ZSM-5分子筛合成和改性的研究进展

ZSM-5分子筛合成和改性的研究进展
ZSM-5分子筛合成和改性的研究进展

ZSM-5分子筛合成和改性的研究进展

摘要:ZSM-5分子筛在工业中应用广泛。本文详细阐述了ZSM-5沸石分子筛的各种合成方法,并介绍了常用的高温水热处理、金属改性和磷改性等改性技术现状及其应用。

关键词:ZSM-5,分子筛,合成,改性

ZSM-5沸石分子筛是Mobil公司于20世纪70年代开发的一种高硅三维交叉直通道的新结构沸石分子筛。ZSM-5分子筛属高硅五元环型沸石,其基本结构单元由8个五元环组成,这种基本结构单元通过共边联结成链状结构,然后再围成沸石骨架,其理想晶胞组成为:Na n(Al n Si96-n O192)·16H2O。该沸石分子筛亲油疏水,热和水热稳定性高,大多数的孔径为0.55nm左右,属于中孔沸石。由于其独特的孔结构不仅为择形催化提供了空间限制作用,而且为反应物和产物提供了丰富的进出通道,也为制备高选择性、高活性、抗积炭失活性能强的工业催化剂提供了晶体结构基础。由此,其成为了石油工业中择形反应中最重要的催化材料之一。不仅如此,ZSM-5分子筛在精细化工和环境保护等领域中也得到了广泛的应用。因此,对ZSM-5分子筛的研究具有重要的理论意义和实践价值。

本文在介绍ZSM-5分子筛结构的基础上,分析总结了ZSM-5分子筛的各种合成方法,如有机胺合成,无机胺合成等方法。此外,浅述了ZSM-5分子筛在改性方面的研究,以及未来ZSM-5分子筛的重点研究方向。

1 ZSM-5分子筛的结构

ZSM-5分子筛属于正交晶系,晶胞参数[1]为a=2.017nm,b=1.996nm,c=1.343nm。ZSM-5的晶胞组成可表示为Na n(Al n Si96-n O192)·16H2O。式中n是晶胞中Al原子个数,可以由0~27变化,即硅铝物质的量比可以在较大范围内改变,但硅铝原子总数为96个。

ZSM-5分子筛的晶体结构由硅(铝)氧四面体所构成。硅(铝)氧四面体通过公用顶点氧桥形成五元硅(铝)环,8个这样的五元环组成ZSM-5分子筛的基本结构单元。ZSM-5分子筛的孔道结构由截面呈椭圆形的直筒形孔道(孔道尺寸为0.54 nm × 0.56 nm)和截面近似为圆形的Z字型孔道(孔道尺寸为0.52 nm × 0.58 nm)交叉所组成[2],如图1所示。两种通道交叉处的尺寸为0.9 nm,这可能是ZSM-5

催化活性及其强酸位集中处。

ZSM-5分子筛这种规整的孔道结构,大比表面积,高水热稳定性和良好的离子交换性能以及丰富可调的表面性质使其受到广泛的关注。

图1 ZSM-5分析筛孔道结构示意图

2 ZSM-5分子筛的合成

随着人们对ZSM-5分子筛合成及其改进方法的不断探索,涌现出了许多合成ZSM-5分子筛的方法。根据不同的分类标准,可以分为:(1)水热体系与非水热体系的合成;(2)有机胺与无胺体系的合成;(3)碱性与非性体系的合成;(4)在负载物上合成沸石。尽管合成方法、模板剂类型、硅源或铝源的种类等不同,但合成的共同点是均在ZSM-5 的合成条件下,使硅铝物种发生结构重排形成ZSM-5晶体结构[3]。

ZSM-5分子筛合成方面的研究热点主要集中于:(1)小晶粒,尤其是纳米级的合成。分子筛晶粒的降低,增加了外表面的活性中心,降低了扩散阻力,使反应物分子接近活性中心的几率增大,反应选择性好;(2)含杂原子ZSM-5沸石的合成[4]。以Ga、B、Fe、Sn、Ti、Cr和Zr等杂原子同晶置换ZSM-5中的部分或全部铝或硅,在改变分子筛的化学组成和孔结构大小的同时,对其表面酸性质及择形性进行调变或赋予分子筛以脱氢功能或氧化还原性能,可以获得催化性能优异的分子筛。

2.1 有机胺合成分子筛

合成ZSM-5分子筛一般采用水热合成法,将一定配比的混合物于某一温度下进行晶化,直至反应完全。在分子筛合成中模板剂是重要物质,也是影响分子筛的性质和制备成本的主要因素。通常采用有机碱类,尤其是季铵碱类,如四丙基氢氧化铵、四乙基氢氧化铵是合成ZSM-5分子筛最优选的模板剂。季铵盐阳

离子有很强的模板效应,能够合成高硅铝物质的量比的ZSM-5晶体,且合成的ZSM-5分子筛结晶度高。但是季铵盐价格昂贵,合成成本相对较高,同时产生的三废较多,严重制约了ZSM-5 沸石分子筛的工业化进程。因此长期以来改用便宜的模板剂或少用模板剂是分子筛合成方面的研究重点。

Sang Shiyun等[5]分别以正丁胺、乙胺、异丙胺、乙二胺、乙醇、乙醇胺为单一模板剂来合成不同粒度的ZSM-5分子筛。其中分别以乙醇、乙醇胺为单一模板剂的方法合成的ZSM-5分子筛结晶度较低,且均在85% 以下;而分别以乙胺、异丙胺、乙醇胺为单一模板剂的方法通过加入晶种来合成分子筛,其晶粒的大小和形貌都要受到所加晶种类型的控制;而分别以正丁胺、乙二胺为单一模板剂而不加入任何晶种时,得到的ZSM-5分子筛的结晶度较高,分别达到了94. 4% 和100%,且粒径也较大,分别约为25μm和40μm。

张晓敏[6]在无机碱金属离子体系中,以环状化合物六亚甲基亚胺(HMI)为模板剂,发烟硅胶为硅源,添加少量活性晶种条件下合成了具有较大硅铝比值范围的ZSM-5分子筛。在合成中发现,晶种和模板剂之间具有协同作用,共同作用下导向ZSM-5分子筛的形成,这主要归结于HMI不具有像四丙基氢氧化胺(TPAOH)那样完整的正四面体结构,没有TPAOH 那样强的定位和导向能力,所以只有在添加少量活性晶种的条件下才能合成出具有MFI结构的ZSM-5分子筛。此外,添加模板剂HMI能合成硅铝物质的量比范围较大的样品,容易结晶,所需要的碱金属量少。样品电镜分析中看出,该体系得到的样品粒径小,以及粒子在50~ 60 nm。沸石分子筛催化剂的催化性能很大程度上决定于分子筛粒径的大小,故粒径小的ZSM-5分子筛在催化反应中具有良好的催化性能。

孙慧勇[7]等人分别以正丁胺、乙二胺和己二胺作模板剂,用水热合成法制备了粒径在200~1000nm的小晶粒ZSM-5分子筛,研究了碱度、温度、模板剂和初始浓度等对分子筛粒径和分布的影响。结果表明,较高的碱度和反应物浓度有利于晶粒杂原子分子筛的合成。水热合成中程序升温合成的分子筛颗粒小,粒度均匀,抑制了二次成核过程。用不同模板剂合成的ZSM-5分子筛晶粒大小的顺序为:正丁胺>己二胺>乙二胺。

2.2 无机胺合成分子筛

ZSM-5分子筛的合成中通常以有机胺为模板剂水热法进行合成,尽管有机模板剂合成具有适用pH范围广,晶型规整等优点,但有机模板剂的毒性、高成

本,有机废水的污染,加热分解有机物造成的空气污染,分解不完全而造成的焦炭沉积的问题[8],以及后期的高温煅烧处理,使得ZSM-5的广泛应用受到制约。近年来,随着人们环保意识的增强,采用绿色合成(即使用无毒无害原材料、反应具有高选择性并且对环境友好的合成)已经成为分子筛合成的重要方向,很多学者对无机胺合成ZSM-5分子筛进行了广泛的研究。

陈丙义等[9]人研究了以氨水为模板剂,硫酸铝、水玻璃为硅铝源,合成了ZSM-5分子筛。通过XRD分析,以氨水为模板剂合成的ZSM-5分子筛与以正丙胺为模板剂合成的ZSM-5分子筛的XRD 图谱基本相同;白妮等[10]以硫酸铝、硅酸钠为原料,以不同配比的无机氨作模板剂,制备获得了粒度分布均匀,尺寸为纳米量级的ZSM-5分子筛。

2.3 其他合成方法

除了上述利用有机胺和无机胺作为模板剂合成ZSM-5分子筛外,采用甲醇、乙醇等醇类模板剂合成ZSM-5分子筛的方法也有报道[11]。一般来说,有机胺价格比较昂贵,又有不同程度的毒性,而乙醇之类的醇类价格便宜,毒性小,这是用醇类合成ZSM-5的优越之处。到目前发现可用于制备ZSM-5分子筛的醇类有甲醇、乙醇、异丙醇、正戊醇、己二醇和正丁醇等。在沸石合成体系方面,张密林等[12]报道了以天然沸石作为硅铝源,在非碱体系合成了ZSM-5分子筛。现在随着对ZSM-5分子筛合成研究的不断深入,不使用模板剂就可以将ZSM-5合成出来[13-14]。

近年来,随着人们对环保意识的逐步增强,绿色合成和负载合成方法已经成为分子筛合成的重要方向,与此同时,实际应用对ZSM-5分子筛的性质提出的要求也越来越高,ZSM-5沸石分子筛改性这一课题的研究也在不断深入。

3 ZSM-5分子筛改性

目前对ZSM-5分子筛的改性研究主要是改变硅铝比、调节催化剂表面酸性、改善孔结构,提高催化剂抗积碳能力,通常的方法有高温水热处理、金属改性和磷改性等。常用的改性方法有水蒸汽处理和浸渍法。水蒸气热处理即在较适宜的条件(处理温度、时间及水蒸汽的压力)下,用水蒸汽处理ZSM-5沸石,可调节ZSM-5的催化活性和选择性。浸渍法就是用浸渍的方法将磷和金属元素等引入ZSM-5沸石孔道。

3.1 高温水热处理

水蒸气改性是最常用的ZSM-5分子筛改性方法,它通过改变分子筛的硅铝比来达到改性的目的。水蒸气改性不仅使分子筛发生脱铝,还发生重结晶和结构重排[15]。同时,分子筛高温水蒸气预处理,可以稳定骨架结构,并适当调节表面酸性,使得酸中心均匀分布,即酸中心密度有所下降,酸强度得到提高,能很好地降低结焦率。经过高温水热预处理的催化剂,稳定性提高,活性却有所下降。

崔国静等[16]制备了300℃、350℃、400℃和500℃不同水热处理温度下的Zn/HZSM-5催化剂,并用于FCC 汽油馏份的芳构化反应。考察了水热处理温度对芳构化反应性能的影响,并与吡啶吸附红外光谱(FT- IR)相关联,研究了水热处理温度对催化剂表面酸性的影响。结果表明,水热处理Zn/HZSM-5的芳构化活性稳定性得以改善,与未经水热处理的催化剂相比,400℃水热处理的Zn(2%)HZSM-5催化剂芳构化反应36h时,芳烃质量分数仍高达74.25%。随着水热处理温度的升高,B酸酸中心数在300~400℃变化不大,500℃显著减少,L酸酸中心数升高,400℃达到最大值后呈降低趋势,烯烃转化率、烷烃转化率和产品芳烃含量升高,水热处理400℃时均达到最大值,分别为83.62%、95.44%和92.23%,表明此时B酸中心和L酸中心比例协调性最佳。

3.2 磷改性

ZSM-5中引入磷,抑制了高温水汽处理过程中的骨架脱铝及非骨架铝的迁移,可以改善其活性和选择性。磷原子可以键合于ZSM-5分子筛骨架中,获得磷原子含量较高的骨架,磷原子含量较高的骨架可以改善催化剂表面酸性,并且由于磷原子的键入,使得分子筛孔道变得狭窄,提高了催化剂的择形选择性[17]。

Brown[18]公开了一种高温水热和P改性联合处理ZSM-5分子筛的方法。选择n(SiO2)/n(Al2O3) = 26的ZSM-5分子筛,混合25%的黏合剂或者孔道调节剂制得催化剂,其中P的质量分数为3%。用n(甲醇)/n(甲苯)为26/1的混合溶液进料,操作温度为320℃,操作压力0.1MPa,甲醇的转化率70%,丙烯选择性16%,总烯烃选择性64%。

在C4裂解制丙烯方面,P改性后能较好地提高ZSM-5分子筛的水热稳定性,使其成为生产高辛烷值汽油和多产低碳烃催化剂的重要组成部分[19]。目前普遍认为,P与分子筛表面A l原子键合,抑制了分子筛骨架脱铝[20],同时P原子上的羟基能提供B酸,从而使分子筛保留一定的酸中心密度。柯明等[21]对几种硅铝比不同的ZSM-5分子筛进行了P改性研究,结果表明,P改性能提高水热处

理后ZSM-5分子筛的酸中心密度和强度、骨架结构的稳定性以及催化活性。适当的P含量能显著提高轻烯烃收率和选择性,抑制焦炭的生成。合理调配催化裂化催化剂的活性组分,适当控制其氢转移能力和烷基化能力,对增产丙烯有着积极的意义。

3.3 金属改性

为了降低分子筛表面酸性,调节孔结构,可以采用浸渍或交换的方法,用金属进行表面覆盖强酸性位,提高催化剂的选择性和稳定性[22]。近年来使用过渡金属原子修饰的分子筛体系是分子筛研究的热点。物化特性的改变直接影响催化剂的活性、稳定性与择形催化作用,如掺杂Al、B、Ga、In、Ge、Sn、Si、T i、V、Cr、Mn、Fe、Mo、W、Re、Zr 等以及一些稀土元素,其性能和应用方面的研究广泛,在一些催化过程中表现出比ZSM-5更优异的催化性能。

Valle[23]研究Ni浸渍改性对H ZSM-5分子筛的影响,Ni 降低了分子筛表面的酸性,这使得甲醇的转化率降低。但是Ni的浸渍使得催化剂的稳定性提高,而且再生以后可以完全恢复活性。质量分数1% 的Ni 含量最合适,这样可以防止甲醇转化率大幅度下降,而且具有较好的稳定性。

张飞等[24]采用碱土金属Ca对HZSM-5分子筛进行浸渍改性,得到稳定性和低碳烯烃选择性良好的催化剂。丙烯选择性由改性前的30%提高到40% ,催化剂寿命达30h左右。

3.4其他改性

利用酸、碱处理ZSM-5分子筛,除调整分子筛的酸性外,还会使分子筛的孔径增大。增大ZSM-5分子筛孔径的主要目的是提高分子在催化剂内的扩散性能以及吸附性能,以提高分子筛的催化活性,增大反映速率。用酸、碱处理ZSM-5会产生一定的介孔结构,增大空容,减少物质的扩散阻力,但会导致ZSM-5分子筛的部分结构坍塌,孔径一致性减少,分子筛晶粒破碎[25]。

张秀斌[26]等采用正硅酸Z 酯和不同分子量的硅油对ZSM-5进行了改性,并对其结构及催化性能进行了研究。研究表明,正硅酸乙酯以及分子量最小(1195)的硅油对ZSM-5中孔以及微孔的影响最大,两者的复合改性可有效减少催化剂的酸性位,同时,对ZSM-5分子筛微孔孔径进行微调,从而提高甲苯歧化反应的选择性。

目前对ZSM-5分子筛的改性研究已成为ZSM-5研究额额重要领域。目前的

研究方向主要集中在催化剂选择性、使用寿命等性能的提升方面,改性方法也由原先的单一改性演变为多法改性,并且随着对催化剂研究的深入,改性ZSM-5催化剂的应用范围也将进一步拓展。

总结

ZSM-5分子筛具有独特的晶体结构,同时具有10MR的孔道,已在许多应用领域显示出优良的性能,是一类实用型的分子筛材料。但随着可持续社会发展需求的增加,现有的ZSM-5分子筛的应用能力已远远不能满足社会发展的需求,这就需要在加强已知结构ZSM-5分子筛的合成和应用研究的同时还要挖掘其潜在应用能力,开发新的合成方法,加大对ZSM-5分子筛改性的研究。另外新型复合分子筛、超细ZSM-5分子筛等的研究都有着广泛的应用。

参考文献

[1] Kbacka A, Wloch E, Sulikowski B, et al. Oxidative dehydrogenation of propane

on zeolite catalysts[J].Catal Taday, 2000, 61: 343-352.

[2]曾绍槐. 择形催化[M]. 北京:中国石化出版社, 1994

[3]孙书红,王宁生,闫伟建. ZSM-5沸石合成与改性技术进展[J].工业催化,

2007,15(6):7-11.

[4] Xia Jianchao, Mao Dongsen, Zhang Bin, et al. One-step synthesis of dimethylether

from syngas with Fe-modified zeolite ZSM-5 as dehydration catalyst[J]. Catalysis Letters, 2004, 98(4):235-241.

[5] Sang Shiyun, et al. Difference of ZSM-5 zeolites synthesized with various

templates [J].Catalysis Today, 2004, 93-95:729-734.

[6] 张晓敏. ZSM-5合成新方法以及Er发光复合材料的制备与表征的研究[D].上

海:华东师范大学出版社, 2008.

[7] 孙慧勇,胡建仙,王建国, 等.小晶粒Fe-ZSM-5分子筛合成过程中粒晶大小和

分布的控制[J].石油化工, 2001, 30(3):188-192.

[8] 成岳,刘媚,唐燕超.无有机模板剂合成ZSM-5分子筛膜[J]. 稀有金属材料与工

程,2007,36(1):593-596.

[9] 陈丙义,杨新丽,杜宝石,等.无机胺合成ZSM-5沸石分子筛[J].郑州大学学报

(自然科学版),2001,33(4):70-72.

[10]白妮,王水利,王爱民.超微ZSM-5分子筛的合成[J].工业催化,2009,1(17):11-

13.

[11]项寿鹤,吴德明,汤泽平. ZSM - 5沸石分子筛的合成和HZSM-5烷基化催化剂

[J].石油化工, 1979,8( 10): 669- 674.

[12]张密林,景晓燕,裘式纶,等. 用天然沸石合成ZSM-5分子筛[J].催化学报, 1992,

13(4):308-311.

[13] Uguina M A, Antonio D L, Fernando R, et al. Synthesis of ZSM-5 from ethano

l-containing systems Influence of the gel composition [J]. Ind Eng Chem Res,1995, 34: 451-456.

[14] Wendlandt K P, Toufar H, Unger B, et al .Organic-free synthesis structure and

properties of multicomponent ZSM-5 type zeolites[J]. J chem Soc Faraday Trans,

1991, 87: 2507-2513.

[15]杨抗震,周钰明,张一卫. 水蒸气处理对P-ZSM-5催化性能的影响[J].分子催化,

2007, 21(3):220- 223.

[16]崔国静,魏民,赵亮,等. FCC汽油馏分在水热处理Zn/HZSM-5催化剂上的芳构

化反应[J].工业催化,2005,13(11):22-25.

[17]龙逢兴,刘明刚,路世武,吴勇,等. ZSM-5分子筛的研究进展[J]. 泸天化科

技,2007,4:375-378.

[18] Stephen H B, Reuel S, William A W. Process for converting methanol to

olefins[P]. US, 6613951 B1. 2003.

[19]李再婷,谢朝钢,施文元,等.多产低碳烯烃的催化转化方法:中国, 1102431A

[P].1995.

[20]张剑秋.降低汽油烯烃含量的催化裂化新材料探索[D].北:北京石油化工科学

研究院, 2001.

[21]柯明,汪燮卿,张凤美.磷改性ZSM-5分子筛催化裂解制乙烯性能的研究[J].石

油学报(石油加工),2003,19(4):28-34.

[22]谭亚南,韩伟,何霖,等.ZSM-5分子筛合成及其改性研究进展[J].四川化

工,2011,3(14):28-31.

[23] Valle B, Alonso A, Atutxa A, et al. Effect of nichel incorporation on the acidity

and stability of HZSM-5 zeolite in the MTO process[J]. Catal. Today, 2005,106: 115- 122.

[24]张飞,姜健准,张明森,等.甲醇制低碳烯烃催化剂的制备与改性[J].石油化工,

2006,35(10):919- 923.

[25]齐静,黎水宝.ZSM-5沸石分子筛改性研究进展[J].科技与生

活,2011,24:212-214.

[26]张秀斌,李歧峰,等.硅改性ZSM-5催化剂上甲苯歧化反应性能的研究[J].石油

大学学报,2005,29(31):130-133.

高分子改性材料的应用

天 然 高 分 子 改 性 材 料 的 发 展 以 及 运 用 景 姓名:李毅 学号:5404310016 专业班级:工业工程101

天然高分子改性材料的发展以及运用 姓名:李毅学号:5404310016 班级:工业工程101 摘要:本文介绍了淀粉、木质素、甲壳素、壳聚糖及瓜尔胶等几种天然高分子材料的研究进展以及改性方法,同时通过几种不同的化学反应详细介绍了壳聚糖的应用,同时介绍了其他几种在当代生活不同领域的应用。 关键词:天然高分子,改性,羧甲基化反应,酯化反应,酰化反应,接枝反应,运用,阻燃和耐热。 正文部分: 1.引言 近年来基于石油产品的合成高聚物材料也已广泛应用于包装、日用品、医用、建材、宇航、工业和农业各个领域,。然而,基于石油资源的合成高分子材料大量使用不仅造成环境污染,而且以后将面临石油资源逐渐枯竭的威胁。而天然高分子来源于自然界中动物、植物和微生物,它们是取之不尽,用之不竭的可再生资源。所以在石油资源日益匮乏和价格持续高涨之际,天然高分子的研究和利用出现新的发展机遇。天然高分子中含量最丰富的资源包括纤维素、木质素、甲壳素、淀粉、各种动植物蛋白质以及多糖等,它们具有多种功能基团,可通过化学、物理方法改性成为新材料,也可通过化学、物理及生物技术降解成单体或低聚物用作能源以及化工原料。因此,近年在该领域的基础和应用研究的优秀成果以及日益增强的全球环境法则的压力共同作用下已孵化出这一新兴行业。 2.天然高分子材料的研究进展以及运用 2.1 淀粉 天然淀粉资源十分丰富,如土豆、玉米、木薯、菱角、小麦等均有高含量的淀粉,据统

计,自然界中含淀粉的天然碳水化合物年产量达5000亿t,是人类可以取用的最丰富的有机资源。淀粉及其衍生物是一种多功能的天然高分子化合物,具有无毒、可生活降解等优点。它是一种六元环状天然高分子,含有许多羟基,通过这些羟基的化学反应生产改性淀粉,另外,淀粉还能与乙烯类单体如丙烯腈、丙烯酸、丙烯酰胺等通过接枝共聚反应生成共聚物。这些共聚物可用作絮凝剂、增稠剂、黏合剂、造纸助留剂等。近年来淀粉的接枝共聚研制新型絮凝剂在国内也取得长足进展,有人用淀粉与二甲基二烯丙基氯化铵接枝共聚制得阳离子淀粉,实验对炼油废水、生活废水有较好的处理效果,COD去除率可达70%以上,色度残留率低于20%,是一种较好的絮凝剂。淀粉-聚丙烯酰胺接枝共聚物作为有机高分子絮凝剂的研究早巳受到人们的重视,并有不少成果问世。我国尹华等以淀粉为基本原料,加入丙烯酰胺、三乙胺、甲醛和适量的盐酸进行接枝共聚反应,合成出一种阳离子型高分子絮凝剂FNQE,该药剂具有独特的分子结构和较高的相对分子质量分布。FNQE对高岭土悬浊液有良好的絮凝除浊效果,对城市污水在投药量为10mg/L时即能达到理想的净化效果,浊度、色度的去除率均在90%以上。 2.2 ,木质素 木质素与纤维素、半纤维素粘结在一起形成植物的主要结构,是植物界中非常丰富的天然高分子。相对于其它天然高分子,木质素具有更为复杂的组成及多级结构,是最难认识和应用的天然高分子之一。但是,木质素分子具有众多不同种类的活性官能基,兼具可再生、可降解、无毒等优点,而且工业木质素来源于造纸黑液,成本低廉,因而被视为优良的绿色化工原料,其综合利用备受关注。在应用和研究较为活跃的木质素高分子材料领域,可通过化学反应和物理共混将木质素与酚醛树脂、聚氨酯、聚烯烃、橡胶、聚酯、聚醚、淀粉、大豆蛋白等复合,提高材料的性能并降低成本。木质素是一种与工程塑料极为相似的,具有高

ZSM-5分子筛合成和改性的研究进展详解

ZSM-5分子筛合成和改性的研究进展 摘要:ZSM-5分子筛在工业中应用广泛。本文详细阐述了ZSM-5沸石分子筛的各种合成方法,并介绍了常用的高温水热处理、金属改性和磷改性等改性技术现状及其应用。 关键词:ZSM-5,分子筛,合成,改性 ZSM-5沸石分子筛是Mobil公司于20世纪70年代开发的一种高硅三维交叉直通道的新结构沸石分子筛。ZSM-5分子筛属高硅五元环型沸石,其基本结构单元由8个五元环组成,这种基本结构单元通过共边联结成链状结构,然后再围成沸石骨架,其理想晶胞组成为:Na n(Al n Si96-n O192)·16H2O。该沸石分子筛亲油疏水,热和水热稳定性高,大多数的孔径为0.55nm左右,属于中孔沸石。由于其独特的孔结构不仅为择形催化提供了空间限制作用,而且为反应物和产物提供了丰富的进出通道,也为制备高选择性、高活性、抗积炭失活性能强的工业催化剂提供了晶体结构基础。由此,其成为了石油工业中择形反应中最重要的催化材料之一。不仅如此,ZSM-5分子筛在精细化工和环境保护等领域中也得到了广泛的应用。因此,对ZSM-5分子筛的研究具有重要的理论意义和实践价值。 本文在介绍ZSM-5分子筛结构的基础上,分析总结了ZSM-5分子筛的各种合成方法,如有机胺合成,无机胺合成等方法。此外,浅述了ZSM-5分子筛在改性方面的研究,以及未来ZSM-5分子筛的重点研究方向。 1 ZSM-5分子筛的结构 ZSM-5分子筛属于正交晶系,晶胞参数[1]为a=2.017nm,b=1.996nm,c=1.343nm。ZSM-5的晶胞组成可表示为Na n(Al n Si96-n O192)·16H2O。式中n是晶胞中Al原子个数,可以由0~27变化,即硅铝物质的量比可以在较大范围内改变,但硅铝原子总数为96个。 ZSM-5分子筛的晶体结构由硅(铝)氧四面体所构成。硅(铝)氧四面体通过公用顶点氧桥形成五元硅(铝)环,8个这样的五元环组成ZSM-5分子筛的基本结构单元。ZSM-5分子筛的孔道结构由截面呈椭圆形的直筒形孔道(孔道尺寸为0.54 nm × 0.56 nm)和截面近似为圆形的Z字型孔道(孔道尺寸为0.52 nm × 0.58 nm)交叉所组成[2],如图1所示。两种通道交叉处的尺寸为0.9 nm,这可能是ZSM-5

沸石分子筛如何制备合成

沸石分子筛及其复合材料新型合成方法研究进展 沸石分子筛作为离子交换材料、吸附剂、催化剂等,在化学工业、石油化工等领域发挥着重要作用。随着新材料领域和电子、信息等行业的不断发展,其使用范围已经跳出传统行业,在诸如新型异形分子筛吸附剂、催化剂和催化蒸馏元件、气体和液体分离膜、气体传感器、非线性光学材料、荧光材料、低介电常数材料和防腐材料等方面得到应用或具有潜在的应用前景。因此,沸石分子筛的制备方法也越来越受到人们的关注。 沸石分子筛传统的制备方法主要包括水热法、高温合成法、蒸汽相体系合成法等,但随着组合化学技术在材料领域应用的不断扩大,20世纪90年代末人们将组合化学的概念与沸石分子筛水热法结合,建立了组合水热法。将组合化学技术应用到沸石分子筛水热合成之中,加快了合成条件的筛选与优化。除此之外,气相转移和干胶法等新型制备方法也被提出并应用于实践,本文对这些方法进展进行简单概述。 1. 组合化学水热法 组合化学是一种能建立化学库的合成方法,其大的优势是能在短时间内合成大量的化合物,从而达到快速、高效合成与筛选的目的。水热法合成沸石分子筛及相关材料,要考察的因素比较多,包括多种反应原料的选择及配比、反应温度及反应时间等。使用组合化学法可以减轻实验工作量和劳动强度,大大提高工作效率。 ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

利用组合化学水热法制备沸石分子筛,设计了一种组合反应釜,即在圆形聚四氟乙烯片上钻100个小孔,然后在其上、下表面分别用不锈钢片夹紧,形成100个水热反应器,将不同配比的水热合成液分别置于各反应器中。在一定条件下,和传统水热法一样合成沸石分子筛。他们对Na2O-Al2O3-SiO2-H2O的四组分体系进行了考察,比较了使用传统的水热法和组合水热法的差别,证实了组合化学的高效性和快速筛选性。在此基础上,科学家对组合水热法进行了改进,设计出易于自动化X射线衍射测定的装置,并用这种方法对TS-1分子筛的合成配方进行了筛选。 组合化学水热法在分子筛的制备和无机材料合成方面已有一定的应用,但其应用还很有限。同时,要利用组合化学水热法,具备以下特点:(1)每次合成要产生出尽可能多的平行结果;(2)减少每组试样量;(3)增加合成与表征过程中的自动化程度;(4)实验过程与计算机充分结合,提高实验效率。 2. 气相转移法 2.1 气相转移法制备分子筛粉末 气相转移法可用于制备MFI、FER、MOR等结构的沸石分子筛。Zhang等利用气相转移法合成了ZnAPO-34和SAPO-34分子筛,证明水是气相法合成磷铝分子筛不可缺少的组分。后来,也有人利用气相法合成了AFI和AEI的磷铝分子筛,验证了水在合成过程中的作用。在n(P2O5)/n(Al2O3)=1时,分别用三乙胺和二正丙胺与水作为模板剂合成了AlPO4-5和AlPO4-11分子筛。 ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

改性沥青的研究进展

改性沥青的研究进展 黄 彬,马丽萍,许文娟 (昆明理工大学环境科学与工程学院,昆明650093) 摘要 为了得到性能更优良的改性沥青,越来越多的材料被用作改性沥青改性剂,同时新的评价标准和方法及其他领域的新化学分析方法也被用来更完整准确地评价改性沥青的性能。总结了国内外改性沥青的研究现状及进展,从改性机理、性能影响因素及评价方法等方面来介绍各种改性沥青的概况,并概述了改性沥青的发展方向。 关键词 改性沥青 改性剂 机理 发展Rsearch Development of Modif ied Asphalt HUAN G Bin ,MA Liping ,XU Wenjuan (Faculty of Environmental Science and Engineering ,Kunming University of Science and Technology ,Kunming 650093) Abstract More materials ,as modifier ,are used to improve the properties of modified asphalt.Besides ,the new evaluation standards and methods ,new chemical analysis methods are used to evaluate the properties more com 2pletely and accurately.The situation and development of modified asphalt research at home and abroad are summa 2rized.From the aspcts of modification mechanism ,influencing factors and evaluation methods ,various modified as 2phalts are introduced ,and the development trend of modified asphalt technology is illustrated in the paper. K ey w ords modified asphalt ,modifier ,mechanism ,development  黄彬:女,1986年生,硕士研究生,主要研究方向为固体废物资源化 E 2mail :binbin_huang @https://www.360docs.net/doc/3d12029257.html, 马丽萍:女,1966年生,教 授,主要研究方向为工业废气污染控制、固废综合开发利用 E 2mail :lipingma22@https://www.360docs.net/doc/3d12029257.html, 0 前言 普通道路沥青由于自身的组成和结构决定了其感温性能差,弹性和抗老化性能差,高温易流淌,低温易脆裂。而且在过去的10年中,车轴负荷增加、车流量增加、气候条件恶劣,难以满足高级公路的使用要求,必须对其改性以改善使用性能。在沥青或沥青混合料中加入天然或合成的有机或无机材料,熔融或分散在沥青中与沥青发生反应或裹覆在沥青集料表面,可以改善或提高沥青路面性能。 1 改性沥青的分类 在沥青的改性材料中,高分子聚合物是应用最广泛、研究最集中的一种。其他改性材料还有两大类:矿物质填料和添加剂。矿物质填料,如硅藻土、石灰、水泥、炭黑、硫磺、木质素、石棉和炭棉等,对沥青进行物理改性,可提高沥青抗磨耗性、内聚力和耐候性。添加剂,包括抗氧化剂和抗剥落剂,如有机酸皂、胺型或酚型抗氧化剂或阴、阳离子型或非离子型表面活性剂,可提高沥青粘附性、耐老化或抗氧化能力。聚合物改性沥青(PMA 、PMB ),按照改性剂的不同一般可分为3类:①热塑性橡胶类,即热塑性弹性体,主要是嵌段共聚物,如SBS 、SIS 、SE/BS ,是目前世界上最为普遍使用的道路沥青改性剂,并以SBS 最多;②橡胶类,如NR 、SBR 、CR 、BR 、IR 、EP 2DM 、IIR 、SIR 及SR 等,以胶乳形式使用,其中SBR 应用最为广泛;③树脂类,如EVA 、PE 、PVC 、PP 及PS 。 2 各种改性沥青及其发展现状 通过SCI 和EI 分别检索近15年来改性沥青在交通、建筑、材料、能源及环境等学科方面研究的文献情况,检索结果如图1、图2及表1、表2所示。根据表1、表2数据和图1、图2情况可以看出,近几年国内外对改性沥青的研究越来越多,尤其以SBS 和胶粉最为突出,出现了多种新型改性剂。下面 将分别介绍各种改性沥青及其发展现状。 图1 SCI 检索统计表 Fig.1 SCI search results 2.1 矿物质材料改性沥青 矿物质材料作改性剂的研究较少,主要为硅藻土、纳米 碳酸钙、矿渣粉、白炭黑等,可与基质沥青形成均匀、稳定的 共混体系以改善沥青性能[1] 。

1.辐照交联透明质酸的降解特性研究

第36卷增刊2009年北京化工大学学报(自然科学版) Journal of Beijing University of Chemical Technology (Natural Science ) Vol.36,Sup. 2009 辐照交联透明质酸的降解特性研究 张 丽 张丽叶3 (北京化工大学生命科学与技术学院,北京 100029) 摘 要:用甲基丙烯酸缩水甘油酯(GM )对透明质酸(HA )进行接枝改性,制备交联透明质酸衍生物(GMHA ),通过辐照获得透明质酸凝胶。分光光度计测定吸光度表明所制备的HA 凝胶是一种可降解的生物材料。其稳定性受到制备条件和环境条件的影响:如HA 的分子量为70万时在相对长时间内比分子量为10万时表现的相对稳定;当分子量相同,辐照剂量为1k Gy 时降解明显,辐照剂量为5k Gy 时表现出较好的稳定性;HA 凝胶在中性环境条件下容易引起降解,在p H =4时表现的相对稳定;中低温度有利于HA 凝胶的稳定,在高温50℃时降解迅速。关键词:透明质酸;交联;透明质酸凝胶;稳定性中图分类号:TQ0501425 收稿日期:2009202225 第一作者:女,1978年生,硕士生3通讯联系人 E 2mail :lyzhang @https://www.360docs.net/doc/3d12029257.html, 引 言 透明质酸(HA )是一种线型聚阴离子黏多糖,是人和动物皮肤、玻璃体、软骨组织和关节滑液的重要组成成分。天然的HA 除具有高度粘弹性、可塑性、渗透性以外,还具有良好的生物相容性。但是,天然HA 水溶性极强、在组织中易扩散和降解,体内存留 时间较短,所以在应用上受到限制[122]。 近年来,为了使HA 能够更好更广泛的应用于医药保健等领域,可以通过对HA 进行化学修饰或者交联,从而改善它的水溶性和降解特性[3]。有文献报道HA 及其交联衍生物已被用作类固醇类药物、多肽和蛋白类药物及各种抗癌药物的运送载体。这类新型药物载体能够明显延长药物在用药部位的存留时间,降低生物降解率,提高生物利用度,减少其不良反应[425]。 陈森军等[6]利用甲基丙烯酸缩水甘油酯(GM )接枝到HA 链上的方法,通过将改性生成的GMHA 产物用γ射线辐照获得交联的方法,无需引发剂或者催化剂就获得纯度高且无毒的交联HA 凝胶衍生物。在此实验结果的基础上,本文通过测定葡萄糖醛酸的方法综合考察了该方法制备得到的HA 凝胶的降解稳定性,并且分别在分子量、辐照剂量、 GMHA 浓度等制备条件和p H 、温度、NaCl 浓度等 环境条件下对HA 凝胶稳定性的影响进行了研究。 1 实验部分 111 材料和仪器 透明质酸(分子量100万,400万,700万),山东福瑞达公司;三乙胺,分析纯,天津市福晨化学试剂厂;甲基丙烯酸缩水甘油酯,分析纯,日本三菱公司;四丁基溴化铵,分析纯,天津市津科精细化工研究所;咔唑,分析纯,北京化学试剂公司;四硼酸钠,分析纯,北京北化精细化学品有限责任公司。 Co 60源,北京原子高科金辉辐射技术有限公司;DHG 29076A 真空干燥箱,上海申立玻璃仪器有限公 司;722S 分光光度计,上海菁华科技仪器有限公司。112 交联HA 凝胶的制备 取HA 0105g ,放入20mL 去离子水中,待溶解均匀后依次添加1mL 三乙胺,1mL 甲基丙烯酸缩水甘油酯,01054g 四丁基溴化铵等,旋转搅拌24h ,60℃恒温培养30min 。将反应液用丙酮立即沉淀, 并将沉淀物洗涤2次后干燥至恒重。将干燥后的白色固体配制成不同浓度的溶液,在不同辐照剂量下进行γ射线辐照,剂量率为20G y/min ,即得交联HA 凝胶。 113 HA 凝胶降解性测定 通过测定葡萄糖醛酸含量来表征HA 凝胶的降解情况[728]。将样品试管置于冰水浴中,用酸式滴定管缓慢的向每管中加入01025mol/L 四硼酸钠硫酸(使用之前在4℃冰箱内贮存至少2h )5mL ,将其

qb2246-96 食品添加剂-瓜尔胶

中华人民共和国轻工行业标准 食品添加剂 瓜尔胶 QB 2246-96 前言 本标准等效采用FAO/WHO1992年瓜尔胶的标准。其中,鉴别试验、酸不溶物、硼酸盐、蛋白质、淀粉试验、砷、铅、重金属的指标均采用FAO/WHO标准;干燥减量、总灰分指标略优于FAO/WHO标准。此外还增加了粘度和细度指标。 本标准的具体检验方法采用经试验确认可靠的方法和其他标准中的检验方法,采用的标准包括FAO/WHO1992年瓜尔胶的标准和中华人民共和国国家标准。 本标准由中国轻工总会食品造纸部提出。 本标准由全国食品发酵标准化中心、卫生部食品卫生监督检验所技术归口。 本标准由中国石油天然气油田化学公司、中国食品发酵工业研究所负责起草。 本标准主要起草人:郑立凯、单齐梅、方军、吴玉宏。

1 范围 本标准规定了食品添加剂—瓜尔胶的技术要求、试验方法、检验规则以及关于包装、标志、贮存和运输的各项要求。 本标准适用于从热带豆科草本植物—瓜尔豆〖Cyamops tetragonoloba(L·)Taub〗种子经破碎,去其种皮、子叶(胚芽)后取其胚乳加工精制而成的天然植物胶。其主要成分为半乳甘露聚糖,在食品工业生产中用作增稠剂、稳定剂等。 2 引用标准 下列标准所包含的条文,通过在标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 5009.4-85 食品中灰分的测定方法 GB 6284-86 化工产品中水分含量测定的通用方法重量法 GB 8449-87 食品添加剂中铅的测定方法 GB 8450-87 食品添加剂中砷的测定方法 GB 8451-87 食品添加剂中重金属的限量试验法 GB/T 14771-93 食品中蛋白质的测定方法 3 结构式、分子量 结构式: 分子量:22万道尔顿。 4 技术要求 4.1 外观 乳白色可自由流动粉末。 4.2 理化指标 食品添加剂瓜尔胶的质量应符合表1要求。 表1

ZSM_5沸石分子筛的合成和表面改性研究进展

ZSM -5沸石分子筛的合成和表面改性研究进展 杨少华 崔英德 陈循军 涂 星 (广东工业大学轻工化工学院,广州510090) 摘 要 综述了近年来ZS M -5沸石分子筛的合成及表面改性研究进展。合成方面重点介绍了有机胺合成、无机胺合成及负载合成方法;表面改性方面重点介绍了水蒸气改性、离子交换改性及化学气相沉积改性方法。 关键词 ZS M -5沸石 分子筛表面改性 合成 收稿日期:2003202221。 作者简介:杨少华,广东工业大学在读研究生,主要从事高分子材料的合成研究。 沸石是一种结晶态的铝硅酸盐,由SiO 4和AlO 4四面体单元交错排列成空间网络结构。在 晶体结构中存在着大量的空穴,空穴内分布着可移动的水分子和阳离子。这种结构特点使沸石具 有选择吸附、催化和离子交换三大特性〔1〕 。ZS M -5沸石分子筛是M obil 公司于20世纪70年 代开发的高硅三维直通道结构沸石,属于中孔沸石,由于它没有笼,所以在催化过程中ZS M -5沸石催化剂不易积碳,并且有极好的热稳定性、耐酸 性、疏水性和水蒸气稳定性〔2〕。 1 ZSM -5沸石分子筛的合成1.1 有机胺合成 有机胺合成是合成沸石分子筛最常用的方 法。常用的有机胺模板剂可分为5类〔3〕 :(1)直链或环状烷基胺,如苄基丁胺、四乙基铵盐、三丁胺、三乙胺、二异丙胺、异丁胺、二异丁胺、叔辛胺、新戊基胺、环己胺、环庚胺、1,2-二氨基环己烷、2-或4-甲基环己胺、四甲基乙基二胺、R 4N +-螺旋化合物等;(2)含氧有机化合物,如羟基二胺、氯化钠-三乙醇胺、含1个或2个氧原子的饱和环胺、与Ⅳ族金属络合的醚(尤为环醚类)、乙醇胺、饱和低碳醇;(3)含氮杂环化合物,如吡啶、2-氨基吡啶、甲基紫等;(4)烷基磺酸盐;(5)含氮正离子的紫罗烯或其离子交联聚合物等。 模板剂对ZS M -5分子筛的粒径有显著影响。孙慧勇等人分别以正丁胺、乙二胺和己二胺作模板剂,用水热合成法制备了粒径在200~1000nm 的小晶粒ZS M -5分子筛,研究了碱度、 温度、模板剂和初始浓度等对分子筛粒径和分布 的影响〔4〕 。结果表明,较高的碱度和反应物浓度 有利于晶粒杂原子分子筛的合成。水热合成中程序升温合成的分子筛颗粒小,粒度均匀,抑制了二 次成核过程。用不同模板剂合成的ZS M -5分子筛晶粒大小的顺序为:正丁胺>己二胺>乙二胺。 国外也有关于纳米级ZS M -5分子筛的报道〔5,6〕 。 有文献报道了一种高硅ZS M -5分子筛的合成方法〔7〕 ,以固体硅胶为硅源,硫酸铝或偏铝酸钠为铝源,烷基胺类有机物(Q )为有机模板剂,制备出n (SiO 2)∶n (Al 2O 3)=100~1000,n (H 2O )∶n (SiO 2)=1.0~9.5,n (Na 2O )∶n (SiO 2)=0.02~0.3,n (Q )∶n (SiO 2)=0.02~0.50的反应混合 物。然后将该反应混合物按常规方法水热晶化,或者先将反应混合物于20~105℃陈化4~48h 后再在较高温度下晶化。该方法因投料含水量较低,可以提高单釜合成效率并降低有机模板剂的用量。1.2 无机胺合成 由于有机胺合成ZS M -5分子筛的价格比较昂贵且存在较大的毒性,所以很多学者对无机胺合成ZS M -5分子筛进行了广泛的研究。已有关于用乙醇或甲醇代替有机胺合成ZS M -5分子筛 的报道〔8〕 。陈丙义等人以氨水、硫酸铝、水玻璃为主要原料合成了ZS M -5分子筛,研究了合成温 度和时间对分子筛的影响〔9〕 。结果表明,在147~177℃范围内,以氨水为模板剂可以合成出ZS M -5沸石分子筛。温度越低,合成所需时间越 长。通过XRD 分析,以氨水为模板剂合成的

分子筛合成方法

有水热合成、水热转化和离子交换等法: ①水热合成法用于制取纯度较高的产品,以及合成自然界中不存在的分子筛。将含硅化合物(水玻璃、硅溶胶等)、含铝化合物(水合氧化铝、铝盐等)、碱(氢氧化钠、氢氧化钾等)和水按适当比例混合,在热压釜中加热一定时间,即析出分子筛晶体。合成过程可用下式表示: 工业生产流程中一般先合成Na-分子筛,如13X型与10X型分子筛的合成(见图)。在水热合成过程中添加某些添加剂可以改变最终产品的结构,如加入季胺盐可得到ZSM-5型分子筛。 分子筛 ②水热转化法在过量碱存在时,使固态铝硅酸盐水热转化成分子筛。所用原料有高岭土、膨润土、硅藻土等,也可用合成的硅铝凝胶颗粒。此法成本低,但产品纯度不及水热合成法。 ③离子交换法通常在水溶液中将Na-分子筛转变为含有所需阳离子的分子筛,

通式如下: 式中 Z-表示阴离子骨架,Me+表示需交换的阳离子,例如NH嬃、Ca2+、Mg2+、Zn2+等,原料通常为氯化物、硫酸盐、硝酸盐。溶液中不同性质的阳离子交换到分子筛上的难易程度不同,称为分子筛对阳离子的选择顺序,例如:13X型分子筛的选择顺序为Ag+、Cu2+、H+、Ba2+、Au3+、Th4+、Sr2+、Hg2+、Cd2+、Zn2+、Ni2+、Ca2+、Co2+、NH嬃、K+、Au2+、Na+、Mg2+、Li+。常用下列参数表示交换结果:交换度,即交换下来的Na+量占分子筛中原有Na+量的百分数;交换容量,为每100克分子筛中交换的阳离子毫克当量数;交换效率,表示溶液中阳离子交换到分子筛上的质量百分数。为了制取合适的分子筛催化剂,有时尚需将交换所得产物与其他组分调配,这些组分可能是其他催化活性组分、助催化剂、稀释剂或粘合剂等,调配好的物料经成型即可进行催化剂的活化。

改性沥青现状及发展前景

改性沥青现状及发展前景 1、改性沥青应用现状 普通道路石油沥青,由于原油成分及炼制:工艺等原因,其含蜡量较高,导致其具有温度敏感性强,与石料的粘附性差,低温延度小等缺点。用其铺筑的沥青路面,夏季较软,易出现明显车辙壅包等病害;冬季较脆,易出现低温开裂等病害;混合料的抗疲劳性能,抗老化性能较差。同时,由于经济的快速发展,普通沥肯混合料已不能满足高等级道路和特殊地点的重交通,大轴载,快速安全运输的需要。 1.1 改性沥青的应用背景和现状 据相关资料,20世纪60年代以前,沥青路面仅用于城市道路和专用公路,沥青材料主要是煤沥青和用进口原油提炼的石油沥青。20世纪70年代前后,在全国范围内曾采用渣油吹氧稠化,掺配特立尼达(TLA)或阿尔巴尼亚稠沥青等改性的方法,提高结合料稠度,配制成200号沥青铺筑以表面处治为主的沥青面层。1985年国内开展 了沥青中掺丁苯,氯丁橡胶,废轮胎粉等改性沥青和掺金属皂等改善混合料性能的研究试验工作,取得了成功的经验。1992年NovophaltPE现场改性技术的引入,对改性沥青的推广应用起到了促进作用,使改性沥青从研究试验逐步发展到生产应用。 1.2影响改性沥青应用的因素 生产施工工艺在聚合物改性沥青的大规模应用中起到了关

键性的作用。无论是聚合物改性,物理改性还是采用不同的沥青加工工艺都会增加较大的工程成本,在国内经济不发达地区的应用会受到一定的制约。 2、改性沥青的研究现状 目前国内的研究重点在新的改性剂和沥青改性剂的加工工艺上还有一部分研究是面向工程应用的,即研究在沥青集料改性剂确定的情况下,找出合适的级配,最佳沥青用量和改性剂用量以满足实际工程的要求。我国研究改性沥青已有多年的历史,也取得了丰富的成果,但至今仍有两个问题没有很好地解决: (1)没有形成对改性沥青和改性性能统一的评价标准; (2)国内没有形成统一的研究体系。 改性沥青的研究是一项长期的复杂的系统工作,要想取得突破性成果必须综合各研究机构的优势,形成统一的研究体系,比如美国l987年~l992年的大型系统工程SHRP计划等等。而相对于国内,研究工作往往由各高等院校,科研院所独立完成,没有统一的研究规划,配套工作滞后。另外由于各部门的利益关系,沥青改性的关键技术往往是秘而不宣的,在一定程度上造成人财物的巨大浪费。 3、改性沥青的应用前景 由于普通沥青已不能适应现代化路面的要求,性能良好的改性沥青必将在高等级路面中起到越来越重要的作用 3.1 SBS改性沥青将获得更广泛的应用 研究表明,SBS改性的优越性突出表现在具有双向改性作用,

甲壳素_壳聚糖的化学改性及其衍生物应用研究进展

综述 甲壳素、壳聚糖的化学改性及其衍生物应用研究进展 X 汪玉庭X X , 刘玉红, 张淑琴 (武汉大学资源与环境科学学院环境科学系,湖北武汉 430072)摘 要: 简要评述了甲壳素和壳聚糖化学改性的研究进展,讨论了酰化、醚化、酯化、接枝和交联等化学改性 方法,简要介绍甲壳素衍生物在化妆品、医学和环保方面的应用,并提出了其发展过程中存在的一些问题,对 其发展趋势作了预测。 关键词: 甲壳素;壳聚糖;化学改性 中图分类号: O63 文献标识码: A 文章编号: 1008-9357(2002)01-0107-08 甲壳素(chitin)是自然界中大量存在的唯一的氨基多糖,其化学命名为B -(1y 4)-2-乙酰氨基-2-脱氧-D-葡萄糖。壳聚糖(chitosan)是甲壳素的脱乙酰基产物,也叫脱乙酰甲壳素,简称(CTS)。它们的结构式112分别为 : 甲壳素结构与纤维素类似,分子中含有H-OH 和H-NH 键,还含有分子间氢键。甲壳素的这种有序的大分子结构,在一般的溶剂中不容易溶解。壳聚糖的分子结构中含有游离氨基,溶解性能有了一些改观,但也只能溶于某些稀酸,如盐酸、醋酸、乳酸、苯甲酸、甲酸等,不溶于水及碱溶液。甲壳素与壳聚糖无毒,无害,易于生物降解,不污染环境,而且在自然界中含量仅次于纤维素,并以相同的循环速率产生和消失。近年来,国内外学者对甲壳素或壳聚糖的化学改性开展了研究,拓宽了壳聚糖及其衍生物的应用领域。现结合我们的研究工作,对甲壳素或壳聚糖的化学改性及其衍生物的应用予以简要评述。Vo l.152002年3月 功 能 高 分 子 学 报Journal of Functional Polymers No.1M ar.2002X XX 作者简介:汪玉庭(1942-),男,湖北鄂州人,教授,博士生导师,研究方向:环境友好材料的合成及应用。E -mail:hxxzls @w hu. https://www.360docs.net/doc/3d12029257.html,. 收稿日期:2001-10-11 基金项目:教育部博士学科点专项研究基金资助项目(2000048615)

沸石分子筛膜的合成方法

沸石分子筛膜的合成方法 人工制备分子筛的合成得到的一般是松散的晶粒,要得到致密的分子筛膜,分子筛晶体之间必须互生,在多孔载体上定向长成致密层,具有一定的渗透性能。近年来,随着膜技术的发展,分子筛膜制备技术取得了不小的进展,常用的有原位生长法,二次晶种法和微波合成法,此外,还有溶胶-凝胶法、嵌入法、蒸汽相法等。 一、原位水热法 原位生长法采用与分子筛粉末合成相同的方法,将载体、硅源、铝源、模板剂、碱和水按照一定的生长比例加入反应釜中,在一定温度和自生压力下水热晶化,多孔材料在载体表面附着生长,多孔载体表面生长一层致密的分子筛膜层。使用该方法已经成功制备的分子筛膜有MFI、A、SAPO-34和八面沸石膜、丝光沸石膜等。原位水热合成中,沸石膜经历成核期和生长期两个阶段。成核期,母液中的营养随着水热能量的给与而随机成核,附着在载体上,也有部分散落在营养液中;生长期,已经生成的晶核不断原位长大,载体上附着的晶核也长大并互生,连成一片致密的膜层。 膜是由分子筛晶粒互生相连而成。生长液中硅铝比、碱浓度、模板剂的比例、温度和晶化时间都对合成的膜有影响,载体的适当修饰也会对提高分子筛膜的质量。该制备方法设备简单,方法易行,易实现大批量生产,具有工业化前景。不足之处在于可控性差,晶体要优先在载体表面成核而不是溶液主体,受载体表面性质影响和晶核随机生长的影响,膜层的生长很容易不均匀,难致密,膜层厚度不易控制。该方法比较适用于管状的载体生长沸石分子筛膜。迄今为止,人们已经成功的在石英、金属、氧化铝、玻璃等多孔材料表面原位合成了高质量的MFI 型分子筛膜。而且对合成的分子筛膜进行了气体分离和液体渗透汽化分离等测试,膜表现良好。 二、二次晶种法 二次晶种法,顾名思义,先要合成纳米级或者微米级的晶种,然后将纳米晶涂覆在载体的一侧表面,再将载体置于二次生长的母液中水热晶化成膜。合成的晶种的尺寸最好控制在纳米级别,将得到的纳米晶种洗干净后使之均匀分散在溶剂中,得到晶种的悬浮液。然后采用一定的办法,例如沾取涂布法、滴涂法,旋

SBS改性沥青的性能与应用

SBS改性沥青的性能与应用 摘要:我国高速公路建设自改革开放以来,经历了从无到有,从起步到建设成高速公路网的翻天覆地变化。与此同时,传统的普通沥青已经很难适应现代对公路的高标准要求,而改性沥青的研制与应用则较好地解决了这一问题。本文主要通过介绍SBS改性沥青在高温、低温条件下的抗车辙、抗裂性能,与水稳定性,抗滑能力等内容,比较得出其对于传统沥青在工程、经济、社会各方面的优越性,探究了加强对SBS改性沥青的学习,开展对SBS改性沥青深入的研究与推广其广泛应用的长远意义。 关键词:SBS改性沥青;改性沥青性能;改性沥青应用;沥青施工;工程效益;应用前景 1 前言 随着交通流量的增长、车载质量的增加以及高温和低温的作用,为适应道路路面的使用性能的要求,保证路面良好的使用状态,延长路面的使用寿命,就必须探寻更高性能的路面材料。SBS改性沥青混凝土具有很好的高温抗车辙能力,低温抗裂能力,改善了沥青的水稳定性,提高了路面的抗滑能力,增强了路面的承载能力,提高了沥青的抗氧化能力,是比较优良的路面材料。自上世纪40年代以来,国内外学者对各类改性沥青的性能进行了大量的研究工作,改性沥青技术得到了越来越多的重视。现有研究结果表明,与其他改性沥青相比,SBS(苯乙烯一丁二烯一苯乙烯)改性沥青的综合性能[1]更为突出,SBS改性沥青必将在未来很长的一段时间内得到更深入的研究和更广泛的应用。 2 SBS改性沥青简介 SBS属于苯乙烯类热塑性弹性体,是苯乙烯—丁二烯—苯乙烯三嵌段共聚物,SBS改性沥青是以基质沥青为原料,加入一定比例的SBS改性剂,通过剪切、搅拌等方法使SBS均匀地分散于沥青中,同时,加入一定比例的专属稳定剂,形成SBS共混材料,利用SBS良好的物理性能对沥青做改性处理。在良好的设计配合比和施工条件下,用SBS改性沥青铺筑的沥青混凝土路面有着传统沥青路面无法比拟的优越性能,具有很好的耐高温、抗低温能力以及较好的抗车辙能力和抗疲劳能力,并极大地改善沥青的水稳定性,提高了路面的抗滑性能。

纤维改性沥青混合料研究进展

龙源期刊网 https://www.360docs.net/doc/3d12029257.html, 纤维改性沥青混合料研究进展 作者:刘哲 来源:《中国科技纵横》2015年第24期 【摘要】通过对纤维改性沥青混合料研究历史及现状的调研,总结了纤维改性沥青混合 料的主要影响因素以及纤维改性沥青混合料的作用机理;阐述了纤维种类、长度、添加量以及界面粘结对沥青混合料性能的影响情况,不同因素的变化会影响沥青混合料的不同性能;总结了纤维在沥青混合料中的吸附、稳定、桥接以及加筋作用。 【关键词】纤维改性沥青混合料作用机理 1 概述 纤维作为一种新型的增强材料,被广泛的用作复合材料增强体,应用于航空航天、电子机械等尖端领域[1-3],由于纤维具有高模量、高强度、高长径比以及较强的吸附能力,在道路沥青及沥青混合料中也多有应用。多年来,国内外对纤维改善沥青及其混合料性能进行了大量研究,并根据实际需求,开发出了一系列适用于道路沥青改性的路用纤维,主要包括木质素纤维、矿物纤维、聚合物纤维以及新兴的玄武岩纤维等。本文主要针对道路纤维在沥青混合料中的应用进行调研,分析了纤维对混合料性能影响的主要作用机理及影响因素,对其未来发展进行了展望。 2纤维改性沥青混合料的主要影响因素 2.1 纤维种类及性能 按处理方式划分,纤维可分为天然纤维和化学合成纤维,不同种类的纤维具有不同的性能,包括强度、模量、吸持沥青量、长径比以及表面形貌等等,而这些因素都会对沥青混合料性能产生影响。李智慧[4]等考察了聚丙烯腈纤维、聚酯纤维以及木质素纤维等三类不同的增 强体对沥青混合料性能的影响,同时分析了三类纤维的常规技术性能,建立了纤维性能与外掺纤维沥青混合料路用性能之间的关系。结果表明,掺加聚丙烯腈纤维和聚酯纤维的沥青混合料性能相当,而木质素纤维混合料性能稍差;纤维的种类还影响着其对沥青混合料的主要作用机理。对外掺纤维沥青混合料路用性能影响程度最大的纤维性质因素是抗拉强度与极限拉伸应变,其次是熔融温度,吸持沥青量也有一定程度影响,纤维直径影响最小,在纤维形状特征因素中纤维长度的影响程度大于纤维直径与长径比。T.Serkan[5]采用聚酯纤维对石油沥青进行改性处理,石油沥青混合料的马歇尔稳定度增加而流值降低,同时抗车辙及抗疲劳性能增加,表明聚酯纤维有效提高了石油沥青混合料的路用性能;F.M.Nejad等[6]使用碳纤维增强沥青混凝土,结果显示,碳纤维的加入有效提升了沥青混凝土的强度和抗老化性能。此外,有不少学者采用不同种类的纤维对沥青混合料进行混杂改性,取得了良好的效果[7-8]。

瓜尔胶

天然增稠剂之————瓜尔胶 1958年8月25日,日清食品公司的创始人安藤百福(已故,原名吴百福,日籍台湾人)销售了全球第一袋方便面——袋装“鸡汤拉面”以后,方便面得到了极大的发展,2007年方便面的全球销售量大约为979亿包,全世界平均每人消费15包。公司预测,如果消费量继续保持增长,10年后方便面的全球销量有望翻一番,达到2000亿包。目前消费方便面最多的国家是中国,其后依次为印度尼西亚、日本和美国。速食方便面给我们的生活带来了极大的方便,其中的配料也是数不胜数,本篇文章主要介绍其中的食品添加剂之一,公认的天然增稠剂之一——瓜尔胶 瓜尔胶:瓜尔胶从产于印度、巴基斯坦等地的瓜尔豆(瓜尔豆在民间,其果实作为缓泻剂,并使用于因胆汁而引起的疾病。叶子可治夜盲症;煮熟的种子作成膏药用于治疗头胀痛、肝大以及骨折而引起的肿胀。瓜尔豆全草烧成灰,与油混合,调匀涂敷治疗烫伤。)种子的胚乳中提取得到,主要成分为半乳甘露聚糖,我们通常所说的瓜尔胶指的是瓜尔糖,其结构是由D甘露糖通过β-1,4甙键连接形成主链,在某些甘露糖上D-半乳糖通过α-1,6甙键形成侧链而构成多分枝的聚糖,从整个分子来看,半乳糖在主链上呈无规分布,但以两个或三个一组居多。这种基本呈线形而具有分支的结构决定了瓜尔胶的特性与那些无分支、不溶于水的葡甘露聚糖有明显的不同。因来源不同,瓜尔胶的分子量及单糖比例不同于其它的半乳甘露聚糖。瓜尔胶的分子量约为100万~200万,甘露糖与半乳糖之比约为1.5一2/1。 瓜尔胶的主要成分: 瓜尔胶的性质 瓜尔胶为白色或浅黄色,可自由流动的粉末,略微带有豆腥味,易吸潮。瓜尔胶在水溶液中表现出典型的缠绕生物聚合物的性质,一般而言,0.5%以上的瓜尔胶溶液已呈非牛顿流体的假塑性流体特性,没有屈服应力。瓜尔胶在冷水中就能充分水化(一般需要2h),能分散在热水或冷水中形成粘稠液,具体粘度取决于粒度、制备条件及温度,瓜尔胶为天然胶中粘度最高者。 瓜尔胶是一种溶胀高聚物,水是它的通用溶剂,不过也能以有限的溶解度溶解于与水混溶的溶剂中,如乙醇溶液中。此外由于瓜尔胶的无机盐类兼容性能,其水溶液能够对大多数一价盐离子(Na+、K+、Cl-等)表现出较强的耐受性,如食盐的浓度可高达60%;但高价金属离子的存在可使溶解度下降。 瓜尔胶分子主链上每个糖残基都有两个顺式羟基,在控制溶液pH值的条件下,将会通过极性键和配位键与游离的硼酸盐、金属离子进行交联,生成具有一定弹性的水凝胶,此外还能形成一定强度的水溶性薄膜。瓜尔胶与大多数合成的或天然的多糖具有很好的配伍和协同增效作用,如瓜尔胶与黄原胶、海藻酸钠、魔芋

ZSM-5沸石分子筛改性研究进展

ZSM-5沸石分子筛改性研究进展 摘要本文综述了近年来ZSM-5沸石分子筛的改性研究进展,重点从酸性调节和孔道调节对近年来的改性研究进行归纳总结,对ZSM-5沸石分子筛的研发工作具有促进作用。 关键词ZSM-5分子筛;改性;酸性;孔道 沸石是分子筛中应用最广泛的物质,是具有四面体骨架结构的硅铝酸盐,具有分子筛作用的沸石,通常称为沸石分子筛。ZSM-5分子筛(Zeolite Socony Mobil Number 5)是其中非常重要的一种人工合成的沸石分子筛,是由美国Mobil石油公司于1972年首次开发的高硅三维直孔道结构沸石,属于第二代沸石,具有二维的孔道系统,独特的交叉孔道结构。ZSM-5分子筛还具有很高的水热稳定性、择形性和亲油疏水能力,加上特殊的三维交叉孔道体系,使其成为石油化工领域首选的催化材料,在催化裂化、催化重整、润滑油馏分脱蜡、乙烯苯烃化、二甲苯异构化、甲醇转化汽油、甲醇/二甲醚制丙烯、甲苯歧化等装置中得到广泛的使用。 1 ZSM-5分子筛的改性进展 ZSM-5分子筛的改性方法按目的划分,大体可以分为两个方面: 1)调节分子筛的酸强度与酸量,主要通过在ZSM-5表面负载金属或非金属氧化物、分子筛的脱铝补铝等方式来实现。2)调节分子筛的孔道,一般可通过酸碱处理或化学硅沉积的方法来达到目的。 1.1 酸性调节 通过调节ZSM-5的酸强度或者酸量,使其具有较为适中的酸性,一方面可以减少无需的副反应发生,从而提高催化剂的选择性,另一方面可减少催化剂因积碳而导致的失活,延长催化剂使用寿命。 1.1.1 氧化物改性 对于中等强度酸性氧化物改性,磷化物是采用最多的改性物质。Kaeding等用磷化合物改性ZSM-5沸石后,MTO的C2=-C4= 烯烃选择性达70%,认为是由于处理后较强酸中心减少所造成的。Zhao等采用磷酸、氧化锆改性HZSM-5用于DME转化制烯烃的研究,甲醇转化率达100%,丙烯摩尔选择性达45%,总低碳烯烃64.6%。采用磷化物进行改性,不但可以有效减少ZSM-5表面的强酸中心,还将改变分子筛表面的亲水性能。另外,杨静等采用密度泛函理论和团簇模型,从微观角度通过计算证实了磷改性可提高ZSM-5的水热稳定性。 采用中性或略偏碱性氧化物(如锌的氧化物等)对ZSM-5进行修饰,所制

SBS改性沥青机理研究进展

S BS改性沥青机理研究进展 李双瑞,林 青,董声雄 (福州大学化学化工学院,福州 350002) 摘要:介绍了沥青的特性、苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)的性能,分析了S BS与基质沥青之间 的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展,指出机理主要分为物理共混和化学改性两 类:物理共混———S BS微粒受到沥青组分中油分的作用发生溶胀而均匀分散在沥青中,S BS与沥青之间没有发 生化学作用,只是一种分子间作用力;化学改性———加入添加剂使沥青和S BS之间发生加成、交联或接枝等化 学反应,形成较强的共价键或离子键,改善沥青的化学性质。提出化学改性是提高S BS改性沥青路用性能的重 要手段。 关键词:苯乙烯-丁二烯-苯乙烯嵌段共聚物;S BS改性沥青;改性机理 采用聚合物对道路沥青进行改性是提高和改善沥青混合料路用性能的一种重要措施[1~6]。近年来,在聚合物改性材料中,苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)以其优异的性能,成为世界上使用最为广泛的沥青改性剂[7~12]。对S BS改性沥青路用性能的研究[13~17]表明:采用S BS对沥青改性后,改性沥青的低温柔性和高温性能明显提高,温度敏感性大大降低。关于S BS改性沥青的机理,国内外科技人员进行了大量的研究,但并没有形成统一的理论。本文根据国内外相关文献,介绍了沥青和S BS的性能以及S BS在沥青中的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展。 1 沥青的特性 沥青是由多种化学成分极其复杂的烃类所组成。这些烃类为一些带有不同长短侧链的高度缩合的环烷烃和芳香烃,以及这些烃类的非金属元素衍生物[18]。按生产来源划分,沥青主要可分为地沥青(包括天然沥青与石油沥青)、焦油沥青、煤沥青、页岩沥青等。道路中各国目前生产和最常用的是石油沥青。石油沥青是原油加工的重质产品[19]。石油沥青的组分极为复杂,通常用溶剂将沥青通过色层分析法分成饱和分、芳香分、胶质和沥青质四个组分[18]。Hubbard2Stanfield法将沥青划分为油分、树脂和沥青质3个组分[19]。 油分是石油沥青中最轻的馏分,含量在45%~60%。油分是石油沥青可以流动的主要原因,其含量越多,软化点越低,粘度越小,使沥青具有柔软性和抗裂性。树脂的含量在15%~30%。树脂的存在使石油沥青有一定的可塑性、可流动性和粘结性,直接决定着石油沥青的延伸度和粘结力。沥青质是固体无定形物质,含量在5%~30%。沥青质是高分子化合物,它是石油沥青中分子量最高的组分,决定着石油沥青的塑性状态界限、自固态变为液态的程度、粘滞性、温度稳定性、硬度和软化点。此外,石油沥青中还含有一定数量的沥青酸、沥青酸酐、碳化物和似碳物。 沥青的主要结构为胶体结构,即以沥青质为核,表面层被树脂浸润包裹,而树脂又溶于油分中,形成沥青胶团,无数胶团彼此通过油质结合成胶体结构。当沥青中沥青质含量适当,并有较多的树脂作为保护物质时,它所组成的胶团之间有一定的吸引力,这种结构称之为溶胶-凝胶结构。大多数优质的路用沥青都属于这种胶体结构,具有粘弹性和触变性。当沥青质含量较高时,胶粒相互缠结,粘度大、塑性小、 基金项目:中法先进科技合作项目(PRAMX02208); 作者简介:李双瑞(1977-),女,河南南阳人,博士研究生,从事沥青材料改性的研究; 联系人,E2mail:sxdong2004@https://www.360docs.net/doc/3d12029257.html,.

相关文档
最新文档