、铁矿、铜矿遗留下的土壤重金属污染经过300年依然存在。1996到1999年间,英格兰和威尔士尝试挖出污染土壤并移至别处,但并未根本解决问题。从20世纪中叶开始,英国陆续制定相关的污染控制和管理的法律法规,并进行土壤改良剂和场地污染修复研究。 日本的土地重金属污染在上世纪六七十年代非常严重。其经济的快速增长导致了全国各地出现许多严重环境污染事件,被称为四大公害的痛痛病、水俣病、第二水俣病、四日市病,就有三起和重金属污染有关。 荷兰在工业化初期土地污染问题严重。从20世纪80年代中期开始,加强土壤的环境管理,完善了土壤环境管理的法律及相关标准。国土面积4.15万平方

土壤有机质对镉污染土壤修复的影响_宋波

第46卷第4期土壤通报Vol . 46 , No . 4 2015 年 8 月Chinese Journal of Soil Science Aug . , 2015 土壤有机质对镉污染土壤修复的影响 宋波1,2,曾炜铨 1 (1. 桂林理工大学环境科学与工程学院,广西桂林 541004;2. 广西环境污染控制理论与技术重点实验室,广西桂林 541004) 摘要:镉是生物非必需具生物毒性元素,有机质作为修复镉污染土壤的重要改良剂之一而备受关注。土壤有机质通过对土壤理化性质、对镉的吸附-解析、络合作用、生物有效性作用影响镉污染土壤修复效果。主要阐述了土壤有机质对镉污染土壤修复的影响作用机制,探讨了有机质的适用条件、影响因子,分析了工程应用过程存在的问题,以期为重金属污染土壤修复技术研究提供新的思路。 关键词:有机质;镉;修复;吸附 中图分类号:X53文献标识码:A文章编号:0564- 3945(2015)01- 1018- 07 宋波,曾炜铨.土壤有机质对镉污染土壤修复的影响[J].土壤通报,2015,46(4):1018- 1024SONG Bo, ZENG Wei- quan. Effects of Organic Matter on the Remediation of Cadmium- Contaminated Soil- A Review[J]. Chinese Journal of Soil Science, 2015, 46(4): 1018- 1024 在1980年中国农业环境报告中,我国镉污染农田面积达到9333 hm2,超过10000 hm2土壤中镉含量范围为 1 ~ 10 mg kg- 1,远远超过了国家土壤环境二级质量标准限定值0.3 mg kg- 1[1, 2]。镉是一种有毒痕量元素[3],在联合国环境规划署和美国国家环境保护局(OEPA)优先污染物名单排名中分别列为首位、第六位[4, 5]。镉在土壤中蓄积性强、迁移能力强[6],能影响深层土壤。土壤镉污染主要来源于矿业冶炼、工业废水及废弃物排放、含镉电镀材料与颜料的生产和使用。土壤镉进入人体的途径主要有三种方式[7]:(1)食物摄入;(2)皮 肤接触;(3)吸入大气中含镉颗粒,而土壤镉主要通过食物摄入威胁人体健康[8]。镉在人体中的半衰期长达20~40 年,可引发“骨痛病”和肾损害等症状,联合国粮农组织和世界卫生组织(FAO/WHO)建议正常成人每天摄镉量为59 ~ 71μg[9]。可见土壤镉污染问题极为严重,一旦土壤出现累积镉趋势,势必影响土壤微生物新陈代谢机制[10],毒害农作物的生长,潜在威胁人体健康。随着城乡居民对生活健康质量安全性问题的理解 日益增强,对土壤质量安全问题更加重视。因此,如何修复镉污染土壤及其影响因子等问题备受国内外学者们的关注[11~13]。 重金属污染土壤的处置是一项耗资巨大而又艰巨的任务,为提高重金属污染土壤的修复效果,使用范围较为广泛的土壤改良剂主要包括有机类、无机类等材料[14~16],其中,因有机质与土壤镉存在一定相关关系,对镉的亲电性较强[17, 18],能够定量地测定土壤镉含量,又对镉污染土壤修复影响效果最佳及经济高效等优点而备受广泛关注与应用。目前能够系统介绍有机质对镉污染土壤的影响机理及其适用条件、影响因子的文献较少,鉴于此,本文通过相关文献整理、工作经验等途径系统地概述了有机质对镉污染土壤的影响机理、影响因子,评述了有机质在实际应用中存在的问题及展望。 1 土壤有机质的来源及组分 土壤有机质泛指土壤中主要来源于生命的物质,包括腐殖质、生物碳、可溶性碳和可氧化碳等。不同有 机质来源类型对镉在土壤中的生物有效性影响存在差异,按其来源可分为外源有机质与内源有机质两类:外源有机质主要指通过施肥、堆肥等方式获取的含有较多有机质的有机物料(如猪、鸡粪等粪便或稻草等植物残体);内源有机质主要是来自于土壤里微生物新陈代谢产物或动植物残体的腐化分泌物等,主要分泌产物为胡敏酸、胡敏素等。不同来源的有机质对镉的吸附- 解析等作用影响各不相同,本文分别以表1中罗列的有机质来源作为关键词通过中国知网、Science direct 等数据库检索出国内外具有影响镉污染土壤修复作用的有机质及其应用方面的文献,大多数含有机质的材料都能显著地提高农作物的产量,降低镉在土壤中的生物有效性和可迁移性,而污泥、水稻等秸秆等含有机质材料可能是由于其对土壤镉的络合作用,促进了土 收稿日期:2014- 12- 14;修订日期:2015- 2- 11 基金项目:国家自然科学基金(41161056)、广西“八桂学者”建设工程专项经费和广西自然科学基金重大项目(2013GXNSFEA053002)资助

环境材料对铅、镉污染土壤玉米生长和重金属累积的影响(1)

第36卷第3期2 0 1 3年5月 河北农业大学学报 JOURNAL OF AGRICULTURAL UNIVERSITY OF HEBEI Vol.36No.3 Jun.2 0 1 3 文章编号:1000-1573(2013)03-0020-05 环境材料对铅、镉污染土壤玉米生长 和重金属累积的影响 章智明, 黄占斌, 单瑞娟, 樊亚东 (中国矿业大学(北京)化学与环境工程学院北京100083) 摘要:为了探索环境材料对重金属污染土壤的植物生长和土壤修复效果,通过盆栽模拟试验研究了单一高分子 吸水材料(PAM)、煤基营养物质(CBN)、吸附性矿物材料(MAM)、矿物化学材料(MCM)及各材料不同组合对 重金属铅(Pb)、镉(Cd)污染土壤中玉米生长和玉米中重金属累积的影响。结果表明:单一CBN、MAM、MCM 及这3种环境材料的组合促进重金属Pb、Cd污染土壤中玉米株高、叶面积的增加和生物量的积累。MAM和 MCM抑制重金属Pb、Cd向玉米秸秆和籽粒中转移,CBN抑制重金属Pb向玉米秸秆和籽粒中转移。 关 键 词:重金属;农田土壤;环境材料;玉米;盆栽 中图分类号:S19文献标志码:A The effect of environmental materials on maize growth in heavymetal contaminated soil and Pb,Cd accumulation in maize plantsZHANG Zhi-ming,HUANG Zhan-bin,SHAN Rui-juan,FAN Ya-dong (School of Chemical and Environmental Engineering,China University of Mining and Technology-Beijing,Beijing 100083,China) Abstract:In order to explore the effects of environmental materials on plant growth and remedi- ation of heavy metal Pb and Cd contaminated soil,the maize growth and heavy metal accumula-tion in maize under environmental materials polymer absorbent material(PAM),coal-basednutrient(CBN),mineral adsorption materials(MAM),mineral chemical materials(MCM)and their combinations were detected by pot experiment.The results showed that CBN,MAM,MCM and their combination promoted maize height,leaf area and biomass.MAM and MCM restrained the transfer of both Pb and Cd to maize straw and grain,and CBN only re- strained the Pb adsorption of maize plant. Key words:heavy metal;agricultural soil;environmental material;maize;pot experiment 在我国,由于工矿“三废”排放和农药的过量使用,工矿区周围农业土壤中重金属过量积累,造成严重土壤污染[1-2]。我国重金属污染的农田土壤中,重金属铅(Pb)、镉(Cd)为最普遍的复合污染型。重金属Cd污染耕地1.3万hm2,涉及11省市的25个地区;粮食中含Pb量大于1mg/kg的产地也有11个[3]。不断增加的重金属污染已经导致了大面积土地不能耕作。 收稿日期:2013-03-26 基金项目:国家十二五“支撑计划”课题(NO.2011AA100503) 作者简介:章智明(1989-),男,河北省衡水人,在读硕士生,主要从事环境工程、土壤修复和环境材料方面的研究.通讯作者:黄占斌(1961-),男,陕西省武功人,教授,从事植物生理生态、环境材料等方面的研究. E-mail:zbhuang2003@163.com.

土壤重金属污染现状及其治理方法

土壤重金属污染现状及其治理方法摘要随着社会的快速发展,土壤重金属污染日益严重。针对此,涌现了许多修复技术,而生物修复前景广阔,正日益受到重视。 关键词土壤重金属污染生物修复超积累植物 Abstract: With the rapid development of the society, the heavy metal pollution of the soil is growing worse and worse. Facing this situation, there have been many repairing technologies. The Bioremediation has a broad prospect and is at a premium. Keywords:heavy metal pollution of the soil;Bioremediation;hyper accumulator 现代工农业等快速发展的同时,土壤重金属污染的形势也越来越严峻。其治理方法很多,而生物修复以其无可比拟的优势正受到关注,应用前景广阔。但生物修复仍存在许多问题待解决,如超积累植物吸收重金属的机理还未研究清楚。所有这些,都阻碍了生物修复的大规模应用。 土壤重金属污染是指土壤中重金属过量累积引起的污染。污染土壤的重金属包括生物毒性显著的元素如Cd、Pb、Hg、Cr、As,以及有一定毒性的元素如Cu、Zn、Ni。这类污染范围广、持续时间长、污染隐蔽、无法被生物降解,将导致土壤退化,农作物产量和质量下降,并通过径流、淋失作用污染地表水和地下水。过量重金属将对植物生理功能产生不良影响,使其营养失调。汞、砷能抑制土壤中硝化、氨化细菌活动,阻碍氮素供应。重金属可通过食物链富集并生成毒性更强的甲基化合物,毒害食物链生物,最终在人体内积累,危害人类健康。 1现状 1.1国内 国家环境保护部抽样监测30万公顷基本农田保护区土壤,发现有3.6万公顷土壤重金属超标,超标率达12.1%。 据国土资源部消息,目前全国耕地面积的10%以上已受重金属污染,约有1.5亿亩,污水灌溉污染耕地3250万亩,固体废弃物堆积占地和毁田200万亩,其中多数集中在经济相对发达地区。 据我国农业部调查数据,在全国约140万公顷的污灌区中,受重金属污染的

土壤镉污染现状及其治理措施

土壤镉污染现状及其治理措施 发表时间:2019-02-27T11:10:35.630Z 来源:《防护工程》2018年第33期作者:贾琳琳 [导读] 目前,土壤污染问题日趋严重,其中土壤重金属污染由于较难察觉。 河北水文工程地质勘察院河北省石家庄市 050000 摘要:镉是一种有毒有害重金属,易在食物链中积累后进入人体,严重危害人类健康。20世纪初因食用镉污染大米,日本大面积爆发“痛痛病”,有关镉污染及防治研究引起全世界关注。本文综合国内外有关文献,对近年来有关研究工作进行了综述,以期推动镉污染防治的进一步发展。 关键词:土壤镉污染;现状;治理措施 引言:目前,土壤污染问题日趋严重,其中土壤重金属污染由于较难察觉,在物质循环和能量循环中难以分解,容易蓄积在土壤中,导致作物减产,并通过植物的根系吸收进入植物体内,再经过食物链的传递和富集而危害人体健康。土壤重金属污染以铅(P)和镉(Cd)为主,镉是生物生长发育过程的非必需元素,是自然界中对动植物和人体危害性最大的重金属种类之一。因此,分析我国土壤镉污染现状、区域和来源,以及治理土壤镉污染的各种修复技术,对了解我国镉污染现状及解决土壤镉污染引发的粮食安全问题具有重要意义。 1土壤中镉污染的现状 土壤作为开放的缓冲动力学体系,在与周围的环境进行物质和能量的交换过程中,不可避免地会有外源镉进入这个体系。镉对土壤的主要污染途径是工业废渣、废气中镉的扩散、沉降、累积,含镉废水灌溉农田,以及含镉农药、磷肥的大量施用。外来镉多富集在土壤的表层。在沈阳张士灌区土壤中,经污灌进入土壤中的镉的56.33%累积于土壤的表层,去表土15~30cm,可使稻米中的镉下降50%。我国有关农田镉污染的调查工作是20世纪70年代中、后期开始的,但至今未见镉污染总体状况的资料报道。何电源等在1987~1990年间对湖南省的农田污染状况进行了调查,结果发现,农田镉污染主要来源与工矿企业排放的废气和废水,在各类镉污染农田中5%~10%的面积减产严重。值得注意的是,我国镉污染多数是由于引用工业污水灌溉造成的。目前,我国污灌农田已扩大到1.4×107hm2,由于污灌不当对6.3×107hm2农田造成不同程度的污染,其中镉污染耕地1.3×104hm2,涉及11个省市25个地区,每年生产镉米(是指镉含量超过1mg/kg 的糙米,长期食用会引起骨痛病,因而禁止食用)5.0×107kg。如沈阳市张士灌区因污灌使2533hm2农田遭受镉污染(土壤镉含量≥1. 0mg/kg),其中严重污染面积(可能产生的稻米镉含量≥1.0mg/kg的农田)占13%;江西大余县污灌引起的镉污染面积为5500hm2,其中严重污染面积占12%。另外,土壤中的作物受镉污染导致“镉米”的地区还有:上海的沙川灌区、广东的广州和韶关地区、广西的阳朔、湖南的衡阳等。在日本,受镉污染的农田有472125hm2,占重金属污染总面积的82%。 2土壤镉污染的治理方法 2.1物理方法 镉污染土壤的物理修复方法主要有排土、客土、深耕翻土等传统物理方法以及电修复技术、洗土法等。客土法就是将污染土壤铲除,换入未污染的土壤,去表土法就是将污染的表土移去等。传统的物理修复方法治理镉污染效果非常明显,如吴燕玉等在张士灌区调查时发现去除表层土可使稻米中镉含量降低50%。然而,这种方法需要耗费大量资金、人力物力,且移除的污染土壤又容易引起二次污染,因此难以在大面积治理上推广。电修复技术,是指在土壤外加一个直流电场,土壤重金属在电解、扩散、电渗、电泳等作用下流向土壤中的某个电极处,并通过工程收集系统收集起来进行处理的治理方法。胡宏韬等研究发现,当试验电压为0.5W/cm时,阳极附近土壤中镉的去除效率达到75.1%;淋滤法和洗土法是运用特定试剂与土壤重金属离子作用,然后从提取液中回收重金属,并循环利用提取液。据报道,美国曾应用淋滤法和洗土法成功地治理了包括镉在内的8种重金属,治理了2.0×104t污染的土壤,且重金属得到了回收和利用,而且整个治理过程中没有产生二次污染。 2.2化学方法 化学法治理土壤污染是指土壤中重金属镉可以通过化学反应来减少或降低。可以用化学溶液把镉从土壤中淋洗掉,降低土壤中镉含量。也可加入特定的络合剂,通过离子交换、吸附、沉淀等改变镉在土壤中的存在形态,生成沉淀物,大大减少作物对它的吸收。环保性有机肥具有大量的比表面积和官能团,在改善土壤酸碱性、增加土壤肥力的同时,还可促进土壤中重金属离子形成络合物,从而增加土壤对重金属的吸附能力,提高土壤对重金属的缓冲性,进而减少植物对其吸收的风险,阻止它进入食物链。镉的活性还受土壤酸碱性的影响,在酸性土壤中施用碱性改良剂,如石灰、碱性煤渣、钙镁磷肥、草炭、粉煤灰等,土壤pH值明显升高,一方面增加土壤表面负电荷对Cd吸附,另一方面可将Cd2+水解生成CdOH+,而CdOH+在土壤吸附点上的亲和力明显高于Cd2+,同时生成CdCO3沉淀,使其活性逐渐降低,进而有效降低作物对土壤镉的吸收。 2.3生物方法 生物治理是指利用生物的某些习性来适应、抑制和改良镉污染。主要有:①动物治理:利用土壤中的某些低等动物蚯蚓、鼠类等吸收土壤中的镉。②微生物治理:利用土壤中的某些微生物对镉产生吸收、沉淀、氧化和还原等作用,降低土壤中镉形成难溶磷酸盐;原核生物(细菌、放线茵)比真核生物(真菌)对镉更敏感,格兰氏阳性菌可吸收镉。③植物治理:利用某些植物能忍耐和超量积累某种重金属的特性来清除土壤中的镉;超积累植物目前已发现400多种,可吸收积累大量的镉,超积累植物积累镉的含量一般在0.1%以上;印度芥菜(Brassicajuncea)吸收镉为200mg/kg时出现黄化现象,并对镉富集为52倍;英国的高山莹属类等,可吸收高浓度的镉等。生物治理措施的优点是实施较简便、投资较少和对环境破坏小,缺点是治理效果不显著。 结束语 土壤镉污染问题是全球关注的环境热点问题之一,在亚洲镉污染尤其严重。经过大量专家的实验研究,已经找到许多方法调节土壤性能,减少作物对镉的吸附作用,如采取物理法、化学法和生物法等治理土壤镉污染问题。这些措施虽然已经比较成熟,但依然存在很多不确定因素,如大范围推广的时间成本、经济成本问题。土壤重金属污染防治不仅需要科学技术,更重要的是需要全人类、全社会的共同关注,一旦发现土壤被污染,各部门要密切配合,提出切实可行的治理方案。在研究土壤污染防控措施时,应根据镉污染物性质(浓度、种

土壤修复技术及优缺点

土壤修复技术及优缺点 The Standardization Office was revised on the afternoon of December 13, 2020

土壤是植物生长繁育的自然基地,是农业的基本生产资料,是人类赖以生存的极其重要的自然资源。随着工业、城市污染的加剧和农用化学物质种类、数量的增加,土壤重金属污染日益严重。土壤重金属污染具有隐蔽性、长期性和不可逆性的特点。土壤中有害重金属积累到一定程度,不仅会导致土壤退化,农作物产量和品质下降,而且还可以通过径流、淋失作用污染地表水和地下水,恶化水文环境,并可能直接毒害植物或通过食物链途径危害人体健康。 不同污染类型的土壤污染,其具体治理措施不完全相同,目前,重金属土壤的修复技术主要有工程措施,物理化学方法,植物修复方法以及微生物修复方法。 工程措施主要包括客土、换土和深耕翻土等措施。通过客土、换土和深耕翻土与污土混合,可以降低土壤中重金属的含量,减少重金属对土壤-植物系统产生的毒害,从而使农产品达到食品卫生标准。深耕翻土用于轻度污染的土壤,而客土和换土则是用于重污染区的常见方法,在这方面日本取得了成功的经验。工程措施是比较经典的土壤重金属污染治理措施,它具有彻底、稳定的优点,但实施工程量大、投资费用高,破坏土体结构,引起土壤肥力下降,并且还要对换出的污土进行堆放或处理。 物理化学方法是当前重金属污染土壤修复研究的热点,也是最为成熟工程上应用最为广泛的修复技术,主要包括固化/稳定化技术,土壤淋洗技术,电动修复技术和电热修复技术等。 固化/稳定化技术是通过固态形式在物理上隔离污染物或者将污染物转化成化学性质不活泼的形态,从而降低污染物质的毒害程度。如通过施加水泥等固化土壤重金属的固化修复技术,或向土壤投入无机或有机改良剂,改变土壤的

镉污染治理

1.镉污染来源 (1)自然的镉主要来源于岩石和矿物中的本底值。镉与铅锌矿、煤矿、磷矿有最密切的正相关关系,能在铅锌矿、含煤岩系、含磷地层周围形成镉元素高值区。 (2)人为来源的镉丰要来源于工业“三废”和含镉肥料大量施用。工业废气是造成空气镉污染的主要来源,在偏远地区的空气中镉的含量一般低于1.Opg/mL,但在工业 区周围的大气中镉的含量较高。较高含量的镉通过降雨或沉降进入土壤,在土壤中积累。工业废水灌溉:镉在电镀、颜料、镍镉电池工业、电视显像管制造中的应用非常 广泛,随着采矿、冶炼和电镀工业的不断发展,大量的含镉废水排入河流中,用于灌 溉必污染土壤。大量的工业固体废弃物的堆积、农田施用污染的污泥、长期施用一些 含镉的农用化肥也必然会造成镉在土壤中的大量沉积,造成土壤中镉的总帚增加。 2.镉污染的危害 由于镉不能被土壤中微生物降解,半衰期超过20年,其污染为不可逆的积累过程;镉又是生物迁移性很强的重金属,极易被植物吸收并累积,超过一定限度不仅严重影响 作物的产量、品质,而且可食部分极易通过食物链在人体内积累并危害人体健康。镉 是植物生长的非必需元素,当镉进入植物体内并积累达到一定程度时,植物就会表现 出毒害症状,通常会出现生长迟缓、植株矮小、退绿、产量下降、质量下降等。对人 类而言,镉对人体健康的危害主要是污染土壤中的镉可以通过食物链进入人体造成严 重的危害。镉被人体吸收后主要分布在肝与肾中,与低分子蛋白质结合成金属蛋白。 镉中毒主要表现为肾脏功能的损害和肺部的损伤,导致肾皮质坏死、肾小管损害、肺 气肿、肺水肿,还可以引起心脏扩张和高血压,长期摄入镉将会导致骨质疏松、脆化、腰病、脊柱畸形。 3 土壤中镉的赋存形态及迁移转化 3.1Cd有两种常见价态,0价和+2价,镉在土壤中只能以二价简单离子或简单配位离子的形式存在于土壤溶液中,如Cd2+、CdOH+、Cd(OH)、CdCl+、CdOHCl、CdS04、CdHC03+等,以难溶态Cd(OH)2、CdC03、Cd3(PO4)2、CdS等存在于土壤中。Cd与有机配体形成配合物的能力很弱,故土壤中有机结合态的镉较少。 3.2土壤中镉的分布集中于土壤表层,一般在0~15 cm,15 cm以下含量明显减少。各剖面不同深度上,元素含量随土壤质地不同而有明显不同,一般重金属元素随土壤 粘性增大其含量升高。Cd元素在水稻土中迁移能力最强。Cd迁出率随土壤质地变而增大,随pH值和土壤有机质含量增大而降低。水溶性有机质(DOM)对土壤中Cd的吸附 行为具有明显的抑制作用,这种抑制作用与土壤类型和DOM种类有关。

相关文档
最新文档