光模块推荐电路说明

光模块推荐电路说明
光模块推荐电路说明

奥雷光模块推荐电路优化应用

简小忠2011-6-20

光模块包括发射和接收两部分,发射部分主要由激光驱动器电路和激光器组成,接收部分由光敏二极管(PIN)+互阻放大器(TIA)和限幅放大器(Limiting Amp.)组成,完成对数字信号透明O/E,E/O转换的功能。

光模块内部原理框图:

光模块的一个发展趋势是低功耗,和外围接口简化。

奥雷光模块,为客户提供最佳性能的同时,为客户最小化功耗,并为简化外围接口提供了可能。

一、1X9封装光模块

1、155M~1.25G奥雷1x9 PECL电平模块有共同特点:

155M发射TX接口为交流耦合,接收RX接口为直流耦合,简称AC – DC耦合,这样为客户最小化功耗,并为简化外围接口提供了可能。

传统3.3V模块电路接法:

理论功耗(模块外围匹配电路的直流功率):3.3*3.3/(130+80) *5=0.26W

传统5V 光模块外围电路:

理论功耗(模块外围匹配电路的直流功率):5*5/(130+80) *5=0.59W

由此可见外围的直流匹配电阻的功耗相当不小. 比如一个交换机上主板上用到多个光模块那么对电源的功率要求将大幅提高。

奥雷优化的推荐如下图:(AC-DC耦合)

155 M~350M光模块:R4=100欧

对于5v 光模块:R1=R2=270欧,R3=1K , R1,R2尽量靠近光模块。

对于3.3v 光模块:R1=R2=150欧,R3=1K ,R1,R2尽量靠近光模块

SERDES 到 TD_ 和TD+ 之间不需要给光模块提供偏置和匹配电阻。因为TX内部已经有最优化的偏置和100欧的阻抗匹配(注意SERDES DATASHEET 外围必须的电阻不建

议拿掉)。

这样减少了对外围电阻的需求。且外围电阻都不直接从VCC上消耗。

理论上:5V 外围电阻的功耗减小到0.08w,减小到原来的1/7

3.3V 外围电阻的功耗减小到0.02w,减小到原来的1/13

功耗下降明显

2、1.25G光模块

因为历史的原因目前单纤和双纤内部有点不一样(这点将来可能会统一,客户也可以指定要求)。

1.25G双纤和155M 的推荐完全一样。

1.25G单纤TX内部匹配电阻 R4为 NC, 需要外围加上100的匹配电阻即可:

如图示:

R4尽量靠近光模块。

3、2.5G 1X9模块

特点:

2.5Gbps发射TX接口和2.5Gbps接收RX为交流耦合, 简称AC-AC耦合。

告警电平为TTL (SD) , TX内部有100欧匹配。

外围电路最简化,如下图:

二、SFP光模块

TX、RX都为交流耦合,简称AC-AC耦合,TX内部有100欧匹配。

三、SFF (PON)

光模TX、RX都为交流耦合,简称AC-AC耦合块,TX内部有100欧匹配TX

L1,L2 : 1 -- 4.7uH

C1,C2,C3 : 10 uF

R:100 Ohms

Place R as close to SerDes as possible

四、高速PCB 设计原则:

1)差分走线:“对称”:比如若有过孔,则过孔要相邻对称。

“等长”:正负走线长度一致。

2)差分走线为传输线,走线的阻抗控制为:差分100欧,单端50欧。可用SI9000等软

件计算。

3)信号走线角度>90度: 否则会导致反射,影响信号的质量。

4)信号的回流路径最短:尽量选用多层板,用仅邻信号层的一层来做地层。回流地层

尽可能完整,不要被走线分割。

通信光模块和光纤连接器的应用指南

光模块和光纤连接器的应用指南 一、光收发一体模块定义 光收发一体模块由光电子器件、功能电路和光接口等组成,光电子器件包括发射和接收两部分。发射部分是:输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路,使输出的光信号功率保持稳定。接收部分是:一定码率的光信号输入模块后由光探测二极管转换为电信号。经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。同时在输入光功率小于一定值后会输出一个告警信号。 二、光收发一体模块分类 按照速率分:以太网应用的100Base(百兆)、1000Base(千兆)、10GE SDH应用的155M、622M、2.5G、10G 按照封装分:1×9、SFF、SFP、GBIC、XENPAK、XFP,各种封装见图1~6 1×9封装--焊接型光模块,一般速度不高于千兆,多采用SC接口 SFF封装--焊接小封装光模块,一般速度不高于千兆,多采用LC接口 GBIC封装--热插拔千兆接口光模块,采用SC接口 SFP封装--热插拔小封装模块,目前最高数率可达4G,多采用LC接口 XENPAK封装--应用在万兆以太网,采用SC接口 XFP封装--10G光模块,可用在万兆以太网,SONET等多种系统,多采用LC接口 图1、1×9封装图2、SFF封装图3、GBIC封装

图4、SFP封装图5、XENPAK封装图6、XFP封装 按照激光类型分:LED、VCSEL、FP LD、DFB LD 按照发射波长分:850nm、1310nm、1550nm等等 按照使用方式分:非热插拔(1×9、SFF),可热插拔(GBIC、SFP、XENPAK、XFP) 三、光纤连接器的分类和主要规格参数 光纤连接器是在一段光纤的两头都安装上连接头,主要作光配线使用。 按照光纤的类型分:单模光纤连接器(一般为G.652纤:光纤内径9um,外径125um),多模光纤连接器(一种是G.651纤其内径50um,外径125um;另一种是内径62.5um,外径125um); 按照光纤连接器的连接头形式分:FC,SC,ST,LC,MU,MTRJ等等,目前常用的有FC,SC,ST,LC,见图7~10。 FC型--最早由日本NTT研制。外部加强件采用金属套,紧固方式为螺丝扣。测试设备选用该种接头较多。 SC型--由日本NTT公司开发的模塑插拔耦合式连接器。其外壳采用模塑工艺,用铸模玻璃纤维塑料制成,呈矩形;插针由精密陶瓷制成,耦合套筒为金属开缝套管结构。紧固方式采用插拔销式,不需要旋转。 LC型--朗讯公司设计的。套管外径为1.25mm,是通常采用的FC-SC、ST套管外径2.5mm的一半。提高连接器的应用密度。 图7、FC光纤连接器图8、SC光纤连接器图9、LC光纤 图10、ST光纤连接器 连接器 按照光纤连接器连接头内插针端面分:PC,SPC,UPC,APC 按照光纤连接器的直径分:Φ3,Φ2, Φ0.9

光模块推荐电路说明

奥雷光模块推荐电路优化应用 简小忠2011-6-20 光模块包括发射和接收两部分,发射部分主要由激光驱动器电路和激光器组成,接收部分由光敏二极管(PIN)+互阻放大器(TIA)和限幅放大器(Limiting Amp.)组成,完成对数字信号透明O/E,E/O转换的功能。 光模块内部原理框图: 光模块的一个发展趋势是低功耗,和外围接口简化。 奥雷光模块,为客户提供最佳性能的同时,为客户最小化功耗,并为简化外围接口提供了可能。 一、1X9封装光模块 1、155M~1.25G奥雷1x9 PECL电平模块有共同特点: 155M发射TX接口为交流耦合,接收RX接口为直流耦合,简称AC – DC耦合,这样为客户最小化功耗,并为简化外围接口提供了可能。 传统3.3V模块电路接法: 理论功耗(模块外围匹配电路的直流功率):3.3*3.3/(130+80) *5=0.26W

传统5V 光模块外围电路: 理论功耗(模块外围匹配电路的直流功率):5*5/(130+80) *5=0.59W 由此可见外围的直流匹配电阻的功耗相当不小. 比如一个交换机上主板上用到多个光模块那么对电源的功率要求将大幅提高。 奥雷优化的推荐如下图:(AC-DC耦合) 155 M~350M光模块:R4=100欧 对于5v 光模块:R1=R2=270欧,R3=1K , R1,R2尽量靠近光模块。 对于3.3v 光模块:R1=R2=150欧,R3=1K ,R1,R2尽量靠近光模块 SERDES 到 TD_ 和TD+ 之间不需要给光模块提供偏置和匹配电阻。因为TX内部已经有最优化的偏置和100欧的阻抗匹配(注意SERDES DATASHEET 外围必须的电阻不建

光模块原理简介

光模工作原理介 块简 目录 摘要 (2) 关键词 (2) 1 引用的文档和参考标准说明 (2) 2 缩写说明 (2) 3 正文 (2)

摘要 以SFP光模块为例,介绍光模块内部的组成和工作原理。 关键词 SFP光模块 1引用的文档和参考标准说明 2缩写说明 SFP:Small Form-factor Pluggable 小型化可插拔 3正文 光模块是我们群路科都要用到的PHY层的器件,虽然封装,速率,传输距离有所不同,但是其内部组成基本是一致的。SFP收发合一Transceiver因其小型化,热插拔方便,支持SFF8472标准,模拟量读取方便(IIC读取),且检测精度高(+/-2dBm以内)而逐渐成为运用的主流,下面就以SFP光模块为例,介绍其内部的组成和相关的工作原理。 SFP内部结构图 SFP光模块的内部结构: 由上图可见,光模块主要部分是由光发射组件,激光驱动器,光接收组件(L16.2光模块光接收部分使用APD接收机,还需要升压电路),限幅放大器和控制器组成的。驱动芯片和限幅放大器一般都支持从155Mb/s到2.67Gb/s多速率。速率不同,传输距离不同的光模块有很多只是前端光组件的差别,高速率SFP光模块BOM成本的90%都集中在光组件上。由上图还可以看出,为了保证上电顺序,SFP光模块的金手指部分的长度是不一样的,最长的是信号地,其次是电源,最短的是信号,这样在插拔的时候就保证了地-电源-信号的顺序。 光发射组件 TOSA(Transmiter Optical Sub-Assembly): 常用的光发射组件由两大类,一类是采用发光二极管LED封装的TOSA,一类是采用半导体激光二极

超详细的光模块介绍

超详细的光模块介绍 光模块发展简述 光模块分类 按封装:1*9 、GBIC、SFF、SFP、XFP、SFP+、X2、XENPARK、300pin 等。 按速率:155M、622M、1.25G、2.5G、4.25G、10G、40G等。 按波长:常规波长、CWDM、DWDM等。 按模式:单模光纤(黄色)、多模光纤(橘红色)。 按使用性:热插拔(GBIC、SFP、XFP、XENPAK)和非热插拔(1*9、SFF)。 封装形式

光模块基本原理 光收发一体模块(Optical Transceiver) 光收发一体模块是光通信的核心器件,完成对光信号的光-电/电-光转换。由两部分组成:接收部分和发射部分。接收部分实现光-电变换,发射部分实现电-光变换。 发射部分: 输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路(APC),使输出的光信号功率保持稳定。 接收部分: 一定码率的光信号输入模块后由光探测二极管转换为电信号,经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。同时在输入光功率小于一定值后会输出一个告警信号。

光模块内部结构光模块的主要参数

1. 传输速率 传输速率指每秒传输比特数,单位Mb/s 或Gb/s。主要速率:百兆、千兆、2.5G、4.25G和万兆。 2.传输距离 光模块的传输距离分为短距、中距和长距三种。一般认为2km 及以下的为短距离,10~20km 的为中距离,30km、40km 及以上的为长距离。 ■光模块的传输距离受到限制,主要是因为光信号在光纤中传输时会有一定的损耗和色散。 注意: ? 损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。 ? 色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。 ? 因此,用户需要根据自己的实际组网情况选择合适的光模块,以满足不同的传输距离要求。 3.中心波长 ? 中心波长指光信号传输所使用的光波段。目前常用的光模块的中心波长主要有三种:850nm 波段、1310nm 波段以及1550nm 波段。 ? 850nm 波段:多用于≤2km短距离传输 ? 1310nm 和1550nm 波段:多用于中长距离传输,2km以上的传输。 光纤类型

SFP光模块电气接口定义

SFP光模块电气接口参数详解电口是一种标准的热插拔口,做成金手指的电路板,如下图所示: 引脚定义

电气接口 电源: VCCT和VCCR分别是发射和接受部分电源,要求3.3V±5%,最大供电电流300mA以上。电感的直流阻抗应该小于1欧姆,确保SFP的供电电压稳定在3.3V。推荐的滤波网络,可以保证插拔模块时的浪涌小于30mA。 VCCT和VCCR可以在模块内相连。发射和接收的地可以在模块内相连。 差分输入/输出: TD-/+是发射部分差分信号输入,采用交流耦合,差分线具有100欧姆输入阻抗。 差分输入信号摆幅范围500mV~2400mV。 RD-/+接受部分差分信号输出,采用交流耦合,差分线具有100欧姆输入阻抗。 差分输出信号摆幅范围370~2000mV。 I2C总线: Rate_Select:接收部分速率选择。 Mod_Def(0):接地 Mod_Def(1):I2C的时钟线.应该在主板上由4.7K~10K电阻上拉至VCC Mod_Def(2):I2C的数据线.应该在主板上由4.7K~10K电阻上拉至VCC。 状态控制信号: TX_Fault:开集/漏极输出,需要在主板上由4.7K~10K电阻上拉至2~VCC+0.3V。激光器失效时为高电平,正常工作时为低电平( <0.8V )。 TX_Disable:关断使能输入.需要在模块内由4.7K~10K电阻上拉至2~VCC+0.3V。 低电平(0~0.8) 正常工作 高电平(2~3.465)关断 悬空:关断

LOS:开集/漏极输出,需要4.7K~10K电阻上拉至2~VCC+0.3V。当输入光功率低于最差接受光功率时,高电平告警。 推荐接口电路:

光模块知识(详细)

光模块知识 ——转载自通信人家园 光模块的发展简述 光模块分类 按封装:1*9 、GBIC、SFF、SFP、XFP、SFP+、X2、XENPARK、300pin等。按速率:155M、622M、1.25G、2.5G、4.25G、10G、40G等。 按波长:常规波长、CWDM、DWDM等。 按模式:单模光纤(黄色)、多模光纤(橘红色)。 按使用性:热插拔(GBIC、SFP、XFP、XENPAK)和非热插拔(1*9、SFF)。封装形式

光收发一体模块(Optical Transceiver)

光收发一体模块是光通信的核心器件,完成对光信号的光-电/电-光转换。由两部分组成:接收部分和发射部分。接收部分实现光-电变换,发射部分实现电-光变换。 发射部分: 输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路(APC),使输出的光信号功率保持稳定。 接收部分: 一定码率的光信号输入模块后由光探测二极管转换为电信号,经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。同时在输入光功率小于一定值后会输出一个告警信号。

光模块内部结构 1. 传输速率 传输速率指每秒传输比特数,单位Mb/s 或Gb/s。主要速率:百兆、千兆、2.5G、4.25G 和万兆。 2.传输距离

光模块的传输距离分为短距、中距和长距三种。一般认为2km 及以下的为短距离,10~20km 的为中距离,30km、40km 及以上的为长距离。 ■光模块的传输距离受到限制,主要是因为光信号在光纤中传输时会有一定的损耗和色散。 注意: 损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。 色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。 因此,用户需要根据自己的实际组网情况选择合适的光模块,以满足不同的传输距离要求。 3.中心波长 中心波长指光信号传输所使用的光波段。目前常用的光模块的中心波长主要有三种:850nm 波段、1310nm 波段以及1550nm 波段。 850nm 波段:多用于≤2km短距离传输 1310nm 和1550nm 波段:多用于中长距离传输,2km以上的传输。 光纤类型 1. 光纤模式(Fiber Mode) 按光在光纤中的传输模式可将光纤分为单模光纤和多模光纤两种。 多模光纤(MMF,Multi Mode Fiber),纤芯较粗,可传多种模式的光。但其模间色散较大,且随传输距离的增加模间色散情况会逐渐加重。多模光纤的传输距离还与其传输速率、芯径、模式带宽有关,具体关系请参见下表。

光模块驱动电路原理与核心电路设计

摘要:本文描述了激光器及其驱动、APC及消光比温度补偿电路原理与光模块核心电路设计技术,并简单介绍了半导体激光器的基本结构类型和各自应用特性,着重论述了激光器驱动电路、APC电路、消光比温度补偿电路原理与应用技术,对激光器调制输出接口电路信号与系统也进行了详细的分析计算。 关键词:半导体激光器,驱动,调制电路,APC,温度补偿,阻抗匹配,信号分析,系统 1. 引言 随着全球信息化的高速发展,人们的工作、学习和生活越来越离不开承载着大量信息的网络,对网络带宽的要求还在不断提高,光载波拥有无比巨大的通信容量,预计光通信的容量可以达到40Tb/s,并且和其他通信手段相比,具有无与伦比的优越性,未来有线传输一定会更多的采用光纤进行信息传递。近几年以来,干线传输、城域网、接入网、以太网、局域网等越来越多的采用了光纤进行传输,光纤到路边FTTC、光纤到大楼FTTB、光纤到户FTTH、光纤到桌面FTTD正在不断的发展,光接点离我们越来越近。在每个光接点上,都需要一个光纤收发模块,模块的接收端用来将接收到的光信号转化为电信号,以便作进一步的处理和识别。模块的发射端将需要发送的高速电信号转化为光信号,并耦合到光纤中进行传输,发射端需要一个高速驱动电路和一个发射光器件,发射光器件主要有发光二极管(LED)和半导体激光器(LD)。LED和LD的驱动电路有很大的区别,常用的半导体激光器有FP、DFB 和VCSEL三种。WTD光模块通常所用发射光器件为FP和DFB激光器。

2. 半导体激光器 半导体激光器作为常用的光发射器件,其体积小、高频响应好、调制效率高、调谐方便,且大部分激光器无需制冷,是光纤通信系统理想的光源。激光器有两种基本结构类型:(1)边缘发射激光器,有FP(Fabry-Perot)激光器和分布反馈式(DFB)激光器。FP 激光器是应用最广的一种激光器,但是其噪声大,高频响应较慢,出光功率小,因此FP 激光器多用于短距离光纤通信。而DFB 激光器则具有较好的信噪比,更窄的光谱线宽,更高的工作速率,出光功率大,因此DFB 激光器多用在长距离、高速率光传输网络中。(2)垂直腔面发射激光器(VCSEL),是近几年才成熟起来的新型商用激光器,有很高的调制效率和很低的制造成本,特别是短波长850nm 的VCSEL,在短距离多模光纤传输系统中现在已经得到非常广泛的应用。 2.1 光电特性 半导体激光器是电流驱动发光器件,只有当激光器驱动电流在门限(阈值)电流以上时,半导体激光器二极管才能产生并持续保持连续的光功率输出,对于高速电流信号的切换操作,一般是将激光器二极管稍微偏置在门限(阈值)电流以上,以避免激光器二极管因开启和关闭所造成的响应时间延迟,从而影响激光器光输出特性。激光器光功率输出依赖于其驱动电流的幅度和将电流信号转换为光信号的效率(激光器斜效率)。激光器是一个温度敏感器件,其阈值电流th I 随温度的升高而增大,激光器的调制效率(单位调制电流下激光器的出光功率,量纲为mW/mA)随温度的升高而减小。同时激光器的阈值电流th I 还随器件的老化时间而变大,随器件的使用时间而变大。 激光器二极管的阈值电流和斜效率与激光器的结构,制作工艺,制造材料以及工作温度密切相关,随着温度的增加。 激光器二极管的阈值电流th I 定义为激光器发射激光的最小电流,th I 随着温度的升高呈现指数形式增大,下面的等式是th I 关于温度的函数,通过此等式可对激光器阈值电流进行估算: 1 01()*t t th I t I K e =+ (2.1.1) 其中,0I 、1K 和1t 是激光器特定常数,例如,DFB 激光器0I =1.8mA, 1K =3.85mA, 1t =40℃。 激光器斜效率Se (Slope efficiency)定义为激光器输出光功率与输入电流的比值, Se 随着温度的升高呈现指数形式减小,下面的等式是Se 关于温度的函数,通过此等式可对激光器斜效率进行估算: 0()*s t t Se t Se Ks e =? (2.1.2) 同样,以DFB 激光器为例,其典型温度s t ≈40℃,其它两个激光器常数为0Se =0.485mW/mA, Ks =0.033mW/mA。

认识交换机光模块

认识交换机光模块 一、光模块定义 光模块由光电子器件、功能电路和光接口等组成。 光电子器件包括发射和接收两部分。 发射部分是:输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路,使输出的光信号功率保持稳定。 接收部分是:一定码率的光信号输入模块后由光探测二极管转换为电信号。经前臵放大器后输出相应码率的电信号,输出的信号一般为PECL 电平。同时在输入光功率小于一定值后会输出一个告警信号。 二、光模块分类 按照速率分:以太网应用的100Base(百兆)、1000Base(千兆)、10GE,SDH应用的155M、622M、2.5G、10G; 按照封装分:1×9、SFF、SFP、GBIC、XENPAK、XFP,各种封装见图1~6。

1×9 封装,焊接型光模块,一般速度不高于千兆,多采用SC 接口; SFF 封装,焊接小封装光模块,一般速度不高于千兆,多采用LC 接口; GBIC 封装,热插拔千兆接口光模块,采用SC 接口; SFP 封装,热插拔小封装模块,目前最高数率可达4G,多采用LC 接口; XENPAK 封装,应用在万兆以太网,采用SC 接口; XFP 封装,10G 光模块,可用在万兆以太网,SONET 等多种系统,多采用LC 接口。 按照激光类型分:LED、VCSEL、FP LD、DFB LD; 按照发射波长分:850nm、1310nm、1550nm等等; 按照使用方式分:非热插拔(1×9、SFF),可热插拔(GBIC、SFP、XENPAK、XFP)。 三、光纤连接器的分类和主要规格参数 光纤连接器是在一段光纤的两头都安装上连接头,主要作光配线使用。 按照光纤的类型分: 单模光纤连接器(一般为G.652 纤:光纤内径9um,外径125um); 多模光纤连接器(一种是G.651 纤其内径50um,外径125um;另一种是内径62.5um,外径125um); 按照光纤连接器的连接头形式分:FC,SC,ST,LC,MU,MTRJ 等等,目前常用的有FC,SC,ST,LC,见图7~10。

激光器及其驱动器电路原理与光模块核心电路设计

激光器及其驱动器电路原理与光模块核心电路设计 武汉电信器件有限公司 模块开发部 王松 摘要:本文描述了激光器及其驱动、APC及消光比温度补偿电路原理与光模块核心电路设计技术,并简单介绍了半导体激光器的基本结构类型和各自应用特性,着重论述了激光器驱动电路、APC电路、消光比温度补偿电路原理与应用技术,对激光器调制输出接口电路信号与系统也进行了详细的分析计算。 关键词:半导体激光器,驱动,调制电路,APC,温度补偿,阻抗匹配,信号分析,系统 1. 引言 随着全球信息化的高速发展,人们的工作、学习和生活越来越离不开承载着大量信息的网络,对网络带宽的要求还在不断提高,光载波拥有无比巨大的通信容量,预计光通信的容量可以达到40Tb/s,并且和其他通信手段相比,具有无与伦比的优越性,未来有线传输一定会更多的采用光纤进行信息传递。近几年以来,干线传输、城域网、接入网、以太网、局域网等越来越多的采用了光纤进行传输,光纤到路边FTTC、光纤到大楼FTTB、光纤到户FTTH、光纤到桌面FTTD正在不断的发展,光接点离我们越来越近。在每个光接点上,都需要一个光纤收发模块,模块的接收端用来将接收到的光信号转化为电信号,以便作进一步的处理和识别。模块的发射端将需要发送的高速电信号转化为光信号,并耦合到光纤中进行传输,发射端需要一个高速驱动电路和一个发射光器件,发射光器件主要有发光二极管(LED)和半导体激光器(LD)。LED和LD的驱动电路有很大的区别,常用的半导体激光器有FP、DFB 和VCSEL三种。WTD光模块通常所用发射光器件为FP和DFB激光器。

2. 半导体激光器 半导体激光器作为常用的光发射器件,其体积小、高频响应好、调制效率高、调谐方便,且大部分激光器无需制冷,是光纤通信系统理想的光源。激光器有两种基本结构类型:(1)边缘发射激光器,有FP(Fabry-Perot)激光器和分布反馈式(DFB)激光器。FP 激光器是应用最广的一种激光器,但是其噪声大,高频响应较慢,出光功率小,因此FP 激光器多用于短距离光纤通信。而DFB 激光器则具有较好的信噪比,更窄的光谱线宽,更高的工作速率,出光功率大,因此DFB 激光器多用在长距离、高速率光传输网络中。(2)垂直腔面发射激光器(VCSEL),是近几年才成熟起来的新型商用激光器,有很高的调制效率和很低的制造成本,特别是短波长850nm 的VCSEL,在短距离多模光纤传输系统中现在已经得到非常广泛的应用。 2.1 光电特性 半导体激光器是电流驱动发光器件,只有当激光器驱动电流在门限(阈值)电流以上时,半导体激光器二极管才能产生并持续保持连续的光功率输出,对于高速电流信号的切换操作,一般是将激光器二极管稍微偏置在门限(阈值)电流以上,以避免激光器二极管因开启和关闭所造成的响应时间延迟,从而影响激光器光输出特性。激光器光功率输出依赖于其驱动电流的幅度和将电流信号转换为光信号的效率(激光器斜效率)。激光器是一个温度敏感器件,其阈值电流th I 随温度的升高而增大,激光器的调制效率(单位调制电流下激光器的出光功率,量纲为mW/mA)随温度的升高而减小。同时激光器的阈值电流th I 还随器件的老化时间而变大,随器件的使用时间而变大。 激光器二极管的阈值电流和斜效率与激光器的结构,制作工艺,制造材料以及工作温度密切相关,随着温度的增加。 激光器二极管的阈值电流th I 定义为激光器发射激光的最小电流,th I 随着温度的升高呈现指数形式增大,下面的等式是th I 关于温度的函数,通过此等式可对激光器阈值电流进行估算: 1 01()*t t th I t I K e =+ (2.1.1) 其中,0I 、1K 和1t 是激光器特定常数,例如,DFB 激光器0I =1.8mA, 1K =3.85mA, 1t =40℃。 激光器斜效率Se (Slope efficiency)定义为激光器输出光功率与输入电流的比值, Se 随着温度的升高呈现指数形式减小,下面的等式是Se 关于温度的函数,通过此等式可对激光器斜效率进行估算: 0()*s t t Se t Se Ks e =? (2.1.2) 同样,以DFB 激光器为例,其典型温度s t ≈40℃,其它两个激光器常数为0Se =0.485mW/mA, Ks =0.033mW/mA。

光模块电路图

4.25 Gbps 1310 nm SFP Module Board User Guide Reference Design

Revision History Revision Level Date Description A Preliminary September 2004Initial release. ? 2004, Mindspeed TechnologiesTM, Inc. All rights reserved. Information in this document is provided in connection with Mindspeed T echnologiesTM ("MindspeedTM") products. These materials are provided by Mindspeed as a service to its customers and may be used for informational purposes only. Except as provided in Mindspeed’s T erms and Conditions of Sale for such products or in any separate agreement related to this document, Mindspeed assumes no liability whatsoever. Mindspeed assumes no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and product descriptions at any time, without notice. Mindspeed makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MINDSPEED PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A P ARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENT AL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MINDSPEED FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MA TERIALS. MINDSPEED SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMIT ATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS. Mindspeed products are not intended for use in medical, lifesaving or life sustaining applications. Mindspeed customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to fully indemnify Mindspeed for any damages resulting from such improper use or sale.

相关文档
最新文档