物理学教程(第二版) 马文蔚上册公式原理整理

物理学教程(第二版) 马文蔚上册公式原理整理
物理学教程(第二版) 马文蔚上册公式原理整理

整理人:周潘勇

1

物理公式汇总

1、 角加速度 α=

2、

3、 圆周运动中v=r ω

4、 切向加速度 a t =r α

法向加速度 a n =r ω2 5、 力矩M=r ×

F=rFsin θ=J

α= 6、 M=αΣr i m i

7、 转动惯量J=Σr i 2

i =∫r 2dm 8、

9、 角动量L=r ×p=r ×m v=mR 2ω=J ω 10、∫t1t2Mdt=J 2ω2-J 1ω1

11、力矩的功 W=M θ=∫Md θ 12、力矩的功率 P=M ω 13、功W=1/2Jw 22-1/2Jw 12 14、弹簧振子

F=-kx=ma a=-kx/m

15、周期 T=2π/ω

弹簧振子的角速度 ω=√k/m 周期 T=2π√m/k 16、频率 γ=1/T=ω/2π

d ω

dt ω=ω0

+αt

ω2=ω02+2α(θ-θ0) θ=θ0+ω0t+1/2αt 2 dL dt m,l

m,l m,r m,r J=ml 2/12 J=ml 2/3 J=mr 2/2 J=mr 2

圆盘 圆环

整理人:周潘勇

2 角频率/圆频率 ω=2πγ

17、简谐运动的合成(注意要将所有的都化成余弦才能做) X 1=A 1cos(ωt+θ1) X 2=A 2cos(ωt+θ2) X=Acos(ωt+θ)

A=√A 12+A 22+2A 1A 2cos(θ2-θ1)

tan θ=

18、简谐运动的能量

Ek=1/2m ω2A 2sin 2(ωt+θ) Ep=1/2kA 2cos 2(ωt+θ) E=1/2kA 2 19、波的传播方程

向右传播 y=Acos[ω(t-x/u)+θ] y=Acos[2π(t/T-x/λ)+θ] y=Acos (ωt-2πx/λ+θ) 向左传播 y=Acos[ω(t+x/u)+θ] 20、T=273+t(K)

21、标准大气压 1atm=1.013×105pa

22、 23、PV=NkT=γRT=m/MRT P=nkT

k=R/N=1.38×10-23J/K R=8.31J/mol

24、分子数密度 n=N/V 25、V x 2=V y 2=V z 2=1/3V 2

26、P=1/3nmV 2=2/3n(1/2mV 2)

=2/3n εk

27、平均平动动能 εk =3/2kT 28、自由度为i 的分子的平均能量 ε=i/2kT

29、理想气体的内能 E=γi/2RT

单原子 双原子分子 三原子分子 分子 刚性 刚性 自由度(i) 3(平) 5=3(平)+2(转) 6=3(平)+3()

30、三种速率的比较

A 1sin θ1+A 2sin θ2

A 1cos θ1+A 2cos θ2 P 1V 1

T 1 P 2V 2

T 2

= 最慨然速率 Vp=√2kT/m=√2RT/M 平均速率 v=√8kT/πm=√8RT/πM

方均根速率 vrms=√v 2=√3kT/m=√3RT/M

整理人:周潘勇

3

31、相同温度下,不同气体,质量越大,速度越小,在左边

32、万有引力做功只取决于质点m 的起始和终了位置,而与所经过的路径无关

W=Gm ’m (1/r B -1/r A ) 33、弹性力做功

W= - (1/2kx 22-1/2kx 12)

34、物体沿任意闭合路径运动一周,保守力对它所作的功为零 35、平均自由程

Z=√2πd 2vn

λ=

36、W=

v1v2

pdV

系统所作的功不仅与系统的始末状态有关,而且还与路径有关 37、热力学第一定律

38、

39、C p.m -C v.m =R C p.m =(i/2)R C v.m =[(i+2)/2]R

v λ = Z

kT

√2πd 2p C p.m

γ =

C v.m 40、热机的效率η=W/Q 1=(Q 1-Q 2)/Q 1=1-Q 2/Q 1

Q 1为吸收的高温热源的能量 Q 2为向低温热源放出的能量 制冷剂效率 e=Q 2/W=Q 2/(Q 1-Q 2)

Q 2为吸收的低温热源的能量 Q 1为向高温热源放出的能量 卡诺热机η=1-T 2-T 1 卡诺制冷剂e=T 2/(T 1-T 2) 41、在p-V 图上按顺时针方向进行循环的过程叫做正循环,是热机 按逆时针方向进行循环的过程叫做逆循环,是制冷剂

物理学教程(第二版)-马文蔚下册公式原理整理(1)

物理期末知识点整理 1、 计算题知识点 1) 电荷在电场中运动,电场力做功与外力做功的总的显影使得带电粒子动能增加。 2) 球面电荷均匀分布,在球内各点激发的电势,特别是在球心激发的电势(根据高斯定理,球面内的电场强度为零,球内的电势与球面的电势相等 04q R επε= ,电势满足叠加原理) 3) 两个导体球相连接电势相等。 4) 载流直导线在距离r 处的磁感应强度02I B r μπ= ,导线在磁场中运动产生的感应电动势。(电场强度02E r λπε= )t φ ξ=- 5) 载流直导线附近的线框运动产生的电动势。 6) 已知磁场变化,求感应电动势的大小和方向。 7) 双缝干涉,求两侧明纹间距,用玻璃片覆盖其中的一缝,零级明纹的移 动情况。(两明纹间距为' d d d λ?= ,要求两侧明纹的间距,就是要看他们之间有多少个d ?,在一缝加玻璃片,使得一端的光程增加,要使得两侧光程相等,光应该向加玻璃片的一方移动) 8) 牛顿环暗环公式,理解第几暗环的半径与k 的关系。(r =k=0、1、2…..)) 9) 光栅方程,光栅常数,第几级主极大与相应的衍射角,相应的波长,每厘米刻线条数,第一级谱线的衍射角(光栅明纹方程(')sin b b k θλ+=±(k=0、1、2….)暗纹方程(')sin (21)/2b b k θλ+=±+(k=0、1、2….)光栅常数为'b b +) 10) 布鲁斯特定律,入射角与折射角的关系2 1 tan b n n θ= 2、 电场强度的矢量合成 3、 电荷正负与电场线方向的关系(电场线从正电荷发出,终止于负电荷) 4、 安培环路定理0Bdl I μ=?。 5、 导线在磁场中运动(产生感应电动势),电流在磁场中运动受到安培力的作用。 6、 干涉条件(频率相同,相位相等或相位差恒定,振动方向相同) b θ

物理学教程(第二版)(上册)课后答案

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( )

物理化学主要公式及使用条件(上册)

物理化学主要公式及使用条件 第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。

3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m nRT nb V V an p =-+))(/(22 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。 此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。 6. 维里方程 ......)///1(3m 2m m m ++++=V D V C V B RT pV 及 ......)1(3'2''m ++++=p D p C p B RT pV 上式中的B ,C ,D,…..及B?,C?,D?….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。 适用的最高压力为1MPa 至2MPa ,高压下仍不能使用。 7. 压缩因子的定义 )/()/(m RT pV nRT pV Z == Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。

物理学教程(马文蔚、周雨青)上册课后答案 五

第五章 机械振动 5-1 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2 A - ,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( ) 题5-1 图 分析与解(B )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向Ox 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(B ). 5-2 一简谐运动曲线如图(a )所示,则运动周期是( ) (A) 2.62 s (B) 2.40 s (C) 2.20 s (D )2.00 s 题5-2 图 分析与解 由振动曲线可知,初始时刻质点的位移为 A /2,且向x 轴正方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为-.振动曲线上给出质点从A /2 处运动到x =0处所需时间为1 s ,由对应旋转矢量图可知相应的相位差65232πππ?=+=?,则角频率1s rad 65Δ/Δ-?==π?ωt ,周期 s 40.22==ω πT .故选(B ). 5-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( ) (A ) 落后2π (B )超前2 π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(B ).

题5 -3 图 5-4 两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为( ) (A ) 60 (B )90 (C )120 (D )180 分析与解 由旋转矢量图可知两个简谐运动1和2的相位差为120 时,合成后的简谐运动3的振幅仍为A .正确答案为(C ). 题5-4 图 5-5 若简谐运动方程为?? ? ?? +=4ππ20cos 10.0t x ,式中x 的单位为m ,t 的单位为s.求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度. 分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()?ω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果. 解 (1) 将()()m π25.0π20cos 10.0+=t x 与()?ω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1 s rad π20-?=ω,初相?=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v . (2)s 2=t 时的位移、速度、加速度分别为 ()m 1007.7π25.0π40cos 10.02-?=+=t x ()-1s m 44.4π25.0π40sin π2d /d ?-=+-==t x v ()-22222s m 1079.2π25.0π40cos π40d /d ??-=+-==t x a

物理学教程(第二版)上册课后答案第六章

AHA12GAGGAGAGGAFFFFAFAF 第六章 机 械 波 6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( ) 题6-1 图 (A) 均为零 (B) 均为2 π (C) 均为2 π- (D) 2π 与2π- (E) 2π-与2 π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ).

6-2 一横波以速度u沿x轴负方向传播,t时刻波形曲线如图(a)所示,则该时刻() (A)A点相位为π(B)B点静止不动 (C)C点相位为 2 π3(D)D点向上运动 分析与解由波形曲线可知,波沿x轴负向传播,B、D处质点均向y轴负方向运动,且B处质点在运动速度最快的位置. 因此答案(B)和(D)不对. A处质点位于正最大位移处,C 处质点位于平衡位置且向y轴正方向运动,它们的旋转矢量图如图(b)所示.A、C点的相位分别为0和 2 π3.故答案为(C) 题 6-2 图 6-3如图所示,两列波长为λ的相干波在点P相遇.波在点S1振动的初相是φ1,点S1到点P的距离是r1.波在点S2的初相是φ2,点S2到点P的距离是r2,以k代表零或正、负整数,则点P是干涉极大的条件为() AHA12GAGGAGAGGAFFFFAFAF

物理学教程第二版全复习提纲

大学物理复习提纲 大学物理1 第一章 质点运动学 教学要求: 1.质点平面运动的描述,位矢、速度、加速度、平均速度、平均加速度、轨迹方程。 2.圆周运动,理解角量和线量的关系,角速度、角加速度、切向加速度、法向加速度。 主要公式: 1.笛卡尔直角坐标系位失r=x i +y j +z k , 质点运动方程(位矢方程):k t z j t y i t x t r )()()()( 参数方程:。t t z z t y y t x x 得轨迹方程消去 )()() ( 2.速度:dt r d v 3.加速度:dt v d a 4.平均速度:t r v 5.平均加速度:t v a 6.角速度:dt d 7.角加速度:dt d 8.线速度与角速度关系: R v 9.切向加速度: R dt dv a 10.法向加速度:R v R a n 2 2 11.总加速度:2 2n a a a 第二章 牛顿定律 教学要求:

1.牛顿运动三定律及牛顿定律的应用。 2.常见的几种力。 主要公式: 1.牛顿第一定律:当0 合外F 时,恒矢量 v 。 2.牛顿第二定律:dt P d dt v d m a m F 3.牛顿第三定律(作用力和反作用力定律):F F 第三章 动量和能量守恒定律 教学要求: 1.质点的动量定理、质点系的动量定理和动量守恒定律。 2.质点的动能定理,质点系的动能定理、机械能守恒定律。 3.变力做功。 4.保守力做功的特点。 主要公式: 1.动量定理:P v v m v m dt F I t t )(1221 2.动量守恒定律:0,0 P F 合外力 当合外力 3. 动能定理:)(2 1212 22 1v v m E dx F W x x k 合 4.机械能守恒定律:当只有保守内力做功时,0 E 第四章 刚体 教学要求: 1. 刚体的定轴转动,会计算转动惯量。 2.刚体定轴转动定律和角动量守恒定律。 主要公式: 1. 转动惯量: r dm r J 2 是转动惯性大小的量度. 与三个因素有关:(刚体质量,质量分布,转轴位置.) 2. 平行轴定理:2 md J J c

物理化学公式大全

物理化学公式集 热力学第一定律 功:δW=δW e+δW f (1)膨胀功δW e=p外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f=xdy 非膨胀功为广义力乘以广义位移。如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。热Q:体系吸热为正,放热为负。 热力学第一定律:△U=Q—W 焓H=U+pV 理想气体的内能和焓只是温度的单值函数。 热容C=δQ/dT (1)等压热容:C p=δQ p/dT=(?H/?T)p (2)等容热容:C v=δQ v/dT=(?U/?T)v 常温下单原子分子:C v,m=C v,m t=3R/2 常温下双原子分子:C v,m=C v,m t+C v,m r=5R/2 等压热容与等容热容之差: (1)任意体系C p—C v=[p+(?U/?V)T](?V/?T)p (2)理想气体C p—C v=nR 理想气体绝热可逆过程方程: pVγ=常数TVγ-1=常数p1-γTγ=常数γ=C p/ C v 理想气体绝热功:W=C v(T1—T2)=(p1V1—p2V2) 理想气体多方可逆过程:W=(T1—T2) 热机效率:η=冷冻系数:β=-Q1/W 可逆制冷机冷冻系数:β=

焦汤系数:μJ-T==- 实际气体的ΔH和ΔU: ΔU=+ΔH=+ 化学反应的等压热效应与等容热效应的关系:Q p=Q V+ΔnRT 当反应进度ξ=1mol时,Δr H m=Δr U m+RT 化学反应热效应与温度的关系: 热力学第二定律 Clausius不等式: 熵函数的定义:dS=δQ R/T Boltzman熵定理:S=klnΩ Helmbolz自由能定义:F=U—TS Gibbs自由能定义:G=H-TS 热力学基本公式: (1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程: dU=TdS-pdV dH=TdS+Vdp dF=-SdT-pdV dG=-SdT+Vdp (2)Maxwell关系: ==- (3)热容与T、S、p、V的关系: C V=T C p=T Gibbs自由能与温度的关系:Gibbs-Helmholtz公式=- 单组分体系的两相平衡: (1)Clapeyron方程式:=式中x代表vap,fus,sub。 (2)Clausius-Clapeyron方程式(两相平衡中一相为气相):= (3)外压对蒸汽压的影响:p g是在惰性气体存在总压为p e时的饱和蒸汽压。

物理学教程第二版马文蔚下册课后答案完整版

第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A ) 放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随 位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因 而正确答案为(B ). 9-2 下列说法正确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面 的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线 数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不 可能为零,因而正确答案为(B ). 9-3 下列说法正确的是( ) (A ) 电场强度为零的点,电势也一定为零 (B ) 电场强度不为零的点,电势也一定不为零

(C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域内为常量,则电场强度在该区域内必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题9-4 图 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.

物理化学公式大全

1. 热力学第一定律的数学表示式 W Q U +=?或 'amb δδδd δdU Q W Q p V W =+=-+ 系统得功为正,对环境作功为负。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1 d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热与恒压热 V Q U =? (d 0,'0)V W == p Q H =? (d 0,'0)p W == 6. 热容的定义式 (1)定压热容与定容热容 δ/d (/)p p p C Q T H T ==?? δ/d (/)V V V C Q T U T ==?? (2)摩尔定压热容与摩尔定容热容 ,m m /(/)p p p C C n H T ==?? ,m m /(/)V V V C C n U T ==?? 上式分别适用于无相变变化、无化学变化、非体积功为零的恒压与恒容过程。 (3)质量定压热容(比定压热容) 式中m 与M 分别为物质的质量与摩尔质量。 (4) ,m ,m p V C C R -= 此式只适用于理想气体。 7. 摩尔蒸发焓与温度的关系 2 1 vap m 2vap m 1vap ,m ()()d T p T H T H T C T ?=?+?? 式中 vap ,m p C ? = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。 8. 体积功 ,m //p p p c C m C M ==pV U H +=2 ,m 1d V U nC T ?=?

物理学教程(第二版)上册课后答案7

第七章 气体动理论 7 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( ) (A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强 分析与解 理想气体分子的平均平动动能23k /kT =ε,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程,当两者分子数密度n 相同时,它们压强也相同.故选(C). 7-2 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比 ()()() 4:2:1::2/12C 2/12B 2/12A =v v v ,则其压强之比C B A ::p p p 为( ) (A) 1∶2∶4 (B) 1∶4∶8 (C) 1∶4∶16 (D) 4∶2∶1 分析与解 分子的方均根速率为 M RT /3=2v ,因此对同种理想气体有 3212C 2B 2A ::::T T T =v v v ,又由物态方程nkT ρ,当三个容器中分子数密度n 相 同时,得16:4:1::::321321==T T T p p p .故选(C). 7 -3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ ,当气体温度升高为04T 时,气体分子的平均速率v 、平均碰撞频率Z 和平均自由程λ分别为( ) (A) 004,4,4λλZ Z ===0v v (B) 0022λλ===,,Z Z 0v v (C) 00422λλ===,,Z Z 0v v (D) 00,2,4λλ===Z Z 0v v 分析与解 理想气体分子的平均速率M RT π/8=v ,温度由0T 升至04T ,则平均速率变为0v 2;又平均碰撞频率v n d Z 2π2= ,由于容器体积不变,即分子数密度n 不变,则平 均碰撞频率变为0Z 2;而平均自由程n d 2 π21 =λ,n 不变,则λ也不变.因此正确答案为(B). nkT p =

马文蔚物理学教程测试卷_A

诚杜 姓专 学信考试 绝作弊 名 业班级 籍号 2030/ 2031学年《大学物理88学时》 复习 试卷 甲 此为非正规复习测试卷,总分100,小题每个2分,大题每个5分,采用减分制,剩下的算考勤 课程编号: 一、填空题(每空1分,共计20分) 1、1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 2、 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( ) (A) 不为零,但保持不变 (B) 随F N 成正比地增大 (C) 开始随F N 增大,达到某一最大值后,就保持不变 (D) 无法确定 3、对功的概念有以下几种说法: (1) 保守力作正功时,系统内相应的势能增加; (2) 质点运动经一闭合路径,保守力对质点作的功为零; (3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零. 下列上述说法中判断正确的是( ) (A) (1)、(2)是正确的 (B) (2)、(3)是正确的 (C) 只有(2)是正确的(D) 只有(3)是正确的 4、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L 以及圆盘的角速度ω的变化情况为( ) (A )L 不变,ω增大 (B )两者均不变 (C )L 不变,ω减小 (D )两者均不确定

物理学教程(第二版)上册课后答案4.5单元

第四章刚体的转动 4-1有两个力作用在一个有固定转轴的刚体上: (1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零. 对上述说法下述判断正确的是( ) (A)只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误 (C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(3)、(4)都正确 分析与解力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B). 4-2关于力矩有以下几种说法: (1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零; (3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同. 对上述说法下述判断正确的是( ) (A)只有(2)是正确的 (B)(1)、(2)是正确的 (C)(2)、(3)是正确的 (D)(1)、(2)、(3)都是正确的 分析与解刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B). 4-3均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( ) (A)角速度从小到大,角加速度不变 (B)角速度从小到大,角加速度从小到大 (C)角速度从小到大,角加速度从大到小 (D)角速度不变,角加速度为零

(完整word版)大学物理化学公式大全,推荐文档

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μJ -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

物理学教程(第二版)上册课后答案第六章

物理学教程(第二版)上册课后答案第六章

第六章 机 械 波 6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( ) 题6-1 图 (A) 均为零 (B) 均为2π (C) 均为2 π- (D) 2π 与2 π - (E) 2π-与2 π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻() (A )A 点相位为 π (B )B 点静止不动 (C )C 点相位为 2 π3 (D )D 点向上运动 分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和 2 π3.故答案为(C ) 题 6-2 图 6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )

物理化学公式汇总

第一章 气体的pVT 关系 主要公式及使用条件 1、 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 此式适用于理想气体,近似地适用于低压的真实气 体。 式中p ,V ,T 及n 单位分别为Pa,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8、314510 J · mol -1 · K -1,称为摩尔气体常数。 2、 气体混合物 (1) (1) 组成 摩尔分数 y B (或x B ) = ∑A A B / n n 体积分数 /y B m,B B *=V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。∑* A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总与。 (2) (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上述各式适用于任 意的气体混合物。 (3) V V p p n n y ///B B B B *=== 式中p B 为气体B,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3、 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 5、 范德华方程 RT b V V a p =-+))(/(m 2m

物理学教程(第二版)上册课后习题答案详解

物理学教程(第二版)上册习题答案 第一章 质点运动学 1 -1 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =| r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′ 无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故 t s t ΔΔΔΔ≠ r ,即|v |≠v . 但由于|d r |=d s ,故 t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 分析与解 t r d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的 一个分量;t d d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式 2 2d d d d ?? ? ??+??? ??=t y t x v 求解.故选(D). 1 -3 分析与解 t d d v 表示切向加速度a t ,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用; t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t .因此 只有(3) 式表达是正确的.故选(D). 1 -4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B). 1 -5 解 (1) 质点在4.0 s 内位移的大小 m 32Δ04-=-=x x x (2) 由 0d d =t x 得知质点的换向时刻为 s 2=p t (t =0不合题意) 则 m 0.8Δ021=-=x x x m 40Δ242-=-=x x x 所以,质点在4.0 s 时间间隔内的路程为

物理学教程(第二版)上册课后答案7

物理学教程(第二版)上册课后答案7

第七章 气体动理论 7 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( ) (A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强 分析与解 理想气体分子的平均平动动能23k /kT =ε,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程nkT p =,当两者分子数密度n 相同时,它们压强也相同.故选(C). 7-2 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比()()()4:2:1::2/12C 2/12B 2 /12A =v v v ,则其压强之比C B A ::p p p 为 ( ) (A) 1∶2∶4 (B) 1∶4∶8 (C) 1∶4∶16 (D) 4∶2∶1 分析与解 分子的方均根速率为 M RT /3=2v ,因此对同种理想气体有3212C 2B 2A ::::T T T =v v v ,又由 物态方程nkT ρ,当三个容器中分子数密度n 相同

时,得16:4:1::::321321==T T T p p p .故选(C). 7 -3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0 T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0 Z ,平均自由程为0λ ,当气体温度升高为0 4T 时,气体分子的平均速率v 、平均碰撞频率Z 和平均自由程λ分别为 ( ) (A) 04,4,4λλZ Z ===0v v (B) 0022λλ===,,Z Z 0v v (C) 00422λλ===,,Z Z 0v v (D) 00,2,4λλ===Z Z 0v v 分析与解 理想气体分子的平均速率M RT π/8= v ,温度由0T 升至04T ,则平均速率变为0v 2;又平均碰撞频率v n d Z 2π2= ,由于容器体积不变,即分子数密度n 不变,则平均碰撞频率变为0Z 2;而平均自由程n d 2π21=λ,n 不变,则λ也不变.因此正确答案为(B). 7 -5 有一个体积为35m 10 01?.的空气泡由水面下m 050.深的湖底处(温度为C 0.4o )升到湖面上来.若湖面的温度为C 017o .,求气泡到达湖面的体积.(取 大气压强为Pa 10013150?=.p ) 分析 将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态.利

物理化学公式总结分析

第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 或 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) 式中为乘积的增量,只有在恒压下在数值上等于体积功。 (2) 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 6. 热容的定义式 (1)定压热容和定容热容 (2)摩尔定压热容和摩尔定容热容 W Q U +=?' amb δδδd δdU Q W Q p V W =+=-+)(pV U H ?+?=?)(pV ?pV )()(12V V p pV -=?2 ,m 1d p H nC T ?=?V Q U =?(d 0,'0)V W ==p Q H =?(d 0,'0)p W ==δ/d (/)p p p C Q T H T ==??δ/d (/)V V V C Q T U T ==??,m m /(/)p p p C C n H T ==??pV U H +=2 ,m 1 d V U nC T ?=?

上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。 (3)质量定压热容(比定压热容) 式中m 和M 分别为物质的质量和摩尔质量。 (4) 此式只适用于理想气体。 (5)摩尔定压热容与温度的关系 式中, b , c 及d 对指定气体皆为常数。 (6)平均摩尔定压热容 7. 摩尔蒸发焓与温度的关系 或 式中 = (g) —(l),上式适用于恒压蒸发过程。 8. 体积功 (1)定义式 或 (2) 适用于理想气体恒压过程。 (3) 适用于恒外压过程。 (4) 适用于理想气体恒温 可逆过程。 (5) 适用于为常数的理想气体绝热过程。 9. 理想气体可逆绝热过程方程 ,m m /(/)V V V C C n U T ==??,m ,m p V C C R -=23 ,m p C a bT cT dT =+++a 21,m ,m 21d /()T p p T C T T T C =-?2 1 vap m 2vap m 1vap ,m ()()d T p T H T H T C T ?=?+??vap m vap ,m (/)p p H T C ???=?vap ,m p C ?,m p C ,m p C V p W d amb -=?V p W d amb ∑-=)()(1221T T nR V V p W --=--=)(21amb V V p W --=)/ln()/ln(d 12122 1p p nRT V V nRT V p W V V =-=-=?,m 21()V W U nC T T =?=-,m V C ,m 2121(/) (/)1V C R T T V V =,m //p p p c C m C M ==

相关文档
最新文档