共模电感浅谈

共模电感浅谈
共模电感浅谈

共模电感浅谈

存储与多媒体产品线彭浩版本历史

目录

1.共模电感简介 (3)

2.共模电感用于EMI滤波器 (4)

2.1噪声测量方法 (4)

2.2滤波器电路结构分析 (4)

2.3滤波器元器件参数计算 (6)

2.4共模电感的差模电感 (7)

3.共模电感的寄生参数 (9)

3.1寄生电容C1、C2 (9)

3.2电感L LK、L C (11)

3.3等效电阻R C、R W (11)

4.磁芯材料与共模电感磁芯选型 (12)

4.1铁氧体磁芯 (12)

4.2磁粉芯与高磁通磁粉芯 (12)

4.3共模电感磁芯选型 (13)

5.共模电感的设计流程 (14)

6.共模电感安规管控 (15)

1. 共模电感简介

共模电感,也叫扼流圈,常用在开关电源中过滤共模的电磁干扰信号。共模电感是一个以铁氧体等为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,线圈的绕制方向相反,形成一个四端器件。当两线圈中流过差模电流时,产生两个相互抵消的磁场H1、H2,此时工作电流主要受线圈欧姆电阻以及可以忽略不计的工作频率下小漏感的阻尼,所以差模信号可以无衰减地通过,如图1-1所示;而当流过共模电流时,磁环中的磁通相互叠加,从而具有相当大的电感量,线圈即呈现出高阻抗,产生很强的阻尼效果,达到对共模电流的抑制作用。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。

图1-1 差模信号通过共模线圈

2. 共模电感用于EMI 滤波器

对理想的电感模型而言,当线圈绕完后,所有磁通都集中在线圈的中心内。但通常情况下环形线圈不会绕满一周,或绕制不紧密,这样会引起磁通的泄漏。共模电感有两个绕组,其间有相当大的间隙,这样就会产生磁通泄漏,并形成差模电感,因而共模电感对差模噪声也有抑制作用。实际应用中,共模电感常和X 电容、Y 电容组成EMI 滤波器,滤除差模噪声和共模噪声。

2.1 噪声测量方法

图2-1所示为典型的噪声测量结构图,噪声的测量主要通过LISN 来实现。L ISN 是指线路阻抗稳定网络,是传导型噪声测量的重要工具。

图2-1 噪声测量结构图

其内部结构如图2-1中虚线框内所示,高频时,电感相当于断路,电容短路,低频时相反。

LISN 的作用为隔离待测试的设备和输入电源,滤除由输入电源线引入的噪声及干扰,并且在50Ω电阻上提取噪声的相应信号值送到接收机进行分析。

共模负载阻抗为25Ω,差模负载阻抗为100Ω,测量到的噪声电压如式(2-1)(2-2)所示:

dm cm L I I V ?+?=5025(2-1)

dm cm N I I V ?-?=5025(2-2)

V L 扫描和V N 扫描分别都要求满足限值要求。

2.2 滤波器电路结构分析

由X 电容、共模电感和Y 电容组成的滤波器如图2-2所示:

图2-2 EMI 滤波器电路图

2.2.1 共模等效电路

图2-3为滤波器的共模等效电路图,由于C X 对于共模噪声不起作用,故将其略去,并且以接地点G 为对称点将电路对折。其等效共模电感量为L C ,两个C Y 的等效电容值因并联变成原先的两倍,LISN 提供的两个50Ω的电阻负载也并联成为25Ω的等效负载。这个25Ω的等效负载阻抗可以看作滤波器的负载阻抗,其值相对较小,而通常情况下共模噪声源阻抗Z CM 一般较大,在满足CM Y

Z C <<ω21和Ω>>25C L ω的条件下,阻抗失配极大化,从而滤波器对于共模噪声的插入损耗也尽可能大。

图2-3 共模等效电路图

容易看出此等效电路为LC 二阶低通滤波电路,其转折频率为

Y

C RCM C L f 221?=π (2-3) 其插入损耗随着噪声频率以40dB/dec 的斜率增加。

2.2.2 差模等效电路

与上面共模等效电路分析的方法相类似,等效差模电感量为2L D , LISN 提供的两个50Ω的电阻负载也串连成为100Ω的负载阻抗。两个C Y 的等效电容值因串联变为原来的一半,但由于差模噪声源阻抗Z CM 一般较小,通常满足DM Y

Z C >>ω2 ,因此可将Y 电容忽略。由此得到简化的差模等效电路图,如图2-4所示。

图2-4 差模等效电路图

在满足DM D Z L >>ω和Ω<<1001X

C ω的条件下,阻抗失配极大化,滤波器对于差模噪声的插入损耗也尽可能大。与共模等效电路一样,这也是LC 二阶低通滤波电路,其转折频率为:

X

D RCM C L f ?=π21 (2-4) 其插入损耗随着噪声频率也是以40dB/dec 的斜率增加。

2.3 滤波器元器件参数计算

基于以上的分析,可以计算相应的滤波器元器件参数。首先根据测得的原始共模与差模噪声,决定需要衰减的噪声频率段与衰减量,求得共差模滤波器的转折频率,然后计算滤波器各个元件的参数。

在计算元件参数时,应该注意,由于滤波器电感电容值越大,其转折频率越低,对噪声的抑制效果越好,但同时成本和体积也相应增加。而且由材料特性可知,当电感电容值越大时,可持续抑制噪声的频率范围也相对变窄,因此其值不可以取得无限大。考虑到电容对于体积的影响较电感小,而且市场上出售的电容器都有固定的电容值,与电感值相比缺乏弹性,故在决定电感电容值时,应优先考虑电容。

在计算共模元器件参数时,由于电容C Y 受安规限制,其值不能太大,应该选择符合安规的最大值。选取C Y 后,利用已经得到的转折频率f RCM ,可以通过式(2-3)计算出所需共模电感量为:

Y RCM C C f L 21212???

? ??=π(2-5)

而在计算差模元器件参数时,电感与电容值的选择弹性较大。在决定差模电容值C X 之后,差模电感值可通过式(2-4)计算出所需差模电感量为:

X RDM D C f L 1212

???? ??=π(2-6)

2.4 共模电感的差模电感

将共模电感的一个线圈短路,测量另外一个线圈的电感,或者短接一对同名端,测另一对同名端的电感,即为两个线圈的差模电感之和。那么各个线圈的差模电感分别是多少呢?

共模电感的磁通并不是完全封闭在磁芯内,有部分泄露在空气中。设磁芯中的磁场强度为H ,空气中的磁场强度为H ’;磁芯的磁导率为μ,空气的磁导率为'μ,应有'μμ>>;磁芯的横截面节为S 、磁路长度为l ,假设空气中磁通均匀分布在面积为S ’、磁路长度为l ’的空间中,不妨假设S=S ’,l=l ’。

由安培环路定理有?

=NI Hdl ,N 为共模电感的匝数,即 NI l H Hl =+'(2-7)

又()S H HS N LI ''μμ+=(2-8) 其中I HS N L C μ=,I

S H N L D ''μ=(2-9) 由(2-7)(2-8)可得''μμμ--=l NI NS LI H ,'

'μμμ--=NS LI l NI H (2-10) 将(2-10)带入(2-9),可得l

S N L l N NS L S N L C )'(''''2μμμμμμμμμμμ---=--=(2-11), L l S N NS L l N S

N L D '')'('''2μμμμμμμμμμμ---=--=(2-12),

因为'μμ>>,所以l S N L L L C ''2μμμ-+=,L l S N L D μ

μμ''2-=(2-13), 则)('1221L L L L D D -=-μμ, ))('1(2121L L L L C C -+=-μμ(2-14),

由(2-14)式可知,共模电感的两个线圈的共模电感和差模电感感值之差正比于其总电感量之差。由于共模差模噪声产生原因以及传播路径不同,为使共差模噪声互不影响,要求使电路中L 现和N 线到地回路的阻抗对称,即要求共模电感的两个线圈的共模电感和差模电感相等,因此行业内要求共模电感的两个线圈感值之差尽量小,一般在±5%以内。

因为'μμ>>,在两线圈电感之差不大的情况下,可认为L D1=L D2,因而共模电感单个线圈的差模电感即为测得的漏感的一半。

尽管少量的差模电感非常有用,但差模电流流过差模电感会使芯体内的磁通发生零点偏离,如果偏离太大,芯体便会发生磁饱和现象,使共模电感基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出:

n

I L dm D =?Φ(2-15) 式中,?Φ是芯体中的磁通变化量,L D 是差模电感,是差模峰值电流,n 为共模线圈的匝数。由于磁芯具有饱和磁感应强度B S ,为了防止芯体发生磁饱和现象,有以下法则:

(max)

dm S D I A nB L ≤(2-16) 式中,I dm(max)是差模峰值电流,B S 是磁感应强度的最大偏离,n 是线圈的匝数,A 是环形线圈的横截面积。

3. 共模电感的寄生参数

共模电感广泛应用于EMI 滤波器中,对抑制传导干扰具有重要作用。然而,由于共模电感的寄生参数效应,使得滤波器的高频滤波性能变差,如滤波器的插入损耗减小,可用频带变窄,无法在传导干扰考虑的0.15~30MHz 范围内正常工作。共模电感的寄生参数主要有导线和磁芯损耗(磁损),以及绕组的寄生电容。其中磁损由涡流损耗、磁滞损耗以及剩余损耗组成,影响磁损的因素很多,有频率、磁感应强度、温度、波形等,因而磁芯损耗是非线性的;共模电感的寄生电容即为绕组匝与匝、匝与地、匝与磁芯、绕组与绕组间的电容。通过适当简化铁氧体磁芯损耗,将非线性的磁芯损耗用一个与频率相关的电阻元件等效;通过阻抗测量来提取共模电感的寄生电容和共模电感的漏感,可建立了考虑寄生参数的共模电感集中参数模型,如图3-1所示。

R W 表示绕组等效电阻,R C 为磁心等效电阻;C 1 为绕组匝间的寄生电容;C 2 为两个绕组间的寄生电容

图3-1 共模电感模型

3.1 寄生电容C 1、C 2

寄生参数C 可以通过阻抗测量的方法获取。图3-2为测量C 1的原理图。

图3-2 测量C 1的原理图

共模电感P 1与P 2端短接,P 3与P 4端短接,如图3-2a 所示,测量P 1(P 2),P 3(P 4)端的谐振频率

fr ,由于12<

C f r 1221π=,其中电感值L=L C +L

D ,因而()L f C r 221212π=。因为L 与磁芯磁导率μ成正比,如果μ随频率改变,L 也随之变化为非线性电感,因此确定fr 下的电感值比较困难。

提取C 1参数的另一种方法是用外部并联电容ext C 来测量,如图3-2b 所示,电路谐振频率为:

()

ext ext C C L f +=1221π(3-1) 如果ext C 分别为1ext C ,2ext C ,则电路谐振频率为:

()

111221ext ext C C L f +=π(3-2) ()212221ext ext C C L f +=

π(3-3) 由式(3-2)得:

2

221211*********ext ext ext ext ext ext ext ext ext ext L f L f C L f C L f C --=(3-4) 式中:1ext L ,2ext L 分别为电感在1ext f ,2ext f 下的电感值。

如果1ext C ,2ext C 选择合适,1ext f ,2ext f 则比较接近,认为21ext ext L L ≈,化简式(3-4)得:

22

2112122212ext ext ext ext ext ext f f C f C f C --=(3-5) 在P 1、P 2端并联一个电感,测量P 1、P 2端的谐振频率,可提取C 2参数,其原理图如图3-3a 所示。由于L D 、C 1、C 2、R C 、R W 数值很小,因此可忽略C 1、L D 、R C 、R W 影响,近似为两个C 2 并联,等效电路如图3-3b 所示。

C 0为并联电感寄生电容,R 0为寄生电阻

图3-3 测量C 2原理图

应选用寄生电阻R 0尽可能小的并联电感,这样在测量频率内可以忽略R 0的影响。测量P 1,P 2端的谐振频率f 0,则得:

()00

2022212C L f C -=π(3-6)

3.2 电感L LK 、L C

假设共模电感和差模电感是独立的,则用分立的差模电感来模拟L LK 。将共模电感P 3、P 4端短路,测量P 1、P 2端,即可测得共模电感的漏感。铁氧体磁芯的磁导率μ随频率变化,因而电感也随之变化为非线性电感。因L LK 较小,忽略其随频率变化,共模电感L C 的数值一般非常大,需考虑L C 随频率变化。

3.3 等效电阻R C 、R W

磁性元件的损耗由两部分组成:铜损和磁损。铜损为电流流过线圈所产生的损耗,用电阻R W 等效。在高频时由于趋肤效应和临近效应,较低频下损耗有所增加,因等效电阻R W 在高频时远小于磁心等效电阻R C ,故可忽略绕组等效电阻的影响。磁损指磁性材料的损耗,影响磁损的因素很多,有频率、磁感应强度、温度、波形等。基于等效电路的原理,将磁芯损耗等效为电阻损耗,表示为R C 。这样,非线性的磁芯损耗就能用一个线性元件来表示。仅考虑电阻与频率的关系,设其与单变量f 的模型为:

()2210f c f c c R f C ++=(3-7)

多项式的次数选择二次,太低不足以描述其内部规律,太高易引起数值振荡。待定系数C 0,C 1,C 2的获取分为两个步骤:短接P 1、P 2和P 3、P 4,测量不同频率下P 1、P 4端的阻抗Rs 和电抗Xs ; 由于L LK <

()[]()22

12212221C

C C S R C C L R R ωω+-=(3-8) ()()[]()[]()22122122112221221C C C C C C S R C C L L R C C L L X ωωωω+---=

(3-9)

式中:f πω2=。 再用回归分析计算出待定系数C 0,C 1,C 2。

4. 磁芯材料与共模电感磁芯选型

常见的磁芯材料有铁氧体磁芯、磁粉芯和高磁通磁粉芯,其中常用的磁粉芯有铁粉芯、坡莫合金粉芯和铁硅铝粉芯。

4.1 铁氧体磁芯

铁氧体磁芯是由致密匀质的陶瓷结构非金属磁性材料制成。它由氧化铁(Fe2O3)和一种或几种其他金属(例如锰、锌、镍、镁)的氧化物或碳酸盐化合物组成。铁氧体原料通过压制,后经1300℃高温烧结,最后通过机器加工制成满足应用需求的成品磁芯。

铁氧体磁芯分为锰锌类和镍锌类。镍锌类的特点是:初始磁导率低(小于1000),但是可以工作在比较高的频率(大于100MHz)下,保持磁导率不变。由于镍锌系磁芯有很低的初磁导率,所以在低频时,不可产生高阻抗特性。而锰锌系则恰恰相反,其具有很高的初始磁导率,但在频率很低(20KHz)时,磁导率会衰减。锰锌系磁芯在低频时,能提供非常高的阻抗特性,非常适用于减小10KHz到50MHz的电磁干扰。

4.2 磁粉芯与高磁通磁粉芯

磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。磁粉芯具有均匀分布式气隙,因而拥有高电阻、低磁滞、低涡流损耗和软饱和等许多优秀的磁特性,以及在直流和交流条件下极佳的电感稳定性。由于铁磁性颗粒很小(高频下使用的为0.5~5um),又被非磁性电绝缘膜物质隔开;因此,一方面可以隔绝涡流,适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低磁导率及恒导磁特性;又由于颗粒尺寸小,基本上不发生驱肤现象,磁导率随频率的变化也就较为稳定,主要用于高频电感。磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。

铁粉芯是一种常用的软磁类磁粉芯,由碳基铁磁粉及树脂碳基铁磁粉构成,在粉芯中价格最低。饱和磁感应强度值在1.4T左右,磁导率范围从22~100,初始磁导率随频率的变化稳定性好,直流电流叠加性能好,但高频下损耗高。

铁粉芯被广泛用于RF应用上。由于铁粉芯中固有的分布式气隙特性,因此铁粉芯常用于储能式电感中。此外,用铁粉芯来替代坡莫合金磁芯、高磁通量磁芯或铁硅铝磁芯是一种高性价比设计。

相对铁粉芯而言,铁硅铝磁芯的磁芯损耗低的多;铁硅铝磁芯的磁致伸缩接近于零,非常适用于消除滤波电感中的音频噪音;铁硅铝磁芯在制造时没有使用有机粘结剂,因此没有任何热老化的问题;最后,铁硅铝磁芯能在200℃下连续操作,而铁粉芯只能工作于130℃以下。

而坡莫合金磁芯的磁芯损耗比铁硅铝磁芯的更低,当然价格也更高。对于要求损耗极低的电感器,应使用坡莫合金磁芯。需要在低成本下具备合理的低磁损和高饱和度,则应该使用铁硅铝磁粉芯,因为成本符合经济效益。对于直流偏置为主导,且要求尺寸小的设计,应当使用具有最高的磁通量的高磁通磁芯。

上述几种磁芯材料性能对比详见右边文档电感器磁芯材料性能比较表.pdf

4.3 共模电感磁芯选型

选用共模电感的磁芯时,形状尺寸、适用频段、价格、温升等因素都需要予以考虑。

上述磁芯材料中,铁氧体磁芯的形状最多样;而磁粉芯和高磁通磁粉芯的形状仅限于环形等形状。共模电感常用的磁芯为U型、E型和环形。

相对而言,环形磁芯比较便宜,因为环形只有一个就可制作;而其他形状的磁芯必须有一对才能为共模电感所用,且在成型时,考虑两磁芯的配对问题,还须增加研磨工序(如镜面磁芯)才能得到较高的磁导率,对于环形磁芯却不需如此;与其它形状磁芯相比环形磁芯有较高的有效磁导率,因为两配对磁芯在装配时,无论怎样作业都不可消除气隙的现象,故有效磁导率比单一封闭形磁芯要低。

但环形磁芯绕线成本较高,因其他形状磁芯有一配套线架在使用,绕线可以机器作业,而环形磁芯只可以手工作业或机器(速度较低)作业;且磁环孔径小,机器难以穿线,需要人工去绕,费时费力,加工成本高,效率低;安装不便,若是加底座,则成本会上升。

综合性能比起来,磁环性能较好,价格也较高。因为成本的因素,磁环大多用在大功率的电源上。当然因为体积小,对体积有要求的小功率电源,可以采用磁环磁芯。

对于主要作用是滤除低频噪声的共模电感,应当选用高磁导率的锰锌铁氧体磁芯;相反,应该选用适用于高频的镍锌铁氧体磁芯或磁粉芯磁芯。通常适用于高频的磁芯,因其具有分布式气隙,故磁导率相对较低,二者不可兼得。不过,与普通电感器不同的是,共模电感的作用是对噪声信号形成较大的插入损耗,以减小噪声干扰。锰锌铁氧体在高频时,虽然其有效磁导率很小,但磁芯损耗随频率增加而增大,对高频噪声有较大的阻碍作用,所以也能减弱高频干扰,只是效果相对较差。然而,较大的磁芯损耗会导致磁芯发热,而损耗较小的磁芯价格也较高。

5. 共模电感的设计流程

共模电感设计所需的基本参数为:输入电流,阻抗及频率。设计步骤如下:

1.线径选取:输入电流决定了绕组所需的线径,在计算线径时,电流密度通常取值为400A/cm2,为保证温升应力不超标,最大的电流密度为800A/cm2;通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。

2.电感量计算:共模电感的阻抗在所给的频率条件一般规定为最小值,由L=Xs/2πf,可得出共模电感线圈感值大小。

3.磁芯型号选型:如果有规定共模电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取;

4.磁芯材质选型:根据共模电感适用频段,可初步选定磁芯材质;由磁芯的型号和线径可算出可绕线匝数,再结合电感量,可得出磁芯的最小电感系数;最后,结合价格因素综合考虑,即可选定磁芯材质。

6. 共模电感安规管控

共模电感的材料包括如下:骨架、铜线、磁芯、胶带、凡立水。各认证标准对这些物料的安规管控如下表所示。

DCDC电容电感计算

BOOST电路的电感、电容计算 升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f 其他参数: 电感:L 占空比:D 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd ***************************************************** 1:占空比 稳定工作时,每个开关周期导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*D/(f*L)=(Vo+Vd-Vi)*(1-D)/(f*L),整理后有 D=(Vo+Vd-Vi)/(Vo+Vd),参数带入,D=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量,其值为Vi*(1-D)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*D/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,

当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面 影响取L=60uH, deltaI=Vi*D/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-D)-(1/2)*deltaI, I2= Io/(1-D)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容: 此例中输出电容选择位陶瓷电容,故ESR可以忽略 C=Io*D/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径

共模_差模详解

EMC(electromagnetic compatibility)作为产品的一个特性,译为电磁兼容性;如果作为一门学科,则译为电磁兼容。它包括两个概念:EMI和EMS。EMI (electromagnetic interference) 电磁干扰,指自身干扰其它电器产品的电磁干扰量。EMS (electromagnetic susceptibility) 电磁敏感性,也有称为电磁抗扰度,是指能忍受其它电器产品的电磁干扰的程度。因此,电磁兼容性EMC一方面要滤除从电源线上引入的外部电磁干扰(辐射+传导),另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。EMC滤波器主要是用来滤除传导干扰,抑制和衰减外界所产生的噪声信号干扰和影响受到保护的设备,同时抑制和衰减设备对外界产生干扰。而辐射干扰主要通过屏蔽的手段加以滤除。 从滤波器的功能来看,它的作用是允许某一部分频率的信号顺利的通过,而另外一部分无用频率的信号则受到较大的抑制,它实质上是一个选频电路。而我们常见的低通滤波器功能是允许信号中的低频或直流分量通过,抑制高频分量或干扰噪声。 电源噪声干扰在日常生活中很常见。比如你正在使用电脑的时候,当手机信号出现时,电脑音响会有杂音。比如电话或手机通话时有嗞嗞的杂声。又比如使用电吹风烫头发时,电视机不但会产生噪音,而且屏幕会出现很大的雪花般的条纹。这都是一些常见的噪声信号干扰,但实际上有些干扰日常看不到,一但受到影响就有可能措手不及,甚至找不到根源。这些噪声信号如果出现在自动化仪器,医疗仪器有可能带来极大的损失甚至生命安全。比如,会造成自动化仪器误动作,造成医疗仪器失控等等。 我们常说的噪声干扰,是指对有用信号以外的一切电子信号的一个总称,也可以理解为电磁干扰。最初,人们把造成收音机之音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非有用电子信号对电子电路造成的后果并非都和声音有关,因此,后来人们逐步扩大了噪声概念。如:某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的有用信号,而对于另一频率的接收机它就是一种无用信号,即是噪声。 噪声按传播路径来分可分为传导噪声干扰和空间噪声干扰。其传导干扰主要通过导体传播,通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络,其频谱主要为30MHz以下。而空间噪声干扰源通过空间把其信号耦合(干扰)到另一个电网络,其频率范围比传导噪声频率宽很多,30Hz-30GHz。传导噪声干扰可以通过设计滤波电路或追加滤波器的方法来进行抑制和衰减,而空间辐射干扰主要通过主要应用密封屏蔽技术,在结构上实行电磁封闭。目前为减少重量大都采用铝合金外壳,但铝合金导磁性能差,因而外壳需要镀一层镍或喷涂导电漆,内壁贴覆高导磁率的屏蔽材料。 上面我们提到传导噪声干扰,又分为差模干扰与共模干扰两种。差模干扰是两条电源线之间(简称线对线)的噪声,主要通过选择合适的电容(X电容),差模线圈来进行抑制和衰减。共模干扰则是两条电源线对大地(简称线对地)的噪声,主要通过选择合适的电容(Y电容),和共模线圈来进行抑制和衰减。我们常见的低通滤波器一般同时具有抑制共模和差模干扰的功能。 第 1 页

开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计注意事项 在电源变压器的设计过程中,工程师们需要严格的计算并完成共模电感设计和数值选取,这直接关系到开关电源变压器的运行精度。在今天的文章中,我们将会就开关电源变压器的共模电感设计展开简要分析,看在电源变压器共模电感设计和计算过程中,都应该注意哪些问题。 在电源变压器的设计和制作过程中,工程师所要进行的共模电感设计,其所需要的基本参数主要有三个,分别是输入电流,阻抗及频率,磁芯选取。先来看输入电流。这一参数值直接决定了绕组所需的线径。在线径的计算和选取时,电流密度通常取值为400A/cm³, 但此取值须随电感温升的变化。通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。 在计算过程中,开关电源变压器共模电感的阻抗在所给的频率条件下,一般规定为最小值。串联的线性阻抗可提供一般要求的噪声衰减。但实际上,线性阻抗问题往往是最容易被人忽视的,因此设计人员经常以50W线性阻抗稳定网络仪来测试共模电感,并渐渐成为一种标准测试共模电感性能的方法。但所得的结果与实际通常有相当大的差别。实际上,共模电感在正常时角频首先会产生每八音度增加-6dB 衰减(角频是共模电感产生-3dB)的频率此角频通常很低,以便感抗能 够提供阻抗。因此,电感可以用这一公式来表达,即:Ls=Xx/2 n f

这里还有一个问题需要工程师需要注意,那就是在进行共模电感设计时须注意磁芯材料和所需的圈数问题。首先来看磁芯型号的选取问题,此时如果有规定电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取。 在确定了电源变压器的磁芯型号之后,接下来的工作就是计算磁芯所能绕最大圈数。通常来说,共模电感有两绕组,一般为单层,且每绕组分布在磁芯的每一边,两绕组中间须隔开一定的距离。双层及堆积绕组亦有偶尔使用,但此种作法会提高绕组的分布电容及降低电感的高频性能。由于铜线的线径已由线性电流的大小所决定,内圆周长可以由磁芯的内圆半径减去铜线半径计算得来。故最大圈数的就可以铜线加绝缘的线径及每个绕组所占据的圆周来计算。

PFC电感及匝数计算

(1) 升压电感的设计 升压电感的值决定转换器开关频率的大小,它主要由最小开关频率和输出功率决定。设开关管在一个周期里的导通时间为on t ,关断时间为off t ,则: VAC I L V I L t Lpk inpk Lpk on ??=???=2)sin()sin(θθ (2.32) ) sin(2)sin(θθ??-??=VAC V I L t out Lpk off (2.33) 式中,θ为交流输入电压的瞬时相位。 由式(2.33)可知,在交流输入电压的一个周期内,开关管的导通时间与电压的瞬时相位无关。由on t 和off t ,可得开关周期: [] )sin(22) sin(22)sin(2)sin(2122θθθθ??-????=??-????=?? ??????-+???=+=VAC V VAC P V L VAC V VAC V I L VAC V VAC I L t t T out in out out out Lpk out Lpk off on s (2.34) 故变换器的开关频率为: [] in out out sw sw P V L VAC V VAC T f ?????-?==2)sin(212θ (2.35) 所以,当1)sin(=θ时,开关频率最小;当0)sin(=θ时,开关频率最大。 故升压电感大小为: [] in out sw out P V f VAC V VAC L ????-?=min 222 (2.36) 由式(2.35)可知,最小开关频率出现在交流输入电压最大或最小时,分别计算它们对应的电感值: uH H VAC L 35.336400 220300002)2652400(265)(2max =????-?= (2.37) uH H VAC L 89.382400 220300002)852400(85)(2min =????-?= (2.38) 比较两个值,取uH L 310=。当V a c V in 85=时,由式(2.36)可得 k H z k H z f sw 207.33min >=,从而可以避免音频噪声。 根据近似的面积乘积(AP )法来估算升压电感磁芯尺寸的大小,其中面积

EMC滤波电路的原理与设计---整理【WENDA】

第一章开关电源电路—EMI滤波电路原理 滤波原理:阻抗失配;作为电感器就是低通(更低的频率甚至直流能通过)高阻(超过一定频率后就隔断住难于通过)(或者是损耗成热消散掉),因此电感器滤波靠的是阻抗 Z=(R^2+(2ΠfL)^2)^1/2。也就是分成两个部分,一个是R涡流损耗,频率越高越大,直接把杂波转换成热消耗掉,这种滤波最干净彻底;一个是2ΠfL 这部分是通过电感量产生的阻挡作用,把其阻挡住。实际都是两者的结合。但是要看你要滤除的杂波的频率,选择合适的阻抗曲线。因为电感器是有截止频率的,超过这个频率就变成容性,也就失去电感器的基本特性了,而这个截止频率和磁性材料的特性和分布电容关系最大,因此要滤波更高的频率的干扰,就需要更低的磁导率,更低的分布电容。因此一般我们滤除几百K以下的共模干扰,一般使用非晶做共模电感器,或者10KHZ以上的高导铁氧体来做,这样主要使用阻抗的WL这一方面的特性,主要发挥阻挡作用。电感器滤波器是通过串联在电路里实现。撒旦谁打死多少次顺风车安顺场。 因此:共模滤波电感器不是电感量越大越好主要看你要滤除的共模干扰的频率范围。先说一下共模电感器滤波原理共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了,然后靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果。当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感 器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用。这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000\15000 的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号。因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 电容的阻抗是Z=-1/2ΠfL那么也就是频率越高阻抗绝对值越小,那么就是高通低阻,就是频率越高越能通过,所以电容滤波是旁路,也就是采用并联方式,把高频的干扰通过电容旁路给疏导回去。

共模电感的测量与诊断

共模电感的测量与诊断 作者: 照明工程师社区来源:照明工程师社区时间:2003-06-25 关键词: 电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。 漏感的重要性 漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。这种效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”,这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。 如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出: 式中,是芯体中的磁通变化量,Ldm是测得的差模电感,是差模峰值电流,n为共模线圈的匝数。 由于可以通过控制B总,使之小于B饱和,从而防止芯体发生磁饱和现象,有以下法则: 式中,是差模峰值电流,Bmax是磁通量的最大偏离,n是线圈的匝数,A是环形线圈的横截面积。Ldm是线圈的差模电感。 共模扼流圈的差模电感可以按如下方法测得:将其一引腿两端短接,然后测量另外两腿间的电感,其示值即为共模扼流圈的差模电感。 共模扼流圈综述 滤波器设计时,假定共模与差模这两部分是彼此独立的。然而,这两部分并非真正独立,因为共模扼流圈可以提供相当大的差模电感。这部分差模电感可由分立的差模电感来模拟。 为了利用差模电感,在滤波器的设计过程中,共模与差模不应同时进行,而应该按照一定的顺序来做。首先,应该测量共模噪声并将其滤除掉。采用差模抑制网络(Differential Mode Rejection Network),可以将差模成分消除,因此就可以直接测量共模噪声了。如果设计的共模滤波器要同时使差模噪声不超过允许范围,那么就应测量共模与差模的混合噪声。因为已知共模成分在噪声容限以下,因此超标的仅是差模成分,可用共模滤波器的差模漏感来衰减。对于低功率电源系统,共模扼流圈的差模电感足以解决差模辐射问题,因为差模辐射的源阻抗较小,因此只有极少量的电感是有效的。 尽管少量的差模电感非常有用,但太大的差模电感可以使扼流圈发生磁饱和。可根据公式(2)作简单计算来避免磁饱和现象的发生。 用LISN原理测量共模扼流圈饱和特性的方法 测量共模线圈磁芯(整体或部分)的饱和特性通常是很困难的。通过简单的试验可以看出共模滤波器的衰减在多大程度上受由60Hz编置电流引起的电感减小量的影响。进行此项测试需要一台示波器和一个差模抑制网络(DMRN)。首先,用示波器来监测线电压。按如下方法从示波器的A通道输入信号,将示波器的时

EMI滤波电感设计

EMI滤波电感设计 EMI滤波器 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下单独使用共模噪声滤波器。 图1 EMI滤波器的插入 一、共模电感设计 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为另。由于磁通的阻碍,SMPS 的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效费比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系 在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。

共模电感认识

共模电感(Common mode Choke),也叫共模扼流圈,是在一个闭合磁环上对称绕制方向相反、匝数相同的线圈。理想的共模扼流圈对L(或N)与E 之间的共模干扰具有抑制作用,而对L 与N 之间存在的差模干扰无电感抑制作用。但实际线圈绕制的不完全对称会导致差模漏电感的产生。信号电流或电源电流在两个绕组中流过时方向相反,产生的磁通量相互抵消,扼流圈呈现低阻抗。共模噪声电流(包括地环路引起的骚扰电流,也处称作纵向电流)流经两个绕组时方向相同,产生的磁通量同向相加,扼流圈呈现高阻抗,从而起到抑制共模噪声的作用。共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。 共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。 共模电感在制作时应满足以下要求: 1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。 2)当线圈流过瞬时大电流时,磁芯不要出现饱和。 3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。 4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。 通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。 一、初识共模电感 由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一!这里就给大家简单介绍一下共模电感的原理以及使用情况。 共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。

电感的计算方法和BOOST升压电路的电感、电容计算

电感计算方法 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此: 电感量(mH) = 阻抗 (ohm) ?(2*3.14159) ?F (工作频率) = 360 ?(2*3.14159) ?7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ?圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ?2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈)

共模电感设计

共模电感设计 选择共模滤波电感规格不是一件困难和令人困惑的事情。用一个标准滤波器平面图可以用来实现一个相对简单直接的设计过程。预设的平面模型滤波器元件参数很容易被修改,从而,达到符合设计要求。 常规共模电感 线性滤波器防止过度的噪声从AC线传导到正在工作的电子设备。通常AC线为防护的重点。 图示-1所示,共模滤波器与AC线之间接阻抗匹配电路,后面再接开关变换器。共模噪声(大地为参考在两根线上同时产生的噪声大小相等方向相同)的方向是从负载流向滤波器,流向两条AC线上的共模噪声已经被充分地衰减了。其结果是从滤波器输出到AC线的共模噪声经过阻抗匹配电路衰减得非常微弱了。 共模滤波器的设计本质上是设计两个相同的差分滤波器,每个分别作用于同一个磁心,两边耦合的是两个极性一致的电感。对于一个差分输入电流(从(A)到(B)通过L1和从(B)到(A)通过L2),两电感间的磁通(大小相等方向相反)耦合为零。 任何电感通过差模信号时,两个扼流圈未能耦合。它们作为独立的元件,只有漏感响应差模信号:这个漏感会衰减差模信号。 当电感L1和L2,通过相对于大地方向相同的完全一样的信号(共模型号),每个扼流圈在同一个磁心上出力的是非零磁通。对于共模信号电感作为独立的元件运行相互间产生互感:互感的作用使共模信号变弱。

第一阶滤波器 最简单、最昂贵的滤波器设计是一阶滤波器。这种类型的滤波器采用单一的电抗结构存储某一频率段的能量,使这些能量未能传递出去。就一个低通共模滤波器来说,一个共模电感的电抗元件会被采用。 所要求扼流圈的电感量可以简单地采取负载电阻除以衰减频率(包含以上频率)的角频率。譬如,要衰减4000Hz以上的频率到50Ω的负载里面需要一个1.99mH(50/(2π×4000) )的电感。由此产生共模滤波器结构如图示-3: 在4000Hz的衰减将是3dB,并以6dB每倍频程增加。因为主要的电感依赖的一阶滤波器,实际变化中,扼流圈电感是必须被考虑的。例如,正常电感测量误差为±20%,那个在4000Hz频率名义上的3dB,实际衰减得频率范围从3332Hz到4999Hz。这是共模电感的典型电感值被指定的一个最低要求,从而保证这个交叉频率不被改变太高。然而,一些情况应该观察到选择扼流圈作一阶低通滤波器可能限制阻塞一些有用的衰减,因为用了一个较高于典型值或极小值的电感。 二阶滤波器 一个二阶滤波器使用了两个电抗部分。比第一阶滤波器有两个优势:⑴理论上,在截点频率以后,一个二阶滤波器有12dB每倍频程(4倍于一阶滤波器)的衰减量。⑵在电感谐振频率以上提供了更大的衰减。(参见图示-4)

共模电感

一、共模电感原理 在介绍共模电感之前先介绍扼流圈,扼流圈是一种用来减弱电路里面高频电流的低阻抗线圈。为了提高其电感扼流圈通常有一软磁材料制的核心。共模扼流圈有多个同样的线圈,电流在这些线圈里反向流,因此在扼流圈的芯里磁场抵消。共模扼流圈常被用来压抑干扰辐射,因为这样的干扰电流在不同的线圈里反向,提高系统的EMC。对于这样的电流共模扼流圈的电感非常高。共模电感的电路图如图1所示。 图1共模电感电路图示 共模信号和差模信号只是一个相对量,共模信号又称共模噪声或者称对地噪声,指两根线分别对地的噪声,对于开关电源的输入滤波器而言,是零线和火线分别对大地的电信号。虽然零线和火线都没有直接和大地相连,但是零线和火线可以分别通过电路板上的寄生电容或者杂散电容又或者寄生电感等来和大地相连。差模信号是指两根线直接的信号差值也可以称之为电视差。 假设有两个信号V1、V2 共模信号就为(V1+V2)/2 差模信号就为:对于V1 (V1-V2)/2;对于V2 -(V1-V2)/2 共模信号特点:幅度相等、相位相同的信号。 差模信号特点:幅度相等、相位相反的信号。 如图2所示为差模信号和共模信号的示意图。

图2差模信号和共模信号示意图

二、共差模噪声来源 对于开关电源而言,如果整流桥后的储能滤波大电容为理想电容,即等效 串联电阻为零(忽略所有电容寄生参数),则输入到电源的所有可能的差模噪 声源都会被该电容完全旁路或解耦,可是大容量电容的等效串联电阻并非为零。因此,输入电容的等效串联电阻是从差模噪声发生器看进去的阻抗Zdm的主 要部分。输入电容除了承受从电源线流入的工作电流外,还要提供开关管所需 的高频脉冲电流,但无论如何,电流流经电阻必然产生压降,如电容的等效串 联电阻,所以输入滤波电容两端会出现高频电压纹波,高频高压纹波就是来自 于差模电流。它基本上是一个电压源(由等效串联电阻导致的)。理论上,整 流桥导通时,该高频纹波噪声应该仅出现在整流桥输入侧。事实上,整流桥关 断时,噪声会通过整流桥二极管的寄生电容泄露。 高频电流流入机壳有许多偶然的路径。当开关电源中的主开关管的漏极高 低跳变时,电流流经开关管与散热器之间的寄生电容(散热器连接至外壳或者 散热器就是外壳)。在交流电网电流保持整流桥导通时,注入机壳的噪声遭遇 几乎相等的阻抗,因此等量流入零线和火线。因此,这是纯共模噪声。

BOOST升压电路的电感、电容计算

【转】 BOOST升压电路的电感、电容计算 2011-05-06 23:54 转载自分享 最终编辑kxw102 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f ***************************************************************** ******* 1:占空比 稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有 don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量 其值为Vi*(1-don)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显, 当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取 L=60uH, deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A

3:输出电容: 此例中输出电容选择位陶瓷电容,故 ESR可以忽略 C=Io*don/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径 其他参数: 电感:L 占空比:don 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd

EMI对策元件之差模_共模电感器

EMI对策元件之差模/共模电感器 电感器变压器典型应用电路——开关电源电路 EMI 滤波典型电路 差模噪声、共模噪声及差模电感器、共模电感器 输入导线之间的 EMI 电压称之为差模噪声。导线对接地端的噪声称之为共模噪声,差别见下图(以开关电源的差模干扰和共模干扰为例)。 差模噪声与共模噪声的区别 共模电感器设计 开关电源产生的共模噪声频率范围从 10kHz ~ 50MHz 甚至更高,为了对这些噪声有效的衰减,那么在这个频率范围内,共模电感器就必须提供足够高的阻抗。因此高磁导率的锰锌铁氧体和非晶材料是非常适合的。共模电感器的阻抗 Zs 由

串联感抗 Xs 和串联电阻 Rs 两部分组成, Zs 、 Xs 、 Rs 三者随频率变化的典型趋势见下图。 Zs 、 Xs 、 Rs 与频率的关系曲线 从图中我们可以看出在 750kHz 以下, Xs 在 Zs 中占主要部分, 750kHz 以上 Rs 在 Zs 中占主要部分。 对于抑制共模噪声的电感器,需要在一个磁芯上绕制两组电流方向相反的导线,并使用高磁导率的磁芯,如磁导率为5k 、 7k 、 10k 、 12k 材料和非晶磁芯等。 共模电感器命名方法 外形结构:

图 1 图 2 德恩典型产品参数表

差模电感器设计 对于抑制差模噪声的电感器,要求磁芯材料在偏磁场下仍然能够保持磁导率指标。下图中,标出了流经电感器的电流 I ,电压 V 和磁芯中的磁场强度曲线,并且画出了差模滤波器和共模滤波器在开关电源中的应用线路图。在输入端,可以是交流输入(如市电),也可以是电池供电(如 48V ,用于电信设备中)。当电池供电时,磁化电流是恒定的直流电。对于高功率因数的交流电系统,磁化电流接近正弦波波形。而低功率因数的交流电系统,其磁化电流则由一系列的交变脉冲叠加组成。 适合制作差模电感器(扼流圈)的磁心材料是具有高 Bs 值的金属磁粉心磁环和开路铁氧体磁芯,但是考虑现在的 EMI 和 EMC 的要求,使用铁镍钼、铁镍 50 、铁硅铝三种闭和磁路的金属磁粉心磁环是最合适的,因为这三种磁心材料在偏磁场下具有极好的电感量保持能力。 三种金属磁粉心材料进行比较:高磁通铁镍 50 磁粉心的性能最好,因为它在高饱和磁通密度下具有保持电感量的能力,同时它还提供在高频下所需要的阻尼衰减功能,但是由于该材料本身所具有的磁滞伸缩产生的音频噪声,致使高磁通铁镍 50 磁粉心在 50Hz 或者 60Hz 下,会产生音频噪声(嗡嗡声)。当然直流磁化电流不会产生音频噪声,所以它最适合用制作电池供电(工作电流为直流)的电源系统中的输入滤波电感器。铁镍钼、铁硅铝磁粉心都具有特别低的磁滞伸缩系数,它们都不会产生音频噪声。铁镍钼磁粉心在直流偏磁场下的磁导率变化量最小,这是它的一个优点。铁硅铝磁粉心的单位体积成本最低,因此最适合制作民用差模电感器,铁镍 50 和铁镍钼磁粉心的价格远远高于铁硅铝磁粉心更适合军用和一些对体积和性能要求高的场合。

共模电感的设计

EMI滤波共模电感设计 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下 单独使用共模噪声滤波器。 图1 EMI滤波器的插入 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入 线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为零。由于磁 通的阻碍,SMPS的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效率比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系

在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。 图3所示为图2中铁氧体材料的磁导率和损耗系数与频率的函数关系。由于感抗引起的下降,导致磁导率在750KHz以上的下降;由于电阻取决高频的源阻抗所以损耗系数随频率而增加。 铁氧体磁环的磁导率、损耗系数和频率的关系 图3 图4给出三种不同材料的总阻抗和频率的关系 J材料在超过1~20MHz范围内具有高的总阻抗,它最广泛地应用于共模滤波器的扼流圈。在1MHz,W材料阻抗比J材料高20-50%,当低频噪声是主要问题时经常应用J材料;K材料可用于2MHz以上,因为在此频率范围内它产生的阻抗比J材料高直至100%。在2MHz 以上或以下,对于滤波器所要求的规范,J或W是优先的。图4三种不同材料的阻抗和频率的关系。 1.2、磁芯的形状 对于共模噪声滤波器环形磁芯是最普及的,他们不贵、泄漏磁通也低。环形磁芯必须 用手绕制(或在独特的环形绕线机上绕制)。正常情况要用一个非金属的分隔板放置在两 个绕组之间,以及为了和PC板连接,这个绕制器件还需环氧化在印制板的头部。具有附件

共模滤波电感原理分析

共模滤波电感器不是电感量越大越好.主要看你要滤除的共模干扰的频率范围,先说一下共模电感器滤波原理:共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果.当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用. 这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz 或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000h00的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号. 因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 共 模电感的测量与诊断 电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器 最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个 显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考 虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办 法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之 间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。 漏感的重要性 漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即 使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈 没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。这种 效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有 两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方 向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线 绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”, 这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感 是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句 话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。 如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通 发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感 基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼 流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出:

共模电感设计与案例

共模电感设计与案例 很多设计师对于共模电感的设计大多有一种感觉,那就是总觉得共模电感的设计看起来十分简单,但实际操作起来上,又有点复杂。的确共模电感的设计要考虑温度及应力等等因素。 下面我就对于共模电感的设计过程与案例结合起来简单讲讲。 一、设计过程: ①选择磁芯材料(镍锌系和锰锌系) 铁氧体是一个较好的具有成本优势的材料。 ②设定电感的阻抗 对于一个给定的要求衰减的频率,定义此频率下共模电感的感抗为 50~100 Q,即至少50%的衰减,因此有:Z=?L ③选择磁芯的形状的和尺寸

成本低漏感小的环形磁芯非常适合于共模电感,但是这种形状不容 易实现机械化绕制,一般用手工绕制。磁环尺寸的大小选取有一定 的随意性,通常基于PCB的尺寸选取合适的磁芯。为了减小共模电 感的寄生电容,共模电感通常只用单层的线圈。若单层绕制时磁芯 无法容纳所有的线圈,则选用大一号尺寸的磁环。当然也可以基于 磁芯的数据手册由LI的乘积选取。 ④计算线圈的匝数 由磁芯的电感系数AL计算共模电感的圈数:(106 )0.5 L N = L X A ⑤计算导线的线径 导线允许通过的电流密度选取为:400~800A/cm2,由此可以得到要 求的线径。 二、案例: 在工作频率为10KHZ,输入线性电流为3A(RMS)时,阻抗为100欧的共模电感。1)选取线径 铜线截面积=3A/400A/cm2=0.0075cm2 铜线线径=0.98mm 取铜线线为1.0mm 2)计算最小电感值 512翼血1 x J0000^1.S9rah 3)假如无指定空间,任取一磁芯 内径(ID)=13.72+/-0.38=13.34mm MIN 4)计算内圆周长和最大可绕圈数 内圆周长=3.14 ><13.34-1.08)=38.5mm

DC-DC电感选择

电感 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注与解释:电感上的DC 电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L(C 是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。在降压转换中(Fairchild 典型的开关控制器),电感的一端是连接到DC 输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1 过程中,电感会通过(高边“high-side”)MOSFET 连接到输入电压。在状态2 过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET 接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态 1 过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2 过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2 所示: 通过上图我们可以看到,流过电感的最大电流为DC 电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流: 其中,ton 是状态1 的时间,T 是开关周期(开关频率的倒数),DC 为状态1 的占空比。 警告:上面的计算是假设各元器件(MOSFET 上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。 如果,器件的下降不可忽略,就要用下列公式作精确计算: 同步转换电路: 异步转换电路:

共模电感小知识

一、初识共模电感 共模电感(Common mode Choke),也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。在板卡设计中,共模电感也是起EMI滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。 图1 各种CMC 小知识:EMI(Electro Magnetic Interference,电磁干扰) 计算机内部的主板上混合了各种高频电路、数字电路和模拟电路,它们工作时会产生大量高频电磁波互相干扰,这就是EMI。EMI还会通过主板布线或外接线缆向外发射,造成电磁辐射污染,不但影响其它的电子设备正常工作,还对人体有害。 PC板卡上的芯片在工作过程中既是一个电磁干扰对象,也是一个电磁干扰源。总的来说,我们可以把这些电磁干扰分成两类:串模干扰(差模干扰)与共模干扰(接地干扰)。以主板上的两条PCB走线(连接主板各组件的导线)为例,所谓串模干扰,指的是两条走线之间的干扰;而共模干扰则是两条走线和PCB地线之间的电位差引起的干扰。串模干扰电流作用于两条信号线间,其传导方向与波形和信号电流一致;共模干扰电流作用在信号线路和地线之间,干扰电流在两条信号线上各流过二分之一且同向,并以地线为公共回路,如图1-1所示。

图2是我们常见的共模电感的内部电路示意图,在实际电路设计中,还可以采用多级共模电路来更好地滤除电磁干扰。此外,在主板上我们也能看到一种贴片式的共模电感(图3),其结构和功能与直立式共模电感几乎是一样的。 图4 贴片CMC 二、从工作原理看共模电感 为什么共模电感能防EMI?要弄清楚这点,我们需要从共模电感的结构开始分析。 图5 共模电感滤波电路 图4是包含共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。 事实上,将这个滤波电路一端接干扰源,另一端接被干扰设备,则La和C1,Lb和C2就构成两组低通滤波器,可以使线路上的共模EMI信号被控制在很低的电平上。该电路既可以抑制外部的EMI信号传入,又可以衰减线路自身工作时产生的EMI信号,能有效地降低EMI干扰强度。 小知识:漏感和差模电感

相关文档
最新文档