物理学教程(第二版)上册课后答案7

物理学教程(第二版)上册课后答案7
物理学教程(第二版)上册课后答案7

物理学教程(第二版)上册课后答案7

第七章 气体动理论

7 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )

(A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强

(C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强

分析与解 理想气体分子的平均平动动能23k /kT =ε,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程nkT p =,当两者分子数密度n 相同时,它们压强也相同.故选(C).

7-2 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比()()()4:2:1::2/12C 2/12B 2

/12A =v v v ,则其压强之比C B A ::p p p 为

( )

(A) 1∶2∶4 (B) 1∶4∶8

(C) 1∶4∶16 (D) 4∶2∶1 分析与解 分子的方均根速率为

M RT /3=2v ,因此对同种理想气体有3212C 2B 2A ::::T T T =v v v ,又由

物态方程nkT ρ,当三个容器中分子数密度n 相同

时,得16:4:1::::321321==T T T p p p .故选(C).

7 -3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0

T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0

Z ,平均自由程为0λ ,当气体温度升高为0

4T 时,气体分子的平均速率v 、平均碰撞频率Z 和平均自由程λ分别为

( ) (A)

04,4,4λλZ Z ===0v v (B) 0022λλ===,,Z Z 0v v (C) 00422λλ===,,Z Z 0v v (D) 00,2,4λλ===Z Z 0v v 分析与解 理想气体分子的平均速率M RT π/8=

v ,温度由0T 升至04T ,则平均速率变为0v 2;又平均碰撞频率v n d Z 2π2=

,由于容器体积不变,即分子数密度n 不变,则平均碰撞频率变为0Z 2;而平均自由程n d 2π21=λ,n 不变,则λ也不变.因此正确答案为(B).

7 -5 有一个体积为35m 10

01?.的空气泡由水面下m

050.深的湖底处(温度为C 0.4o )升到湖面上来.若湖面的温度为C 017o .,求气泡到达湖面的体积.(取

大气压强为Pa 10013150?=.p )

分析 将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态.利

用理想气体物态方程即可求解本题.位于湖底时,气泡内的压强可用公式gh p

p ρ+=0求出, 其中ρ为水的密度( 常取33m kg 100.1-??=ρ).

解 设气泡在湖底和湖面的状态参量分别为(p 1 ,V 1 ,T 1 )和(p 2 ,V 2 ,T 2 ).由分析知湖底处压强为gh ρp gh ρp p

+=+=021,利用理想气体的物态方程

222111T V p T V p =

可得空气泡到达湖面的体积为

()351

0120121212m 1011.6-?=+==T p V T gh p T p V T p V ρ 7 -6 一容器内储有氧气,其压强为Pa 100115?.,

温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能;(4) 分子间的平均距离.(设分子间均匀等距排列)

分析 在题中压强和温度的条件下,氧气可视为理想气体.因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解.又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V

=,由数密度的含意可知n V /10=,d 即可求出.

解 (1) 单位体积分子数

325m 1044.2?==kT

p n (2) 氧气的密度

3-m kg 30.1/?===RT

pM V m ρ (3) 氧气分子的平均平动动能

J 102162321k -?==./kT ε

(4) 氧气分子的平均距离

m 10453193-?==./n d

通过对本题的求解,我们可以对通常状态下理想气体的分子数密度、平均平动动能、分子间平均距离等物理量的数量级有所了解.

7-7 2.0×10-2 kg 氢气装在4.0×10-3 m 3 的容器内,当容器内的压强为3.90×105

Pa 时,氢气分子的平均平动动能为多大?

分析 理想气体的温度是由分子的平均平动动能决定的,即23k /kT =ε.因此,根据题中给出的条

件,通过物态方程pV =M

m 'RT ,求出容器内氢气的温度即可得k

ε. 解 由分析知氢气的温度mR

MpV T =,则氢气分子的平均平动动能为

J 1089.3232322k -?='==R

m pVMk kT ε

7 -8 某些恒星的温度可达到约1.0 ×108K ,这是发生聚变反应(也称热核反应)所需的温度.通常在此温度下恒星可视为由质子组成.求:(1) 质子的平均动能是多少? (2) 质子的方均根速率为多大?

分析 将组成恒星的大量质子视为理想气体,质子可作为质点,其自由度 i =3,因此,质子的平均动能就等于平均平动动能.此外,由平均平动动能与温度的关系2/32/2kT m =v

,可得方均根速率2v .

解 (1) 由分析可得质子的平均动能为 J 1007.22/32/152k

-?===kT m v ε (2) 质子的方均根速率为

1-62s m 1058.13??==m

kT v 7 -9 日冕的温度为2.0 ×106K ,所喷出的电子气可视为理想气体.试求其中电子的方均根速率和热运动平均动能.

解 方均根速率

16e 2s m 105.93-??==m kT v 平均动能J 10142317k -?==./kT ε

7-10 在容积为2.0 ×10-3 m 3 的容器中,有内能

为6.75 ×102J 的刚性双原子分子某理想气体.(1)

求气体的压强;(2) 设分子总数为5.4×1022个,求分子的平均平动动能及气体的温度.

分析 (1) 一定量理想气体的内能RT i M m E 2

=,对刚性双原子分子而言,i =5.由上述内能公式和理想气体物态方程pV =νRT 可解出气体的压强.(2)求得压强后,再依据题给数据可求得分子数密度,则由公式p =nkT 可求气体温度.气体分子的平均平动动能可由23k /kT ε=求出.

解 (1) 由RT i E 2

ν=和pV =νRT 可得气体压强 Pa 1035.125?==iV

E p (2) 分子数密度n =N/V ,则该气体的温度

()()K 1062.3//2

?===nk pV nk p T 气体分子的平均平动动能为

J

104972321k -?==./kT ε 7 -11 当温度为0C 时,可将气体分子视为刚

性分子,求在此温度下:(1)氧分子的平均动能和平均转动动能;(2)kg 10

0.43-?氧气的内能;(3)kg 100.43-?氦气的内能.

分析 (1)由题意,氧分子为刚性双原子分子,则其共有5个自由度,其中包括3个平动自由度和

2个转动自由度.根据能量均分定理,平均平动动能kT 23kt =ε,平均转动动能kT kT ==2

2kr ε.(2)对一定量理想气体,其内能为RT i M m

E 2'=,它是温度的单值函数.其中i 为分子自由度,这里氧气i =5、氦气i =3.而m '为气体质量,M 为气体摩尔质量,其中氧气13mol kg 1032--??=M ;

氦气13mol kg 100.4--??=M .代入数据即可求解它们的内能.

解 根据分析当气体温度为T=273 K 时,可得

(1)氧分子的平均平动动能为

J 107.52

321kt -?==kT ε 氧分子的平均转动动能为

J 108.32

221kr -?==kT ε (2)氧气的内能为

J 10 7.1J 27331.82

51032100.42233?=?????='=--RT i M m E (3)氦气的内能为

J 10 3.4J 27331.82

3100.4100.42333?=?????='=--RT i M m E 7 -12 已知质点离开地球引力作用所需的逃逸速率为gr v 2=,其中r 为地球半径.(1) 若使氢气分子和氧气分子的平均速率分别与逃逸速率相

等,它们各自应有多高的温度;(2) 说明大气层中为什么氢气比氧气要少.(取r =6.40 ×106 m) 分析 气体分子热运动的平均速率M RT

π8=v ,对于

摩尔质量M 不同的气体分子,为使v 等于逃逸速率v ,所需的温度是不同的;如果环境温度相同,则摩尔质量M 较小的就容易达到逃逸速率. 解 (1) 由题意逃逸速率gr 2=

v ,而分子热运动的平均速率M RT

π8=v .当v v = 时,有

R

Mrg T 4π= 由于氢气的摩尔质量13H mol kg 10022--??=.M

,氧气的摩尔质量12O mol kg 10232--??=.M ,则它们达到逃逸速率时

所需的温度分别为 K

10891K,101815O 4H 22?=?=..T T (2) 根据上述分析,当温度相同时,氢气的平均速率比氧气的要大(约为4倍),因此达到逃逸速率的氢气分子比氧气分子多.按大爆炸理论,宇宙在形成过程中经历了一个极高温过程.在地球形成的初期,虽然温度已大大降低,但温度值还是很高.因而,在气体分子产生过程中就开始有分子逃逸地球,其中氢气分子比氧气分子更易逃逸.

另外,虽然目前的大气层温度不可能达到上述计算结果中逃逸速率所需的温度,但由麦克斯韦分子速率分布曲线可知,在任一温度下,总有一些气体分子的运动速率大于逃逸速率.从分布曲线也可知道在相同温度下氢气分子能达到逃逸速率的可能性大于氧气分子.故大气层中氢气比氧气要少.

7-13 容积为1 m 3 的容器储有1 mol 氧气,以v =10-1

s m ?的速度运动,设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能.试求气体的温度及压强各升高了多少. 分析 容器作匀速直线运动时,容器内分子除了相对容器作杂乱无章的热运动外,还和容器一起

作定向运动.其定向运动动能(即机械能)为2

21

mv .按照题意,当容器突然停止后,80%定向运动动能转为系统的内能.对一定量理想气体内能是温度的单值函数,则有关系式:

T R M m v m E Δ25%8021Δ2'=?'=成立,从而可求ΔT .再利用理

想气体物态方程,可求压强的增量.

解 由分析知T R M m m E Δ2

528.0Δ2?'='=v ,其中m '为容器内

氧气质量.又氧气的摩尔质量为12m ol kg 10

23--??=.M ,解得

ΔT =6.16 ×10-2 K

当容器体积不变时,由pV =M m RT 得

Pa 51.0ΔΔ==T V R M m p

7-14 有N 个质量均为m 的同种气体分子,它们的速率分布如图所示.(1) 说明曲线与横坐标所包围的面积的含义;(2) 由N 和0

v 求a 值;(3) 求在速率0v /2到30

v /2 间隔内的分子数;(4) 求分子的平均平动动能.

题 7-14 图

分析 处理与气体分子速率分布曲线有关的问题时,关键要理解分布函数

()v f 的物理意义. ()υd d N N

f =v ,题中纵坐标()v v d /d N Nf =,即处于速率v 附

近单位速率区间内的分子数.同时要掌握()v f 的归一化条件,即()1d 0

=?∞

v v f .在此基础上,根据分布函

数并运用数学方法(如函数求平均值或极值等),即可求解本题.

解 (1) 由于分子所允许的速率在0 到20

v 的范围内,由归一化条件可知图中曲线下的面积

()N Nf S v ==?v v d 0

20

即曲线下面积表示系统分子总数N .

(2 ) 从图中可知,在0 到0v 区间内,()0/v v v a Nf =;而在0 到20

v 区间,()αNf =v .则利用归一化条件有 v v v v v ??+=000

200d d v v a a N

(3) 速率在0v /2到30

v /2间隔内的分子数为 12/7d d Δ2/300000

N a a N =+=??v v v v v v v

(4) 分子速率平方的平均值按定义为

()v v f v v v d /d 0

2

022??∞∞==N N 故分子的平均平动动能为

20220302k 3631d d 21210

0v v v v v v v v v v m N a N a m m =??????+==??ε 7-15 一飞机在地面时,机舱中的压力计指示为Pa 100115?.,到高空后压强降为Pa 101184?..设大气的

温度均为27.0℃.问此时飞机距地面的高度为多少?(设空气的摩尔质量为2.89 ×10-2

kg·mol -1 )

分析 当温度不变时,大气压强随高度的变化主

要是因为分子数密度的改变而造成.气体分子在重力场中的分布满足玻耳兹曼分布.利用地球表面附近气压公式()kT mgh p p /ex p 0

-=,即可求得飞机的高度h .式中p 0 是地面的大气压强.

解 飞机高度为

()()m 1093.1/ln /ln 300?===p p Mg RT p p mg kT h

7 -16 目前实验室获得的极限真空约为

1.33×10-11Pa ,这与距地球表面1.0×104km 处的压强大致相等.而电视机显像管的真空度为

1.33×10-3 Pa ,试求在27 ℃时这两种不同压强下单位体积中的分子数及分子的平均自由程.(设气体分子的有效直径d =3.0×10-8cm)

解 理想气体分子数密度和平均自由程分别为n =k T p ;p d kT

λ2π2=,压强为

1.33×10-11Pa 时, -3

9m 1021.3/?==kT p n m 108.7π282?==p

d kT λ 从λ的值可见分子几乎不发生碰撞.压强为

1.33×10-3

Pa 时,

3-17m 1021.3?==kT p n ,m 8.7π22==p d kT λ

此时分子的平均自由程变小,碰撞概率变大.但相对显像管的尺寸而言,碰撞仍很少发生. 7-17 在标准状况下,1 cm 3

中有多少个氮分子?氮分子的平均速率为多大?平均碰撞次数为多少?平均自由程为多大?(已知氮分子的有效直径m 1076.310-?=d )

分析 标准状况即为压强Pa 10013.15?=p ,温度

K 273=T .则由理想气体物态方程nkT p =可求得气体分子数密度n ,即单位体积中氮分子的个数.而氮气分子的平均速率、平均碰撞次数和平均自由程可分别由公式M RT v π8=,n v d Z 2π2=和n d 2π21=λ直接求出.

解 由分析可知,氮分子的分子数密度为

325m 1069.2-?==

kT p n 即3cm 1中约有191069.2?个.

氮气的摩尔质量为M =28 ×10-3 kg·mol -1,其平均速率为

M RT

v π8==454 1s m -?

则平均碰撞次数为

-192s 107.7π2?==n v d Z

平均自由程为

m 106π2182-?==n

d λ 讨论 本题主要是对有关数量级有一个具体概念.在通常情况下,气体分子平均以每秒几百米的速率运动着,那么气体中进行的一切实际过程如扩散过程、热传导过程等好像都应在瞬间完成,而实际过程都进行得比较慢,这是因为分子间每秒钟上亿次的碰撞导致分子的自由程只有几十纳米,因此宏观上任何实际过程的完成都需要一段时间.

7-18 在一定的压强下,温度为20℃时,氩气和氮气分子的平均自由程分别为9.9×10-8m 和27.5×10-8m.试求:(1) 氩气和氮气分子的有效直径之比;(2) 当温度不变且压强为原值的一半时,氮气分子的平均自由程和平均碰撞频率.

分析 ( 1 ) 气体分子热运动的平均自由程()p d kT n d 22π2/π21==λ,因此,温度、压强一定时,平均自由程2

/1d λ∝.(2) 当温度不变时,平均自由程p λ/1∝.

解 (1) 由分析可知

67.1//r 22r A N N A ==λλd d

(2) 由分析可知氮气分子的平均自由程在压强降为原值的一半时,有

m 105.527N N 22-?=='λλ

而此时的分子平均碰撞频率 22222N N N N N 2π/8λM RT λZ ='=v

将T =293K ,

M N2 =2.8×10-2 kg·mol -1 代入,可得

-18N s 1056.82?=Z

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

物理学教程(第二版)(上册)课后答案

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( )

物理学教程第二版下册课后答案

第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为 2εσ ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说法正确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ). 9-3 下列说法正确的是( ) (A ) 电场强度为零的点,电势也一定为零 (B ) 电场强度不为零的点,电势也一定不为零 (C ) 电势为零的点,电场强度也一定为零 (D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零 分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ). *9-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

物理学教程(第二版)上册课后答案第六章

AHA12GAGGAGAGGAFFFFAFAF 第六章 机 械 波 6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( ) 题6-1 图 (A) 均为零 (B) 均为2 π (C) 均为2 π- (D) 2π 与2π- (E) 2π-与2 π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ).

6-2 一横波以速度u沿x轴负方向传播,t时刻波形曲线如图(a)所示,则该时刻() (A)A点相位为π(B)B点静止不动 (C)C点相位为 2 π3(D)D点向上运动 分析与解由波形曲线可知,波沿x轴负向传播,B、D处质点均向y轴负方向运动,且B处质点在运动速度最快的位置. 因此答案(B)和(D)不对. A处质点位于正最大位移处,C 处质点位于平衡位置且向y轴正方向运动,它们的旋转矢量图如图(b)所示.A、C点的相位分别为0和 2 π3.故答案为(C) 题 6-2 图 6-3如图所示,两列波长为λ的相干波在点P相遇.波在点S1振动的初相是φ1,点S1到点P的距离是r1.波在点S2的初相是φ2,点S2到点P的距离是r2,以k代表零或正、负整数,则点P是干涉极大的条件为() AHA12GAGGAGAGGAFFFFAFAF

大学物理下册知识点总结

大学物理下册 学院: 姓名: 班级: 第一部分:气体动理论与热力学基础 一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→= ;m PV RT M ' =;P nkT = 8.31J R k mol =g;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k =g 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 中心位置:3(平动自由度)直线方位:2(转动自由度)共5个 3.气体分子的自由度 单原子分子 (如氦、氖分子)3 i=;刚性双原子分子5 i=;刚性多原子分子6 i= 4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 1 2 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为: 2 k i kT ε= 五. 理想气体的内能(所有分子热运动动能之和) 1.1mol理想气体 2 i E RT = 5.一定量理想气体( 2 i m E RT M νν ' == 九、气体分子速率分布律(函数)

物理学教程(第二版)-马文蔚下册公式原理整理(1)

物理期末知识点整理 1、 计算题知识点 1) 电荷在电场中运动,电场力做功与外力做功的总的显影使得带电粒子动能增加。 2) 球面电荷均匀分布,在球内各点激发的电势,特别是在球心激发的电势(根据高斯定理,球面内的电场强度为零,球内的电势与球面的电势相等 04q R επε= ,电势满足叠加原理) 3) 两个导体球相连接电势相等。 4) 载流直导线在距离r 处的磁感应强度02I B r μπ= ,导线在磁场中运动产生的感应电动势。(电场强度02E r λπε= )t φ ξ=- 5) 载流直导线附近的线框运动产生的电动势。 6) 已知磁场变化,求感应电动势的大小和方向。 7) 双缝干涉,求两侧明纹间距,用玻璃片覆盖其中的一缝,零级明纹的移 动情况。(两明纹间距为' d d d λ?= ,要求两侧明纹的间距,就是要看他们之间有多少个d ?,在一缝加玻璃片,使得一端的光程增加,要使得两侧光程相等,光应该向加玻璃片的一方移动) 8) 牛顿环暗环公式,理解第几暗环的半径与k 的关系。(r =k=0、1、2…..)) 9) 光栅方程,光栅常数,第几级主极大与相应的衍射角,相应的波长,每厘米刻线条数,第一级谱线的衍射角(光栅明纹方程(')sin b b k θλ+=±(k=0、1、2….)暗纹方程(')sin (21)/2b b k θλ+=±+(k=0、1、2….)光栅常数为'b b +) 10) 布鲁斯特定律,入射角与折射角的关系2 1 tan b n n θ= 2、 电场强度的矢量合成 3、 电荷正负与电场线方向的关系(电场线从正电荷发出,终止于负电荷) 4、 安培环路定理0Bdl I μ=?。 5、 导线在磁场中运动(产生感应电动势),电流在磁场中运动受到安培力的作用。 6、 干涉条件(频率相同,相位相等或相位差恒定,振动方向相同) b θ

物理学教程第二版全复习提纲

大学物理复习提纲 大学物理1 第一章 质点运动学 教学要求: 1.质点平面运动的描述,位矢、速度、加速度、平均速度、平均加速度、轨迹方程。 2.圆周运动,理解角量和线量的关系,角速度、角加速度、切向加速度、法向加速度。 主要公式: 1.笛卡尔直角坐标系位失r=x i +y j +z k , 质点运动方程(位矢方程):k t z j t y i t x t r )()()()( 参数方程:。t t z z t y y t x x 得轨迹方程消去 )()() ( 2.速度:dt r d v 3.加速度:dt v d a 4.平均速度:t r v 5.平均加速度:t v a 6.角速度:dt d 7.角加速度:dt d 8.线速度与角速度关系: R v 9.切向加速度: R dt dv a 10.法向加速度:R v R a n 2 2 11.总加速度:2 2n a a a 第二章 牛顿定律 教学要求:

1.牛顿运动三定律及牛顿定律的应用。 2.常见的几种力。 主要公式: 1.牛顿第一定律:当0 合外F 时,恒矢量 v 。 2.牛顿第二定律:dt P d dt v d m a m F 3.牛顿第三定律(作用力和反作用力定律):F F 第三章 动量和能量守恒定律 教学要求: 1.质点的动量定理、质点系的动量定理和动量守恒定律。 2.质点的动能定理,质点系的动能定理、机械能守恒定律。 3.变力做功。 4.保守力做功的特点。 主要公式: 1.动量定理:P v v m v m dt F I t t )(1221 2.动量守恒定律:0,0 P F 合外力 当合外力 3. 动能定理:)(2 1212 22 1v v m E dx F W x x k 合 4.机械能守恒定律:当只有保守内力做功时,0 E 第四章 刚体 教学要求: 1. 刚体的定轴转动,会计算转动惯量。 2.刚体定轴转动定律和角动量守恒定律。 主要公式: 1. 转动惯量: r dm r J 2 是转动惯性大小的量度. 与三个因素有关:(刚体质量,质量分布,转轴位置.) 2. 平行轴定理:2 md J J c

物理学教程第二版马文蔚下册课后答案完整版

第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A ) 放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随 位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因 而正确答案为(B ). 9-2 下列说法正确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面 的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线 数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不 可能为零,因而正确答案为(B ). 9-3 下列说法正确的是( ) (A ) 电场强度为零的点,电势也一定为零 (B ) 电场强度不为零的点,电势也一定不为零

(C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域内为常量,则电场强度在该区域内必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题9-4 图 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.

关于物理学教程下册考试答案

9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.解1 由 于 闭 合 曲 面 内 无 电 荷 分 布 , 根 据 高 斯 定 理 , 有 ??' ?-=?=S S S E S E Φd d ; 依照约定取闭合曲面的外法线方向为面元d S 的方向, E R R E 22ππcos π=??-=Φ 9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布. 解 依照上述分析,由高斯定理可得;R r < 时, 3 02π3 4π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为 r E 03ερ= ;R r >时,3 02π3 4π4R E r ερ=考虑到电场强度沿径向朝外,带电球体外的电场强度为r e r R E 203 3ερ= 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功. 解1 由题意Q 1 所受的合力为零; () 02π4π42 0312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-= 由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为 ( ) 2 /322 031π2y d εQ E E E y y y += +=; 将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为 9-18 一个球形雨滴半径为 mm ,带有电量 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大? 解 根据已知条件球形雨滴半径R 1= mm ,带有电量q 1= pC ,可以求得带电球形雨滴表面电势 V 36π411 1 01== R q εV ; 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨 滴表面电势V 5722π411 3 1 02 == R q εV 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少? 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

物理学教程(第二版)上册课后答案7

第七章 气体动理论 7 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( ) (A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强 分析与解 理想气体分子的平均平动动能23k /kT =ε,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程,当两者分子数密度n 相同时,它们压强也相同.故选(C). 7-2 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比 ()()() 4:2:1::2/12C 2/12B 2/12A =v v v ,则其压强之比C B A ::p p p 为( ) (A) 1∶2∶4 (B) 1∶4∶8 (C) 1∶4∶16 (D) 4∶2∶1 分析与解 分子的方均根速率为 M RT /3=2v ,因此对同种理想气体有 3212C 2B 2A ::::T T T =v v v ,又由物态方程nkT ρ,当三个容器中分子数密度n 相 同时,得16:4:1::::321321==T T T p p p .故选(C). 7 -3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ ,当气体温度升高为04T 时,气体分子的平均速率v 、平均碰撞频率Z 和平均自由程λ分别为( ) (A) 004,4,4λλZ Z ===0v v (B) 0022λλ===,,Z Z 0v v (C) 00422λλ===,,Z Z 0v v (D) 00,2,4λλ===Z Z 0v v 分析与解 理想气体分子的平均速率M RT π/8=v ,温度由0T 升至04T ,则平均速率变为0v 2;又平均碰撞频率v n d Z 2π2= ,由于容器体积不变,即分子数密度n 不变,则平 均碰撞频率变为0Z 2;而平均自由程n d 2 π21 =λ,n 不变,则λ也不变.因此正确答案为(B). nkT p =

《大学物理 》下期末考试 有答案

《大学物理》(下)期末统考试题(A 卷) 说明 1考试答案必须写在答题纸上,否则无效。请把答题纸撕下。 一、 选择题(30分,每题3分) 1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为: (A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ 参考解:v =dx/dt = -A ωsin (ωt+φ) ,cos )sin(2 4/?ω?ωπA A v T T t -=+?-== ∴选(C) 2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(221242122122 1221=-=kA k kA kA mv A ∴选(E ) 3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. 参考解:这里的条件是“平面简谐波在弹性媒质中传播”。由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。∴选(D )

4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜 的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1 <n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜 上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。两束光分别经上下表面反射时,都是波疏媒质到波密媒质的界面的反射,同时存在着半波损失。所以,两束反射光的光程差是2n 2 e 。 ∴选(A ) 5.波长λ=5000?的单色光垂直照射到宽度a=0.25mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离d=12mm ,则凸透镜的焦距f 为: (A) 2m (B) 1m (C) 0.5m (D) 0.2m ; (E) 0.1m 参考解:由单缝衍射的暗纹公式, asin φ = 3λ, 和单缝衍射装置的几何关系 ftg φ = d/2, 另,当φ角很小时 sin φ = tg φ, 有 1103 310500061025.0101232==?=---?????λa d f (m ) , ∴选(B ) 6.测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉 (B) 牛顿环 (C) 单缝衍射 (D) 光栅衍射 参考解:从我们做过的实验的经历和实验装置可知,最为准确的方法光栅衍射实验,其次是牛顿环实验。 ∴选(D ) 7.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为 (A) I 0 / 8. (B) I 0 / 4. (C) 3 I 0 / 8. (D) 3 I 0 / 4. 参考解:穿过第一个偏振片自然光的光强为I 0/2。随后,使用马吕斯定律,出射光强 10201 60cos I I I == ∴ 选(A ) n 3

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

物理学教程(第二版)上册课后答案4.5单元

第四章刚体的转动 4-1有两个力作用在一个有固定转轴的刚体上: (1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零. 对上述说法下述判断正确的是( ) (A)只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误 (C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(3)、(4)都正确 分析与解力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B). 4-2关于力矩有以下几种说法: (1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零; (3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同. 对上述说法下述判断正确的是( ) (A)只有(2)是正确的 (B)(1)、(2)是正确的 (C)(2)、(3)是正确的 (D)(1)、(2)、(3)都是正确的 分析与解刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B). 4-3均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( ) (A)角速度从小到大,角加速度不变 (B)角速度从小到大,角加速度从小到大 (C)角速度从小到大,角加速度从大到小 (D)角速度不变,角加速度为零

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

物理学教程(第二版)上册课后答案第六章

物理学教程(第二版)上册课后答案第六章

第六章 机 械 波 6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( ) 题6-1 图 (A) 均为零 (B) 均为2π (C) 均为2 π- (D) 2π 与2 π - (E) 2π-与2 π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻() (A )A 点相位为 π (B )B 点静止不动 (C )C 点相位为 2 π3 (D )D 点向上运动 分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和 2 π3.故答案为(C ) 题 6-2 图 6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )

物理学教程(第二版)上册课后习题答案详解

物理学教程(第二版)上册习题答案 第一章 质点运动学 1 -1 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =| r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′ 无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故 t s t ΔΔΔΔ≠ r ,即|v |≠v . 但由于|d r |=d s ,故 t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 分析与解 t r d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的 一个分量;t d d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式 2 2d d d d ?? ? ??+??? ??=t y t x v 求解.故选(D). 1 -3 分析与解 t d d v 表示切向加速度a t ,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用; t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t .因此 只有(3) 式表达是正确的.故选(D). 1 -4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B). 1 -5 解 (1) 质点在4.0 s 内位移的大小 m 32Δ04-=-=x x x (2) 由 0d d =t x 得知质点的换向时刻为 s 2=p t (t =0不合题意) 则 m 0.8Δ021=-=x x x m 40Δ242-=-=x x x 所以,质点在4.0 s 时间间隔内的路程为

相关文档
最新文档