基本不等式专项基础练习

基本不等式专项基础练习
基本不等式专项基础练习

基本不等式专项基础练习

@

1.若实数b a ,满足2=+b a ,则b a 33+的最小值是( ) C.32 D.432

2.设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1

1

+的最小值为(

) D.41

3.若0>x ,则x x 2

+的最小值为 此时x 的值为( )

若x<0则x x 2

+有最( )值为_______

4.4.已知a,b 为正实数,且b a b a 1

1

,12+=+则的最小值为( )

A .24

B .6

C .3-22

D .3+22

5.若y

x y x y x 21,14,0,0+=+>>则且的最小值为( ) A .9 B .28 C .249+ D .24

6.已知,且满足,则xy 的最大值为_____

7.已知232=+y

x )0,0(>>y x ,则xy 的最小值是_____________。 8.已知,则函数的最小值为 ___________

9若21x y +=,则24x y +的最小值是______

10 正数,x y 满足21x y +=,则

y x 11+的最小值为______

11若x >0,求函数y =x +4x

的最小值,并求此时x 的值; (2)设0

,求函数y =4x (3-2x )的最大值; ·

(3)已知x >2,求x +4x -2

的最小值; (4)已知x >0,y >0,且 1x +9y

=1,求x +y 的最小值.

,x y R +∈134x y +=t o >2t 41t y t -+=

11解 (1)当x >0时,x +4x ≥2 x ·4x =4, 当且仅当x =4x

,即x 2=4,x =2时取等号. ∴函数y =x +4x (x >0)在x =2时取得最小值4. (2)∵0

,∴3-2x >0, ∴y =4x (3-2x )=2[2x (3-2x )]

≤2????

??2x +3-2x 22=92. 当且仅当2x =3-2x ,即x =34

时,等号成立. ∵34∈? ??

??0,32. ?

∴函数y =4x (3-2x )(0

. (3)∵x >2,∴x -2>0,

∴x +4x -2=x -2+4x -2

+2 ≥2 x -2·4x -2

+2=6, 当且仅当x -2=

4x -2,即x =4时,等号成立. 所以x +4x -2

的最小值为6. (4)方法一 ∵x >0,y >0,1x +9y

=1,

∴x +y =? ????1x +9y (x +y )=y x +9x y

+10 ≥6+10=16,

当且仅当y x =9x y ,又1x +9y

=1, 即x =4,y =12时,上式取等号.

故当x =4,y =12时,(x +y )min =16.

方法二 由1x +9y

=1,得(x -1)(y -9)=9(定值). 可知x >1,y >9,

∴x +y =(x -1)+(y -9)+10

≥2x -1y -9+10=16,

当且仅当x -1=y -9=3,即x =4,y =12时上式取等号, 故当x =4,y =12时,(x +y )min =16.

最新不等式提高题专项练习

一元一次不等式(组)常见试题分类练习 一、解法常见考题: 1、已知方程组?? ?-=++=+②① m y x m y x 12,312的解满足x +y <0,求m 的取值范围. 2、已知? ??+=+=+122, 42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围. 3、若关于x 的不等式组???????+<+->+a x x x x 3 22,32 15 只有4个整数解,求a 的取值范围. 4、关于x 的不等式组? ??->-≥-123, 0x a x 的整数解共有5个,求a 的取值范围. 5、已知a 是自然数,关于x 的不等式组?? ?>-≥-0 2, 43x a x 的解集是x >2,求a 的取值范围. 6、若不等式组 X+8<4x -1 的解集是x >3,则m 的取值范围是 。 x >m 7、不等式组?? ?+>+<+1 , 159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1 8、关于x 的不等式组? ??->-≥-123, 0x a x 的整数解共有5个,求a 的取值范围. 9、若不等式组? ??? ? x +8<4x -1x>m 的解集为x>3,则m 的取值范围是________. 10、试确定实数a 的取值范围,使不等式组??? x 2+x +1 3 >0x +5a +43>4 3(x +1)+a 恰有两个整数解. 11、已知a 是自然数,关于x 的不等式组?? ?>-≥-0 2, 43x a x 的解集是x >2,求a 的值. 12、若关于x 的不等式组???????+<+->+a x x x x 3 22,32 15 只有4个整数解,求a 的取值范围. 二、最后一间房问题: 1、若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

基本不等式练习题及答案

双基自测 1.(人教A版教材习题改编)函数y=x+1 x (x>0)的值域为( ). A.(-∞,-2]∪[2,+∞) B.(0,+∞) C.[2,+∞) D.(2,+∞) 2.下列不等式:①a2+1>2a;②a+b ab ≤2;③x2+ 1 x2+1 ≥1,其中正确的个 数是 ( ).A.0 B.1 C.2 D.3 3.若a>0,b>0,且a+2b-2=0,则ab的最大值为( ). B.1 C.2 D.4 4.(2011·重庆)若函数f(x)=x+ 1 x-2 (x>2)在x=a处取最小值,则a= ( ). A.1+ 2 B.1+ 3 C.3 D.4 5.已知t>0,则函数y=t2-4t+1 t 的最小值为________. 考向一利用基本不等式求最值 【例1】?(1)已知x>0,y>0,且2x+y=1,则1 x + 1 y 的最小值为________; (2)当x>0时,则f(x)= 2x x2+1 的最大值为________. 【训练1】 (1)已知x>1,则f(x)=x+ 1 x-1 的最小值为________. (2)已知0<x<2 5 ,则y=2x-5x2的最大值为________. (3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________. 考向二利用基本不等式证明不等式

【例2】?已知a>0,b>0,c>0,求证:bc a + ca b + ab c ≥a+b+c. . 【训练2】已知a>0,b>0,c>0,且a+b+c=1. 求证:1 a + 1 b + 1 c ≥9. 考向三利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x>0, x x2+3x+1 ≤a恒成立,则a的取值 范围是________. 【训练3】(2011·宿州模拟)已知x>0,y>0,xy=x+2y,若xy≥m-2恒成立,则实数m的最大值是________. 考向三利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低【训练3】(2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n 的关系是g(n)=80 n+1 .若水晶产品的销售价格不变,第n次投入后的年利润为 f(n)万元. (1)求出f(n)的表达式; (2)求从今年算起第几年利润最高最高利润为多少万元 【试一试】(2010·四川)设a>b>0,则a2+ 1 ab + 1 a a-b 的最小值是 ( ). A.1 B.2 C.3 D.4 双基自测

基本不等式完整版(非常全面)

2 8 基本不等式专题辅导 2 2 2、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab 3、基本不等式的两个重要变形 (1)若 a,b R *,则 2 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数 的和为定植时,它们的积有最小值; a b 6、柯西不等式 (1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有: 2 2 2 2 2 2 2 (a 1 a 2 a 3 )(柑 b ? b 3 ) (aQ a ?b 2 a s b s ) (3) 设a 1,a 2, ,a n 与 db, ,b 是两组实数,则有 2 2 2 p22 2 佝 a 2 a . )(0 b 2 b n )(日山 a 2b 2 a n b n ) 一、知识点总结 1、基本不等式原始形式 二、题型分析 题型一:利用基本不等式证明不等式 (1)若 a,b R ,则 a 2 b 2 2ab 1、设a,b 均为正数,证明不等式:、.ab 二 (2)右 a, b R ,则 ab a,b,c 为两两不相等的实数, (2)若 a, b R ,则 ab b 2 ab bc ca 4、求最值的条件:“一正, 二定,三相等” 5、常用结论 1 (1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”) x 1 (2)若 x 0,则 X - 2 (当且仅当 x 1时取 “=”) X (3)若 ab 0,则-- 2 (当且仅当 a b 时取 “=”) b a 2 2 (4)若 a, b R ,则 ab ( 旦 b)2 a b 2 2 (5)若 a, b R ,贝U 1 . a ab b a 2 b 2 v ------ 1 1 2 2 (1 已知a a,b,c a )(1 1, 求证: b)(1 c) 8abc a, b, c R

最新基本不等式练习题及答案

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2 +1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1 c ≥9. 考向三 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是 ________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? 【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )= 80 n +1 .若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元. (1)求出f (n )的表达式; (2)求从今年算起第几年利润最高?最高利润为多少万元? 【试一试】 (2010·四川)设a >b >0,则a 2+1 ab +1 a (a - b ) 的最小值是( ). A .1 B .2 C .3 D .4 双基自测 D .(2,+∞) 答案 C 2.解析 ①②不正确,③正确,x 2+ 1x 2+1=(x 2 +1)+1x 2+1 -1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤1 2.答案 A

一元一次不等式培优专题训练一

一元一次不等式培优专题训练一 例1 1、 用“>”或“<”填空,并在题后括号内注明理由: (1)∵a >b,∴a -m ________b -m (2)∵a >2b,∴2 a ________ b (3)∵4a >5a,∴a ________0 (4)∵2x -1<9,∴x ________5 2、不等号填空:(1)、x 为任意有理数,x -3____x -4.(2)若a <0,b <0,则a ·b ____ab 2. 变式训练:(七中实验)若b a <,则2ac 2bc ;若22bc ac <,则a b (填不等号) ; 例2、不等式(组)的解法:1、不等式1y ,试求出m 的取值范围. x -y=5m -1, ② 3、(09优等生数学)已知关于x ,Y 的方程组???-=+-=-1 331k y x k y x 的解满足x+y >3k+2,求k 的取值范围

基本不等式练习题及答案.doc

双基自测 1 1.( 人教 A 版教材习题改编 ) 函数 y = x + x ( x >0) 的值域为 ( ) . A .( -∞,- 2] ∪[2 ,+∞ ) B .(0 ,+∞) C .[2 ,+∞ ) D .(2 ,+∞) 2 a ;② a +b 2 + 2 1 ≥ ,其中正确的个数是 .下列不等式:① a + > ≤2;③ x 2 1 2 x 1 ab +1 ( ) . A .0 B .1 C .2 D .3 .若 a > ,b > ,且 a + 2 b - = ,则 ab 的最大值为 ( ) . 3 0 0 2 0 B .1 C .2 D . 4 . ·重庆 若函数 f x = x + 1 x > 在 x = a 处取最小值,则 a = . 4 (2011 ) ( ) x -2 ( 2) ( ) A .1+ 2 B .1+3 C .3 D .4 .已知 t > ,则函数 y = t 2- t + 1 5 0 t 的最小值为 ________. 考向一 利用基本不等式求最值 1 1 【例 1】?(1) 已知 x > 0, y > 0,且 2x +y =1,则 x +y 的最小值为 ________; x 2 (2) 当 x >0 时,则 f ( x) =x 2+1的最大值为 ________. 1 【训练 1】 (1) 已知 x >1,则 f ( x) = x + x - 1的最小值为 ________. 已知 <x 2 x - x 2 的最大值为 (2) < ,则 y = ________. 0 5 2 5 (3) 若 x ,y ∈ (0 ,+∞ 且 2 x + y - xy = ,则 x + y 的最小值为 . ) 8 0 ________ 考向二 利用基本不等式证明不等式 bc ca ab 【例 2】?已知 a >0, b > 0, c > 0,求证: a + b + c ≥a +b +c. .

不等式与不等式组专项训练(含答案详解)

《不等式与不等式组专项训练》一、选择: 1.下列不等式一定成立的是() A.a≥﹣a B.3a>a C.a D.a+1>a 2.若a>b,则下列不等式仍能成立的是() A.b﹣a<0B.ac<bc C.D.﹣b<﹣a 3.解不等式中,出现错误的一步是() A.6x﹣3<4x﹣4B.6x﹣4x<﹣4+3C.2x<﹣1D. 4.不等式的正整数解有() A.2个B.3个C.4个D.5个 5.在下列不等式组中,解集为﹣1≤x<4的是() A.B.C.D. 6.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34B.22C.﹣3D.0 二、填空: 7.用不等式表示“6与x的3倍的和大于15”. 8.不等式的最大正整数解是,最小正整数解是.9.一次不等式组的解集是. 10.若y=2x+1,当x时,y<x. 11.关于x的不等式ax+b<0(a<0)的解集为. 12.若方程mx+13=4x+11的解为负数,则m的取值范围是. 13.若a>b,则的解集为.

14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道. 三、解不等式或不等式组: 15.解不等式或不等式组: (1)3(x﹣2)﹣4(1﹣x)<1 (2)1﹣≥x+2 (3) (4). 四、解答下列各题: 16.x取什么值时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数. 17.k取什么值时,解方程组得到的x,y的值都大于1. 18.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数. 19.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.

基本不等式专项基础练习

基本不等式专项基础练习 @ 1.若实数b a ,满足2=+b a ,则b a 33+的最小值是( ) C.32 D.432 2.设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1 +的最小值为( ) D.41 3.若0>x ,则x x 2 +的最小值为 此时x 的值为( ) 若x<0则x x 2 +有最( )值为_______ 4.4.已知a,b 为正实数,且b a b a 1 1 ,12+=+则的最小值为( )

A .24 B .6 C .3-22 D .3+22 ; 5.若y x y x y x 21,14,0,0+=+>>则且的最小值为( ) A .9 B .28 C .249+ D .24 6.已知,且满足,则xy 的最大值为_____ 7.已知232=+y x )0,0(>>y x ,则xy 的最小值是_____________。 8.已知,则函数的最小值为 ___________ 9若21x y +=,则24x y +的最小值是______ 10 正数,x y 满足21x y +=,则 y x 11+的最小值为______ 11若x >0,求函数y =x +4x 的最小值,并求此时x 的值; (2)设02,求x +4x -2 的最小值; (4)已知x >0,y >0,且 1x +9y =1,求x +y 的最小值. ,x y R +∈134x y +=t o >2t 41t y t -+=

11解 (1)当x >0时,x +4x ≥2 x ·4x =4, 当且仅当x =4x ,即x 2=4,x =2时取等号. ∴函数y =x +4x (x >0)在x =2时取得最小值4. (2)∵00, ∴y =4x (3-2x )=2[2x (3-2x )] ≤2???? ??2x +3-2x 22=92. 当且仅当2x =3-2x ,即x =34 时,等号成立. ∵34∈? ?? ??0,32. ? ∴函数y =4x (3-2x )(02,∴x -2>0, ∴x +4x -2=x -2+4x -2 +2 ≥2 x -2·4x -2 +2=6, 当且仅当x -2= 4x -2,即x =4时,等号成立. 所以x +4x -2 的最小值为6. (4)方法一 ∵x >0,y >0,1x +9y =1,

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

不等式经典题型专题练习(含答案)-

不等式经典题型专题练习(含答案) :__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 25 233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21{ 23x a x b -<->的解集为-1

5.解不等式组:并写出它的所有的整数解. 6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,数a的取 值围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解. 8.已知关于x的不等式组的整数解共有5个,求a的取值围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值围.

10.解不等式组5134122 x x x x ->-???--??≤并求它的整数解的和. 11.已知x ,y 均为负数且满足:232x y m x y m +=-?? -=?①②,求m 的取值围. 12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225 x y m x y m +=+??-=-?的解是一对正数,则: (1)求m 的取值围 (2)化简:42m m -++ 15.我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?

集合、不等式基础测试题

集合、不等式测试卷 班级 姓名 得分 一、单项选择题(本大题共10小题,每小题4分,共40分) 1. 1、已知集},2|{N n n x x P ∈==,},4|{N n n x x T ∈==,则P T =U A. },4|{N n n x x ∈= B. },2|{N n n x x ∈= C. },|{N n n x x ∈= D. },4|{Z n n x x ∈= 2、01=-x 是012=-x 的 A .充要条件 B. 必要而非充分条件 C .充分而非必要条件 D. 既非充分也非必要条件] 3. 若a >b >0,c ∈R ,则下列不等式中不正确的是( ) A . a > b B . ab >b 2 C.a + c >b +c D. ac >bc 4. 已知集合{} 12≤-=x x A ,=B {}2>x x ,则=B A I A .{}32≤x x D . {}3≥x x 5. 设集合{|03,},M x x x N =≤<∈则M 的真子集个数为 A.3 B.6 C.7 D.8 的 是则有实根, 的方程关于>设q p a c bx ax x q a ac b p )0(0:,)0(04:.622≠=++≠- A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 {}{} {}2101,1,3,221.7....的值为 则实数若,,.已知集合D C B A x N M N M x -===I 8. 已知集合A={1,3,m },B={1,m},A ∪B=A ,则m= A.0或3 B.0或3 C.1或3 D.1或3 9.已知集合{}13M x x =-<,集合{} 260N x x x =--<,则A B =I A. {}23x x -<< B. {}24x x -<< C. {}3x x < D. {} 34x x << 10. 设集合{}|13,A x x x Z =-<∈,{}2|16,B x x x Z =≤∈ A B I = A . {1,2,3} B .{1,2,3,4} C . {-1,0,1,2,3} D .{0,1,2,3}

(完整版)基本不等式练习题(带答案)

基本不等式 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 111a b c + + ≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .11 1x y +≥ C 2≥ D .11xy ≥ 8. a ,b 是正数,则 2,2 a b ab a b ++三个数的大小顺序是 ( ) A.22a b ab a b ++ 22a b ab a b +≤≤ + C. 22ab a b a b ++ D.22 ab a b a b +≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+ 11. 函数y =的最大值为 .

不等式综合练习题集

不等式专题练习题 一、知识内容 不等式是高中数学的重要内容之一,不等式的性质是解证不等式的基础;两个正数的算术平均数不小于它们的几何平均数的定理(教材中称为基本不等式,通常称均值不等式)及其变形在不等式的证明和解决有关不等式的实际问题中发挥着重要的作用;线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用. 二、核心思想方法 解不等式是研究方程和函数的重要工具,不等式的概念、性质涉及到求函数最大(小)值,实数大小比较,求参数的取值范围等;不等式的综合题主要是不等式与集合、函数、数列、三角函数、解析几何、导数等知识的综合,综合性强,难度较大,是高考命题的热点,也是高考复习的难点;均值不等式的证明最终是利用了配方法,使用该不等式的核心方法则是整体思想方法,就是对哪两个正数使用定理,例如下面练习题的第5题是对2,a b使用不等式,而不是对,a b使用不等式;线性规划的核心方法是数形结合和转化的思想方法,在具体转化上涉及到面积、截距(目标函数为二元一次多项式)、距离(目标函数含二元二次多项式)、斜率(目标函数为分式)等几何意义,分别如下面练习题的第9、22、23、24题. 三、高考命题趋势 本专题的高考命题热点可从以下两个方面去把握: 1.以客观题形式命题:不等式的性质和解不等式问题多以一个选择题的形式出现,且多与集合、简易逻辑、函数知识相结合,难度较低;均值不等式是历年高考的重点考查内容,考查方式多变,在客观题中出现,一般只有一个选择或填空,考查直接,难度较低;线性规划问题是近几年高考的一个新热点,在考题中主要以选择、填空形式出现,且设问也是灵活多变,每年高考必有一题.四个注意问题:(1)命题者有时把线性规划问题和均值不等式结合在一起,提高了难度,例如下面练习题的第8、28题.(2)线性规划的约束条件中含有参数的,例如下面练习题的第7、9题.(3)均值不等式的凑定值技巧,一是关注消元,而是关注整体代入思想方法,分别如下面练习题的第17、18题.(4)克服思维定势,有些题目很象是利用基本不等式的,其实只是解出未知数代入化简的,

不等式计算专项练习及答案

不等式计算专项练习 一、解答题 1.解不等式组,并且把解集在数轴上表示出来. 2.求不等式组的整数解. 3.计算下列不等式(组): (1)x-<2-. (2)-2≤≤7 (3); (4) 4.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2 (2)2y1-y2≤4 5.解不等式组: 6.求下列不等式组的解集 7.(1)计算:(-2)-2×|-3|-()0 (2)解不等式组: 8.解不等式组,并指出它的所有整数解. 9.解不等式组:,并写出该不等式组的整数解.

11.解不等式组并写出的所有整数解. 12.(1)解方程:. (2)求不等式组:. 13.求不等式组的整数解. 14.(1)解不等式组:并把解集在数轴上表示出来. (2)解不等式组: 15.求不等式组的非负整数解. 16.解不等式(组),并把它们的解集在数轴上表示出来 (1); (2) 17.(1)解不等式组 (2)在(1)的条件下化简:|x+1|+|x-4| 18.已知关于x,y的方程组的解为正数. (1)求a的取值范围; (2)化简|-4a+5|-|a+4|. 19.(1)解不等式2->+1,并把它的解集在数轴上表示出来; (2)求不等式组的整数解. 20.解不等式组:. 21.解不等式组 22.解不等式组,并把它们解集表示在数轴上,写出满足该不等式组的 所有整数解.

23.解不等式组:;在数轴上表示出不等式组的解集,并写出它的整数 解. 24.解不等式组:. 25.解不等式组 26.解不等式组 ) 27.当x 是不等式组 的正整数解时,求多项式(1﹣3x )(1+3x )+(1+3x ) 2 +(﹣x 2)3÷x 4的值. 28.解方程与不等式组: 解方程:;解不等式组: 29.解不等式组. 30.解不等式组,并写出不等式组的整数解. 31.(1)解不等式组: (2)解方程: 32.解不等式组: . 33.解不等式组,并在数轴上表示它的解集. 34.(1)解方程: ; (2)解不等式组: ,并把解集在数轴上表示出来.

基本不等式学习知识梳理

基本不等式 【考纲要求】 1. 2 a b +≤ 的证明过程,理解基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2. 2 a b +≤ 解决最大(小)值问题. 3.会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题 【知识网络】 【考点梳理】 考点一:重要不等式及几何意义 1.重要不等式: 如果,R a b ∈,那么2 2 2a b ab +≥(当且仅当a b =时取等号“=”). 2.基本不等式: 如果,a b 是正数,那么 2a b +≥(当且仅当a b =时取等号“=”). 要点诠释:22 2a b ab +≥ 和2 a b +≥ (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;

(2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。 (3)2 2 2a b ab +≥可以变形为:222a b ab +≤,2a b ab +≥可以变形为:2()2 a b ab +≤. 3.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD . 易证~Rt ACD Rt DCB ??,那么2 CD CA CB =?,即CD ab = . 这个圆的半径为2b a +,它大于或等于CD ,即ab b a ≥+2 ,其中当且仅当点C 与圆心重合,即a b =时,等号成立. 要点诠释:1.在数学中,我们称 2 b a +为,a b 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2.如果把 2 b a +看作是正数,a b 的等差中项,ab 看作是正数,a b 的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项. 考点二:基本不等式2 a b ab +≤的证明 1. 几何面积法 如图,在正方形ABCD 中有四个全等的直角三角形。 设直角三角形的两条直角边长为a 、b 22a b +4个直角三角形 的面积的和是2ab ,正方形ABCD 的面积为2 2 a b +。由于4个直角三角形的面积小于正方形的面积,所 以:22 2a b ab +≥。当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有2 2 2a b ab +=。

高中不等式的基本知识点和练习题(含答案)

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则不等式的解的各种情况 如下表: 2、简单的一元高次不等式的解法: 标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3 3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥?? ≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < ()f x

基本不等式知识点归纳

基本不等式知识点归纳

————————————————————————————————作者:————————————————————————————————日期:

基本不等式知识点总结 向量不等式: ||||||||||||a b a b a b -±+≤≤ 【注意】: a b 、 同向或有0?||||||a b a b +=+≥||||||||a b a b -=-; a b 、反向或有0?||||||a b a b -=+≥||||||||a b a b -=+; a b 、不共线?||||||||||||a b a b a b -<±<+.(这些和实数集中 类似) 代数不等式: ,a b 同号或有 0||||||||||||a b a b a b a b ?+=+-=-≥; ,a b 异号或有 0||||||||||||a b a b a b a b ?-=+-=+≥. 绝对值不等式: 123123a a a a a a ++++≤ (0)a b a b a b ab -≤-≤+≥时,取等 双向不等式:a b a b a b -±+≤≤ (左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.) 放缩不等式: ①00a b a m >>>>,,则b m b b m a m a a m -+<<-+. 【说明】: b b m a a m +<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a b a n b n a m a m b a b <++<<++<1. ②,,a b c R + ∈, b d a c <,则b b d d a a c c +<<+; ③n N +∈,1 112n n n n n +-< <--; ④,1n N n +∈>,211111 11n n n n n - <<-+-. ⑤ln 1x x -≤(0)x >,1x e x +≥()x R ∈. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; x a b ab 2-ab 2a b - o y

高中数学基本不等式练习题

一.选择题 1.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为() A.B.2C.4 D.4 2.已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2D.若a<b<0,则> 5.若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于() A.2 B.3 C.4 D.5 7.若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.12 8.已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()A.B.8 C.9 D.12 9.若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.已知x+3y=2,则3x+27y的最小值为() A. B.4 C. D.6 11.若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.已知a,b,c,是正实数,且a+b+c=1,则的最小值为() A.3 B.6 C.9 D.12 二.填空题 1.已知正数x,y满足x+y=1,则的最小值为. 2.已知a>0,b>0,且a+b=2,则的最小值为. 3.已知x>1,则函数的最小值为. 4.设2<x<5,则函数的最大值是. 5.函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为. 6.已知x>1,则函数y=2x+的最小值为.

相关文档
最新文档