BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究-综述(最新整理)
BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究

摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。

关键词:BP神经网络、算法分析、应用

1 引言

人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。

人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。

人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。

1.1 人工神经元模型

仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts

在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素:

(1)具有一组突触或连接,常用表示神经元i和神经元j之间的连接强度。

w

ij

(2)具有反映生物神经元时空整合功能的输入信号累加器。

(3)具有一个激励函数用于限制神经元输出。激励函数将输出信号限制在

f 一个允许范围内。

一个典型的人工神经元模型如图1-1所示。

2

x 1

x j x x

i

y 图1-1 人工神经元模型

其中为神经元i 的输入信号,为连接权重,b 为外部刺激,为激励函j x ij w f 数,为神经元的输出,其输出计算公式如(1.2)。

i y (1.2)

1N i ij j j y f w x b =??=+ ???∑1.2 人工神经网络模型

建立神经元模型后,将多个神经元进行连接即可建立人工神经网络模型。神经网络的类型多种多样,它们是从不同角度对生物神经系统不同层次的抽象和模拟。从功能特性和学习特性来分,典型的神经网络模型主要包括感知器、线性神经网络、BP 网络、径向基函数网络、自组织映射网络和反馈神经网络等。一般来说,当神经元模型确定后,一个神经网络的特性及其功能主要取决于网络的拓扑结构及学习方法。从网络拓扑结构角度来看,神经网络可以分为以下四种基本形式[3]:前向网络、有反馈的前向网络、层内互边前向网络和互连网络。

神经网络结构如图1-2,其中子图的图(a)为前向网络结构,图(b)有反馈的前向网络结构、图(c)层内互边前向网络结构和图(d)互连网络结构。

根据有无反馈,亦可将神经网络划分为:无反馈网络和有反馈网络。无反馈网络为前馈神经网络(Feed Forward NNs ,FFNNs),有反馈网络为递归神经网络和(Recurrent NNs ,RNNs) 。

图(a) 前向网络

图(b)有反馈前向网络

图(c)层内互边前向网络图(d)互联网络

图1-2 神经网络拓扑结构图

2 BP神经网络原理

BP神经网络是一种按误差逆传播BP(Back Propagation)算法训练的多层前馈网络,由它最初是由Pau1werboSS在1974年提出,但未传播,直到20世纪80年代中期Rumelhart[4]、Hinton和Williams、David Parker[5]和Yann Le Cun[6]重新发现了BP算法,同时因此算法被包括在《并行分布处理》(Parallel Distributed Processing),此算法才广为人知。目前BP算法已成为应用最广泛的神经网络学习算法,据统计有近90%的神经网络应用是基于BP算法的。

BP神经网络学习是由信息的正向传播和误差的反向传播两个过程组成。BP 神经网络的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP网络的神经元采用的传递函数通常是

Sigmoid型可微函数,所以可以实现输入和输出间的任意非线性映射,这使得它在诸如信号处理、计算机网络、过程控制、语音识别、函数逼近、模式识别及数据压缩等领域均取得了成功的应用。

2.1 BP神经网络结构

BP网络的基本结构如图2-1所示,其模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)三层结构。

输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求。中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。隐层节点一般采用Sigmoid型函数,输入和输出节点可以采用Sigmoid 型函数或者线性函数。

输入层隐层输出层

图2-1 BP神经网络结构图

2.2 BP神经算法原理

BP算法由正向传播和反向传播两部分组成。在正向传播过程中,输入信息从输入层经隐层单元处理后,传至输出层。每一层神经元的状态只影响下一层神经元的状态。当实际输出与期望输出不符时,进入误差的反向传播阶段。把误差通过输出层沿连接路径返回,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,通过修改各层神经元之间的连接权值,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差信号减少到可以接受的程度,或者预先设定的学习次数为止。

BP 神经网络模型[7]包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。

(1)节点的输出模型

BP 神经网络的节点输出包括隐层节点输出和输出节点输出。其中,隐层节点输出模型为:

(1.3)

()ij i j j w x q Q f ?-=∑输出节点输出模型为:

(1.4)

()jk j k k T O f q Y ?-=其中,为非线形作用函数,为神经单元的阈值,为输入节点对隐f q ij w i x 层节点的影响权重。

j x (2)作用函数模型

作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid 函数: (1.5)1()1Qx f x e

-=+它反映了神经元的饱和特性。上式中,Q 为表示神经元非线性的参数,称增益值(Gain),也称调节参数。Q 值越大,S 形曲线越陡峭;反之,Q 值越小,S 形曲线越平坦;一般取Q=1。

(3)误差计算模型

误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数,其计算如下: (1.6)

211()2N p p p E T Q N ==?-∑其中网络目标输出。

p T (4)自学习模型

神经网络的学习过程,即连接下层节点和上层节点之间的权重矩阵的设ij W 定和误差修正过程。BP 网络学习分为有监督学习和无监督学习。有监督学习需要设定期望值,无监督学习方式只需输入模式之分。自学习模型为

(1.7)

()()1 ij i j ij W n h ФO W n α?+=??+??其中,为学习因子;输出节点的计算误差;为输出节点的计算输h i Φi j Q j 出;为动量因子。

αBP 模型把一组输入输出样本的函数问题转变为一个非线性优化问题,并使用了优化技术中最普通的梯度下降法。如果把神经网络看成是输入到输出的映射,则这个映射是一个高度非线性映射。BP 算法程序框图如图2-2所示。

图2-2 BP学习算法框图

3 BP神经网络算法分析及改进

BP算法现在已成为目前应用最广泛的神经网络学习算法,它在函数逼近、模式识别、分类、数据压缩等领域有着更加广泛的应用。但它存在学习收敛速度慢、容易陷入局部极小点而无法得到全局最优解、且对初始权值的选取很敏感等缺点。具体如下:

(1)在权值调整上采用梯度下降法作为优化算法,极易陷入局部极小。

(2)学习算法的收敛速度很慢,收敛速度还与初始权值和传输函数的选择有

关。

(3)网络的结构设计,即隐节点数的选择,尚无理论指导,具有很大的盲目性。

(4)新加入的样本对已经学好的样本影响较大,且每个输入样本的特征数目

要求相同,泛化能力较差。

针对BP算法存在的缺陷,目前国内外已有不少人对BP网络进行了大量的研究,提出了各种不同的改进方案,如优化训练输入参数,加入动量参数,以及学习步长的适应调整,采用带动量的自学习率BP算法,动态全参数自调整学习算法,记忆式初值权值和阀值方法,快速自适应学习算法等,这些方案均提高BP

神经网络收敛速度。

比较典型的改进方法如下:

(1)启发式改进

为了使学习速率足够大,又不易产生振荡,根据Rumelhart 的建议,在权值调整算式中,加入“动量项”,,即

(1.8)

()(1)()[()(1)]()ji ji ji ji ji E t W t W t W t W t W t ηβ?+=++--?其中上式第二项为常规BP 算法的修正量,第三项为动量项,其中为调节β因子。

通过可变学习步长可以提高收敛速度。可变学习速度(可变步长)的基本思想为:先设一初始步长:若一次迭代后误差函数E 增大,则将步长乘以小于1的常数,沿原来方向重新计算下一个迭代点;若一次迭代后误差函数E 减少,则将步长乘以大于l 的常数。

(2)BP 算法的数值优化

采用共轭梯度法和Levenberg - Marqardt 算法可以提高数值精度。共轭梯度法选择与梯度相反的方向作为第一次搜索方向,再使函数沿搜索方向极小化,再确定下一个搜索方向,直至收敛。而Levenberg - Marqardt 算法是牛顿法的变形,用以最小化那些作为其他非线性函数平方和的函数,这非常适合于性能指数是均方误差的神经网络训练。

Levenberg - Marqardt 算法为:

(1.9)

1[()()]()()T T k k k k k k X J X J X I J X V X μ-?=-+其中,

121,12,11,2,1,[,][,]M M T n S S Q V v v v e e e e e == 111111112121,11,2121,1,[][]M

T M n S R S S X x x x w w w b b b w b == (1.10)11111,1

1,11,11,11

1

111,11,21,2,1

2,12,12,1111

11,11,21,,1,1,1

,1111

11,11,21,1,21,21,2

1,2111

11,11,21,()M M M M S R S R

S S S S S R

S R

e e e e w w w b e e e e w w w b J X e e e e w w w b e e e e w w w b ????????????????=????????????????

当增加时,此算法接近于有小的学习速度的最速下降算法,当下降为0

k μk μ

时,算法变成了高斯-牛顿法。

4 深度学习的研究

BP算法作为传统训练多层网络的典型算法,实际上对仅含几层网络,该训练方法就已经很不理想。深度结构(涉及多个非线性处理单元层)非凸目标代价函数中普遍存在的局部最小是训练困难的主要来源。

BP算法存在的问题:

(1)梯度越来越稀疏:从顶层越往下,误差校正信号越来越小;

(2)收敛到局部最小值:尤其是从远离最优区域开始的时候(随机值初始化

会导致这种情况的发生);

(3)一般,我们只能用有标签的数据来训练:但大部分的数据是没标签的,

而大脑可以从没有标签的的数据中学习;

深度学习[8]是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,是神经网络的发展。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法。换句话来说,深度学习算法自动的提取分类需要的低层次或者高层次特征。高层次特征,一是指该特征可以分级(层次)地依赖其他特征,例如:对于机器视觉,深度学习算法从原始图像去学习得到它的一个低层次表达,例如边缘检测器,小波滤波器等,然后在这些低层次表达的基础上再建立表达,例如这些低层次表达的线性或者非线性组合,然后重复这个过程,最后得到一个高层次的表达。

Deep Learning训练过程具体如下:

(1)使用自下上升非监督学习

采用无标定数据(有标定数据也可)分层训练各层参数,这一步可以看作是一个无监督训练过程,是和传统神经网络区别最大的部分(这个过程可以看作是feature learning过程):

具体的,先用无标定数据训练第一层,训练时先学习第一层的参数(这一层可以看作是得到一个使得输出和输入差别最小的三层神经网络的隐层),由于模型capacity的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而得到比输入更具有表示能力的特征;在学习得到第n-1层后,将n-1层的输出作为第n层的输入,训练第n层,由此分别得到各层的参数;

(2)自顶向下的监督学习

基于第一步得到的各层参数进一步fine-tune整个多层模型的参数,这一步是一个有监督训练过程;第一步类似神经网络的随机初始化初值过程,由于DL 的第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果;所以Deep Learning效果好很大程度上归功于第一步的feature learning过程

Deep learning存在待解决的问题:

(1)对于一个特定的框架,对于多少维的输入它可以表现得较优(如果是图

像,可能是上百万维)?

(2)对捕捉短时或者长时间的时间依赖,哪种架构才是有效的?

(3)如何对于一个给定的深度学习架构,融合多种感知的信息?

(4)有什么正确的机理可以去增强一个给定的深度学习架构,以改进其鲁棒

性和对扭曲和数据丢失的不变性?

(5)模型方面是否有其他更为有效且有理论依据的深度模型学习算法?

5 总结

本文主要介绍神经网络的起源,神经元模型与神经网络模型,根据神经网络结构的不同进行分类,将神经网络分为前馈神经网络(Feed Forward NNs,FFNNs),有反馈网络为递归神经网络和(Recurrent NNs,RNNs)。随后重点研究BP 神经网络,包括BP神经网络的原理、BP算法分析及改进。最后研究神经网络的一种发展应用即深度学习的研究,包括深度学习的过程,优势,缺陷,未来的研究方向。

参考文献

[1] D. R. Baughman, Y. A. Liu. Neural networks in bioprocessing and chemical

engineering. Academic press, 2014.

[2] A. J. Maren, C. T. Harston, R. M. Pap. Handbook of neural computing

applications[M]. Academic Press, 2014.

[3] A. Karpathy, G. Toderici, S. Shetty, et al. Large-scale video classification with

convolutional neural networks//Computer Vision and Pattern Recognition

(CVPR), 2014 IEEE Conference on. IEEE, 2014: 1725-1732.

[4] D. E. Rumelhart, G. E. Hinton and R. J. Williams ·Learning representations

By back-Propagation errors. Nature. 1986. Vol.323. 533-536.

[5] D. B. Parker. Learning=logic: Casting the cortex of the human brain in silicon.

Technical Report Tr-47, Center for Computational Research in Economics

and Management Science. MIT, Cambridge, MA· 1985

[6]Y. Le Cun. Une procedure d' apprentissage pour reseau a seuil assy metrique.

Cognitiva. 1985, vol.85.599-604.

[7]H. T. Su, N. Bhat, P. A. Minderman, et al. Integrating neural networks with

first principles models for dynamic modeling[C]//Dynamics and Control of

Chemical Reactors, Distillation Columns and Batch Processes

(DYCORD+'92): Selected Papers from the 3rd IFAC Symposium, Maryland,

USA, 26-29 April 1992. Elsevier, 2014: 327.

[8]J Schmidhuber. Deep learning in neural networks: An overview. Neural

Networks, 2015, 61: 85-117.

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

最新神经网络最新发展综述汇编

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.360docs.net/doc/3d626659.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1 引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1 人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts 在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用表示神经元i和神经元j之间的连接强度。 w ij (2)具有反映生物神经元时空整合功能的输入信号累加器。

深度神经网络语音识别系统快速稀疏矩阵算法

深度神经网络语音识别系统快速稀疏矩阵算法 一. 背景 1.1语音识别、深度神经网络与稀疏矩阵运算 深度神经网络(DNN)已经广泛应用在当代语音识别系统中,并带来识别率的极大提高。一个典型的深度神经网络如图1所示,其中包含一个输入层,多个隐藏层,一个输出层,每层有若干个结点,每个结点的输入由前一层的结点的输出经过线性叠加得到,并通过一个线性或非线性的激励函数,形成该结点的输出。 图1 DNN结构 在进行语音识别系统模型训练和识别时,语音数据被分成短时语音帧,这些语音帧经过信号处理之后形成一系列语音特征向量,输入到DNN的输入层,经过神经网络的各个隐藏层,最后进入输出层,形成识别器可用的概率值。 可见,在进行DNN操作时,主要计算为输入向量在整个神经网络的前向传导。这些传导运算可以抽象为矩阵运算。具体而言,将第t层结点的所有结点输出表示成一个向量OU t ,将第t层到第t+1层之间的网络联接系数表示成A t, 则第t+1层结点的输入IN t+1可以表示成IN t+1 = A t x OU t 其输出表示为OU t+1 = f (IN t), 其中f为激励函数。 当前语音识别系统中所用的神经网络一般为5-10层,每层结点数为1000到10000,这意味着网络矩阵A t 相当庞大,带来巨大的计算压力。如何快速进行矩阵运算,是一个急需解决的问题。 稀疏矩阵为减小计算量提供了可能。通过将矩阵中绝大部分元素置零,一方面可以节约随储空间,同时可以极大减小计算总量。然则,稀疏矩阵本身的存储和数据索取都需要相应的空间和时间,简单对矩阵依其元素值的大小进行稀疏化并不会提高计算效率。本发明提出一种通过改变稀疏矩阵的拓朴结构对稀疏矩阵进行快速计算的方法。 在下文中的背景知中,我们将简单的介绍一下稀疏矩阵的存储方式和对拓朴结构进行修正过程中需要用到的遗传算法。

bp神经网络详解

学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法.而有的算法可能可用于多种模型。不过,有时人们也称算法为模型。 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学习算法。其中以在1986年Rumelhart等提出的误差反向传播法,即BP(error BackPropagation)法影响最为广泛。直到今天,BP算法仍然是自动控制上最重要、应用最多的有效算法。 1.2.1 神经网络的学习机理和机构 在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。 神经网络在学习中,一般分为有教师和无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的。在主要神经网络如BP网络,Hopfield网络,ART网络和Kohonen网络中;BP网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和 Kohonen网络则无需教师信号就可以学习。所谓教师信号,就是在神经网络学习中由外部提供的模式样本信号。 一、感知器的学习结构 感知器的学习是神经网络最典型的学习。 目前,在控制上应用的是多层前馈网络,这是一种感知器模型,学习算法是BP法,故是有教师学习算法。 一个有教师的学习系统可以用图1—7表示。这种学习系统分成三个部分:输入部,训练部和输出部。 图1-7 神经网络学习系统框图

深度神经网络知识蒸馏综述

Computer Science and Application 计算机科学与应用, 2020, 10(9), 1625-1630 Published Online September 2020 in Hans. https://www.360docs.net/doc/3d626659.html,/journal/csa https://https://www.360docs.net/doc/3d626659.html,/10.12677/csa.2020.109171 深度神经网络知识蒸馏综述 韩宇 中国公安部第一研究所,北京 收稿日期:2020年9月3日;录用日期:2020年9月17日;发布日期:2020年9月24日 摘要 深度神经网络在计算机视觉、自然语言处理、语音识别等多个领域取得了巨大成功,但是随着网络结构的复杂化,神经网络模型需要消耗大量的计算资源和存储空间,严重制约了深度神经网络在资源有限的应用环境和实时在线处理的应用上的发展。因此,需要在尽量不损失模型性能的前提下,对深度神经网络进行压缩。本文介绍了基于知识蒸馏的神经网络模型压缩方法,对深度神经网络知识蒸馏领域的相关代表性工作进行了详细的梳理与总结,并对知识蒸馏未来发展趋势进行展望。 关键词 神经网络,深度学习,知识蒸馏 A Review of Knowledge Distillation in Deep Neural Networks Yu Han The First Research Institute, The Ministry of Public Security of PRC, Beijing Received: Sep. 3rd, 2020; accepted: Sep. 17th, 2020; published: Sep. 24th, 2020 Abstract Deep neural networks have achieved great success in computer vision, natural language processing, speech recognition and other fields. However, with the complexity of network structure, the neural network model needs to consume a lot of computing resources and storage space, which seriously restricts the development of deep neural network in the resource limited application environment and real-time online processing application. Therefore, it is necessary to compress the deep neural network without losing the performance of the model as much as possible. This article introduces

深度神经网络

1. 自联想神经网络与深度网络 自联想神经网络是很古老的神经网络模型,简单的说,它就是三层BP网络,只不过它的输出等于输入。很多时候我们并不要求输出精确的等于输入,而是允许一定的误差存在。所以,我们说,输出是对输入的一种重构。其网络结构可以很简单的表示如下: 如果我们在上述网络中不使用sigmoid函数,而使用线性函数,这就是PCA模型。中间网络节点个数就是PCA模型中的主分量个数。不用担心学习算法会收敛到局部最优,因为线性BP网络有唯一的极小值。

在深度学习的术语中,上述结构被称作自编码神经网络。从历史的角度看,自编码神经网络是几十年前的事情,没有什么新奇的地方。 既然自联想神经网络能够实现对输入数据的重构,如果这个网络结构已经训练好了,那么其中间层,就可以看过是对原始输入数据的某种特征表示。如果我们把它的第三层去掉,这样就是一个两层的网络。如果,我们把这个学习到特征再用同样的方法创建一个自联想的三层BP网络,如上图所示。换言之,第二次创建的三层自联想网络的输入是上一个网络的中间层的输出。用同样的训练算法,对第二个自联想网络进行学习。那么,第二个自联想网络的中间层是对其输入的某种特征表示。如果我们按照这种方法,依次创建很多这样的由自联想网络组成的网络结构,这就是深度神经网络,如下图所示:

注意,上图中组成深度网络的最后一层是级联了一个softmax分类器。 深度神经网络在每一层是对最原始输入数据在不同概念的粒度表示,也就是不同级别的特征描述。 这种层叠多个自联想网络的方法,最早被Hinton想到了。 从上面的描述中,可以看出,深度网络是分层训练的,包括最后一层的分类器也是单独训练的,最后一层分类器可以换成任何一种分类器,例如SVM,HMM等。上面的每一层单独训练使用的都是BP算法。相信这一思路,Hinton早就实验过了。 2. DBN神经网络模型 使用BP算法单独训练每一层的时候,我们发现,必须丢掉网络的第三层,才能级联自联想神经网络。然而,有一种更好的神经网络模型,这就是受限玻尔兹曼机。使用层叠波尔兹曼机组成深度神经网络的方法,在深度学习里被称作深度信念网络DBN,这是目前非

大数据分析的深度神经网络方法

章毅 四川大学计算机学院2016.03.25 重庆

提纲 大数据简介 大脑新皮层的神经网络结构 大脑新皮层神经网络的记忆 大数据分析GPU深度神经网络计算平台

大数据商业应用诞生 全世界兴起大数据分布式存储与并行计Google Brain 计划,激起大规模神经网络在深度神经网络在语音大数据、图像大数据领域接连取得巨大突破 G. E. Hinton 教授在《Science 》发表文章,基于深度神经网络的大数据分析方法在学术界和工工信部白皮书指出:大数据分析是大数据研究的重要环节,其中大数据分“大数据” 一词诞生 2000 1997 2004 2006 2011 2012 2014 2015 我国大数据产业兴起 2013 美国奥巴马政府发布了大数据计划,将大数据战略上升为美国国家意志 国务院发布大数据发展行动纲要,大数据正式上升为我国国家意志

体量浩大Volume 多源异构Variety 生成快速Velocity 价值稀疏Value 大数据的基本特点大数据的目标实现大数 据转换为 价值 大数据的概念 问题:怎样实现大数据的目标?

大数据 关键技术 价值 大数据分析是大数据转化为价值的桥梁 问题:怎样设计大数据分析方法? 展示平台 ?大数据知识展示 ?大数据产品 数据平台 ?大数据采集,标记 ?大数据存储,管理 大数据分析是大数据转 换为价值的最重要的环 节,否则,大数据仅仅 是一堆数据而已。

?每秒信息传递和交换1000亿次,PB 级数据 ?同步处理声音、温度、气味、图像等数据 ?50亿本书的存储容量 ?每秒人眼数据量140.34GB ? 在识别、判断、预测等智能行为方面展现出十分强大的能力 ?优秀的大数据处理器 人类大脑是天然的大数据处理器! 进入大脑的信息被编码为某种数据,进而由大脑神经网络处理

【CN109977794A】一种用深度神经网络进行人脸识别的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910164908.9 (22)申请日 2019.03.05 (71)申请人 北京超维度计算科技有限公司 地址 100142 北京市海淀区西四环北路160 号9层一区907 (72)发明人 张心宇 张颢 向志宏 杨延辉  (74)专利代理机构 北京亿腾知识产权代理事务 所(普通合伙) 11309 代理人 陈霁 (51)Int.Cl. G06K 9/00(2006.01) G06N 3/04(2006.01) G06N 3/08(2006.01) (54)发明名称 一种用深度神经网络进行人脸识别的方法 (57)摘要 本发明涉及一种用深度神经网络进行人脸 识别的方法,其特征在于,包括以下步骤:通过第 一相机采集人脸区域的2D RGB图片,以及通过第 二相机实时采集人脸区域的3D点云;对于采集的 2D RGB图片进行脸部区域的截取和缩放,减少距 离的影响;对于采集的3D点云,投影到二维平面, 用灰度信息代替深度信息,形成二维深度图;并 进行脸部区域的截取;将截取过的D2D RGB图片 输入到2D特征提取网络,以及将截取过的脸部区 域二维深度图输入3D特征提取网络,进行特征向 量提取;根据提取的特征向量,结合环境信息进 行人脸识别。本发明结合2D和3D人脸识别技术, 既保证了正常使用情况(正脸无遮挡)下的正确 率,又提高了系统应对恶劣使用条件下的鲁棒性 和系统的安全性。权利要求书1页 说明书4页 附图2页CN 109977794 A 2019.07.05 C N 109977794 A

BP神经网络详细讲解

PS:这篇介绍神经网络是很详细的,有一步一步的推导公式!神经网络是DL(深度学习)的基础。 如果对神经网络已经有所了解,可以直接跳到“三、BP算法的执行步骤“ 部分,算法框架清晰明了。 另外,如果对NN 很感兴趣,也可以参阅最后两篇参考博文,也很不错! 学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法.而有的算法可能可用于多种模型。不过,有时人们也称算法为模型。 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学习算法。其中以在1986年Rumelhart等提出的误差反向传播法,即BP(error BackPropagation)法影响最为广泛。直到今天,BP算法仍然是自动控制上最重要、应用最多的有效算法。 1.2.1 神经网络的学习机理和机构 在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。 神经网络在学习中,一般分为有教师和无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的。在主要神经网络如BP网络,Hopfield网络,ART网络和Kohonen 网络中;BP网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和Kohonen网络则无需教师信号就可以学习。所谓教师信号,就是在神经网络学习中由外部提供的模式样本信号。 一、感知器的学习结构 感知器的学习是神经网络最典型的学习。 目前,在控制上应用的是多层前馈网络,这是一种感知器模型,学习算法是BP法,故是有教师学习算法。 一个有教师的学习系统可以用图1—7表示。这种学习系统分成三个部分:输入部,训练部和输出部。

本科毕业论文---基于bp神经网络的字符识别算法的实现正文

一、原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目 的等。) 工作基础:了解C++的基本概念和语法,熟练使用Visual C++6.0软件。 研究条件:BP神经网络的基本原理以及图像处理的基本常识。 应用环境:基于BP神经网络的图片图像文件中的字符识别。 工作目的:掌握基于Visual C++6.0应用程序的开发。 了解人工智能的基本概念并掌握神经网络算法的基本原理。 掌握Visual C++6.0中的图片处理的基本过程。 二、参考文献 [1]人工智能原理及其应用,王万森,电子工业出版社,2007. [2]VC++深入详解,孙鑫,电子工业出版社,2006. [3]人工神经网络原理, 马锐,机械工业出版社,2010. [4]Visual C++数字图像处理典型案例详解,沈晶,机械工业出版社,2012. [5]Application of Image Processing to the Characterization of Nanostructures Manuel F. M. Costa,Reviews on Advanced Materials Science,2004. 三、设计(研究)内容和要求(包括设计或研究内容、主要指标与技术参数,并根据课题性质对学生提出具体要求。) 1、掌握C++的基本概念和语法。 2、掌握二维神经网络的基本原理。了解BP神经网络的基本概念。 3、完成Visual C++中对于图像的灰度、二值化等预处理。 4、完成基于样本的神经网络的训练以及图像中数字的识别,并对其性能进 行统计和总结,分析其中的不足。 指导教师(签字) 年月日 审题小组组长(签字) 年月日

深度神经网络的关键技术及其在自动驾驶领域的应用

ISSN 1674-8484 CN 11-5904/U 汽车安全与节能学报, 第10卷第2期, 2019年 J Automotive Safety and Energy, Vol. 10 No. 2, 2019 1/13 119—145 深度神经网络的关键技术及其在自动驾驶领域的应用 李升波1,关?阳1,侯?廉1,高洪波1,段京良2,梁?爽3,汪?玉3,成?波1, 李克强1,任?伟4,李?骏1 (1. 清华大学车辆与运载学院,北京100084,中国;2. 加州大学伯克利分校机械系,加州 94720,美国; 3. 清华大学电子工程系,北京100084,中国; 4. 加州大学河滨分校电子计算机系,加州92521,美国) 摘?要:?智能化是汽车的三大变革技术之一,深度学习具有拟合能力优、表征能力强和适用范围广的 特点,是进一步提升汽车智能性的重要途径。该文系统性总结了用于自动驾驶汽车的深度神经网络(DNN)技术,包括发展历史、主流算法以及感知、决策与控制技术应用。回顾了神经网络的历史及现状, 总结DNN的“神经元-层-网络”3级结构,重点介绍卷积网络和循环网络的特点以及代表性模型; 阐述了以反向传播(BP)为核心的深度网络训练算法,列举用于深度学习的常用数据集与开源框架,概 括了网络计算平台和模型优化设计技术;讨论DNN在自动驾驶汽车的环境感知、自主决策和运动控 制3大方向的应用现状及其优缺点,具体包括物体检测和语义分割、分层式和端到端决策、汽车纵 横向运动控制等;针对用于自动驾驶汽车的DNN技术,指明了不同问题的适用方法以及关键问题的 未来发展方向。 关键词:?智能汽车;自动驾驶;深度神经网络(DNN);深度学习;环境感知;自主决策;运动控制 中图分类号:?TP 18;U 463.6 文献标志码:?A DOI:?10.3969/j.issn.1674-8484.2019.02.001 Key technique of deep neural network and its applications in autonomous driving LI Shengbo1, GUAN Yang1, HOU Lian1, GAO Hongbo1, DUAN Jingliang2, LIANG Shuang3, WANG Yu3, CHENG Bo1, LI Keqiang1, REN Wei4, LI Jun1 (1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; 2. Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA; 3. Electronic Engineering, Tsinghua University, Beijing 100084, China; 4. Electrical and Computer Engineering, University of California Riverside, Riverside, CA 92521, USA) Abstract: Autonomous driving is one of the three major innovations in automotive industry. Deep learning is a crucial method to improve automotive intelligence due to its outstanding abilities of data fitting, feature representation and model generalization. This paper reviewed the technologies of deep neural network (DNN) 收稿日期?/?Received?:?2019-01-19。 基金项目?/?Supported?by?: “十三五”国家重点研发计划(2016YFB0100906);国家自然科学基金面上项目(51575293);国家自然科学基金优秀青年科学基金项目(U1664263);国家自然科学基金重点项目(51622504);北京市自然科学基金杰出青 年科学基金项目(JQ18010);汽车安全与节能国家重点实验室开放基金课题(KF1828)。 第一作者?/?First?author?:?李升波(1982—),男(汉),山东,副教授。E-mail: lishbo@https://www.360docs.net/doc/3d626659.html,。

智能决策系统的深度神经网络加速与压缩方法综述

第10卷一第2期一2019年4月指挥信息系统与技术C o mm a n d I n f o r m a t i o nS y s t e ma n dT e c h n o l o g y V o l .10一N o .2A p r .2019 发展综述 d o i :10.15908/j .c n k i .c i s t .2019.02.002智能决策系统的深度神经网络加速与压缩方法综述? 黄一迪一刘一畅 (中国科学院大学计算机科学与技术学院一北京100049 )摘一要:深度神经网络凭借其出色的特征提取能力和表达能力,在图像分类二语义分割和物体检测 等领域表现出众,对信息决策支持系统的发展产生了重大意义.然而,由于模型存储不易和计算延 迟高等问题,深度神经网络较难在信息决策支持系统中得到应用.综述了深度神经网络中低秩分 解二网络剪枝二量化二知识蒸馏等加速与压缩方法.这些方法能够在保证准确率的情况下减小深度 神经网络模型二加快模型计算,为深度神经网络在信息决策支持系统中的应用提供了思路. 关键词:深度神经网络;低秩分解;网络剪枝;量化;知识蒸馏 中图分类号:T P 301.6一一文献标识码:A一一文章编号:1674G909X (2019)02G0008G06R e v i e wo fA c c e l e r a t i o na n dC o m p r e s s i o n M e t h o d s f o rD e e p N e u r a lN e t w o r k s i n I n t e l l i g e n tD e c i s i o nS y s t e m s HU A N G D i 一L I U C h a n g (S c h o o l o fC o m p u t e r S c i e n c e a n dT e c h n o l o g y ,U n i v e r s i t y o fC h i n e s eA c a d e m y o f S c i e n c e s ,B e i j i n g 100049,C h i n a )A b s t r a c t :F o r t h e e x c e l l e n t f e a t u r e e x t r a c t i o na b i l i t y a n de x p r e s s i o na b i l i t y ,t h ed e e p n e u r a l n e t Gw o r kd o e sw e l l i n t h e f i e l d s o f i m a g e c l a s s i f i c a t i o n ,s e m a n t i c s e g m e n t a t i o na n do b j e c t d e t e c t i o n ,e t c .,a n d i t p l a y s a s i g n i f i c a n t r o l eo nt h ed e v e l o p m e n to f t h e i n f o r m a t i o nd e c i s i o ns u p p o r t s y s Gt e m s .H o w e v e r ,f o r t h e d i f f i c u l t y o fm o d e l s t o r a g e a n dh i g hc o m p u t a t i o nd e l a y ,t h e d e e p n e u r a l n e t w o r k i sd i f f i c u l t t ob ea p p l i e d i nt h e i n f o r m a t i o nd e c i s i o ns u p p o r t s y s t e m s .T h ea c c e l e r a t i o n a n dc o m p r e s s i o n m e t h o d s f o r t h ed e e p n e u r a l n e t w o r k ,i n c l u d i n g l o w Gr a n kd e c o m p o s i t i o n ,n e t Gw o r k p r u n i n g ,q u a n t i z a t i o n a n dk n o w l e d g e d i s t i l l a t i o n a r e r e v i e w e d .T h em e t h o d s c a n r e d u c e t h e s i z e o fm o d e l a n d s p e e du p t h e c a l c u l a t i o nu n d e r t h e c o n d i t i o no f e n s u r i n g t h e a c c u r a c y ,a n dc a n p r o v i d e t h e i d e a o f t h e a p p l i c a t i o n i n t h e i n f o r m a t i o nd e c i s i o ns u p p o r t s y s t e m s .K e y w o r d s :d e e p n e u r a ln e t w o r k ;l o w G r a n k d e c o m p o s i t i o n ;n e t w o r k p r u n i n g ;q u a n t i z a t i o n ;k n o w l e d g e d i s t i l l a t i o n 一?基金项目:装备发展部 十三五 预研课题(31511090402)资助项目.收稿日期:2018G11G26引用格式:黄迪,刘畅.智能决策系统的深度神经网络加速与压缩方法综述[J ].指挥信息系统与技术,2019,10(2):8G13. HU A N GD i ,L I U C h a n g .R e v i e wo f a c c e l e r a t i o na n d c o m p r e s s i o nm e t h o d s f o r d e e p n e u r a l n e t w o r k s i n i n t e l l i Gg e n t d e c i s i o n s y s t e m s [J ].C o mm a n d I n f o r m a t i o nS y s t e ma n dT e c h n o l o g y ,2019,10(2):8G13.0一引一言 近年来,深度神经网络在人工智能领域表现非 凡,受到学界和业界的广泛关注,尤其在图像分类二 语义分割和物体检测等领域中,表现出了出色的特征提取和表达能力,如N e a g o e 等[1]提出过一种机器学习方法,可用于航空影像中军用地面车辆识别,为信息决策支持系统的改进提供了可能[2].然而,由于深度神经网络的模型复杂二计算量大和延时高等问题,将其应用于智能决策系统的技术

BP神经网络详细讲解

PS:这篇介绍神经网络就是很详细得,有一步一步得推导公式!神经网络就是DL(深度学习)得基础。 如果对神经网络已经有所了解,可以直接跳到“三、BP算法得执行步骤“ 部分,算法框架清晰明了。 另外,如果对NN 很感兴趣,也可以参阅最后两篇参考博文,也很不错! 学习就是神经网络一种最重要也最令人注目得特点。在神经网络得发展进程中,学习算法得研究有着十分重要得地位。目前,人们所提出得神经网络模型都就是与学习算法相应得。所以,有时人们并不去祈求对模型与算法进行严格得定义或区分。有得模型可以有多种算法.而有得算法可能可用于多种模型。不过,有时人们也称算法为模型。 自从40年代Hebb提出得学习规则以来,人们相继提出了各种各样得学习算法。其中以在1986年Rumelhart等提出得误差反向传播法,即BP(error BackPropagation)法影响最为广泛。直到今天,BP算法仍然就是自动控制上最重要、应用最多得有效算法。 1.2.1 神经网络得学习机理与机构 在神经网络中,对外部环境提供得模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。 神经网络在学习中,一般分为有教师与无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习得。在主要神经网络如BP网络,Hopfield网络,ART网络与Kohonen 网络中;BP网络与Hopfield网络就是需要教师信号才能进行学习得;而ART网络与Kohonen网络则无需教师信号就可以学习。所谓教师信号,就就是在神经网络学习中由外部提供得模式样本信号。 一、感知器得学习结构 感知器得学习就是神经网络最典型得学习。 目前,在控制上应用得就是多层前馈网络,这就是一种感知器模型,学习算法就是BP法,故就是有教师学习算法。 一个有教师得学习系统可以用图1—7表示。这种学习系统分成三个部分:输入部,训练部与输出部。

相关文档
最新文档