解读数学王子高斯正十七边形的作法-上

解读数学王子高斯正十七边形的作法-上
解读数学王子高斯正十七边形的作法-上

解读“数学王子”高斯正十七边形的作法(上)

江苏省泰州市朱庄中学曹开清 225300

一、高斯的传奇故事

高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。父亲算了好一会儿,终于将结果算出来了。可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。这时的高斯只有3岁!

高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。小朋友们开始计算:“1 +2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。”

布德勒抬头一看,大吃一惊。小石板上写着5050,一点也没有错!高斯的算法是

1 +

2 +3+……+98+99+100

100+99+98+……+3+2+1

101+101+101+……+101+101+101=101×100=10100

10100÷2=5050

高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!

1796年的一天,德国哥廷根大学。高斯吃完晚饭,开始做导师给他单独布置的三道数学题。前两道题他不费吹灰之力就做了出来了。第三道题写在另一张小纸条上:要求只用圆规和没有刻度的直尺,作出一个正十七边形。这道题把他难住了——所学过的数学知识竟然对解出这道题没有任何帮助。时间一分一秒的过去了,第三道题竟毫无进展。他绞尽脑汁,尝试着用一些超常规的思路去寻求答案。当窗口露出曙光时,他终于解决了这道难题。

当他把作业交给导师时,感到很惭愧。他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,……”导师看完作业后,激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米得没有解决,牛顿也没有解决,你竟然一个晚上就解出来了。你是一个真正的天才!”原来,导师也一直想解开这道难题。那天,他是因为拿错了,才将写有这道题目的纸条交给了学生。

在这件事情发生后,高斯曾回忆说:“如果有人告诉我,那是一道千古难题,我可能永远也没有信心将它解出来。”

1796年3月30日,当高斯差一个月满十九岁时,在期刊上发表《关于正十七边形作图的问题》。他显然以此为自豪,还要求以后将正十七边形刻在他的墓碑上。然而高斯的纪念碑上并没有刻上十七边形,而刻着一颗十七角星,原来是负责刻纪念碑的雕刻家认为:“正十七边形和圆太像了,刻出来之后,每个人都会误以为是一个圆。”

1877年布雷默尔奉汉诺威王之命为高斯做一个纪念奖章。上面刻着:“汉诺威王乔治V. 献给数学王子高斯(Georgius V. rex Hannoverage Mathematicorum principi)”,自那之后,高斯就以“数学王子”着称于世。

二、高斯正十七边形尺规作图的思路(这里是纯三角法)

作正十七边形的关键是作出cos

172π,为此要建立求解cos 17

2π的方程。 设正17边形中心角为α,则17α=2π,即16α=2π-α 故sin16α=-sinα ,而

sin16α=2sin8α cos8α =4sin4α cos4α cos8α =8 sin2α cos2α cos4α cos8α

=16 sinα cosα cos2α cos4α cos8α 因sinα ≠0,两边除以sinα,有

16cosα cos2α cos4α cos8α=-1 由积化和差公式,得

4(cosα+cos3α)(cos4α+cos12α)=-1 展开,得

4(cosα cos4α+cosα cos12α+cos3α cos4α+cos3α cos12α)=-1 再由积化和差公式,得

2[(cos3α+cos5α)+(cos11+cos13α)+(cosα+cos7α)+(cos9α+cos15α)]=-1 注意到 cos11α=cos6α,cos13α=cos4α,cos9α=cos8α,cos15α=cos2α,有 2(cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α)=-1

设 a =2(cosα+ cos2α+cos4α+ cos8α),b =2(cos3α+ cos5α+cos6α+ cos7α),则 a +b =-1

又ab =2(cosα+cos2α+cos4α+cos8α)·2(cos3α+cos5α+cos6α+co s7α)

=4cosα(cos3α+cos5α+cos6α+cos7α)+4cos2α(cos3α+cos5α+cos6α+cos7α)+4cos4α(cos3α+cos5α+cos6α+cos7α)+4cos8α(cos3α+cos5α+cos6α+cos7α) 再展开之后共16项,对这16项的每一项应用积化和差公式,可得:

ab =2 [(cos2α+cos4α)+(cos4α+cos6α)+(cos5α+cos7α)+(cos6α+cos8α)+(cosα+cos5α)+(co s3α+cos7α)+(cos4α+cos8α)+(cos5α+cos9α)+(cosα+cos7α)+(cosα+cos9α)+(cos2α+cos10α)+(cos3α+cos11α)+(cos5α+cos11α)+(cos3α+cos13α)+(cos2α+cos14α)+(cosα+cos15α)]

注意到cos9α=cos8α,cos10α=cos7α, cos11α=cos6α,cos13α=cos4α,cos14α=cos3α,cos15α=cos2α,有

ab =2×4(cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α)=-4 因为cosα+cos2α+cos8α=(cos

172π+cos 174π)+cos 17

16π

=2cos

17πcos 173π-cos 17π=2cos 17π(cos 173π-21)

又 0 < 173π < 3π < 2π

所以cos 173π> 2

1

即cosα+cos2α+cos8α > 0 又因为 cos4α=cos

17

> 0 所以 a =cosα+cos2α+cos4α+cos8α > 0 又 ab =-4< 0 所以有a > 0, b< 0 可解得 a =

2171+-,b =2

17

1-- 再设c =2(cosα+cos4α),d =2(cos2α+cos8α), 则c +d =a

cd =2(cosα+ cos4α)·2(cos2α+ cos8α)

=4 (cosαcos2α+cosαcos8α+cos4αcos2α+cos4αcos8α)

=2 [(cosα+cos3α)+(c os7α+cos9α)+(cos2α+cos6α)+(cos4α+cos12α)] 注意到cos9α=cos8α, cos12α=cos5α,有

cd =2[(cosα+cos3α)+(cos7α+cos8α)+(cos2α+cos6α)+(cos4α+cos5α)] =2( cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α) =-1

因为 0 < α < 2α < 4α < 8α < π 所以 cosα > cos2α,cos4α > cos8α 两式相加得 co sα+cos4α> cos2α+cos8α 或2(cosα+cos4α)> 2(cos2α+cos8α)

即 c > d,又cd=-1 < 0 所以有c > 0,d < 0

可解得

c=

2

4 2+

+a

a

,【d=

2

4 2+

-a

a

类似地,设e=2(cos3α+cos5α),f=2(cos6α+cos7α)

则e+f=b

ef=2(cos3α+cos5α)·2(cos6α+cos7α)

=4(cos3αcos6α+cos3αcos7α+cos5αcos6α+cos5αcos7α)

=2 [(cos3α+cos9α)+(cos4α+cos10α)+(cosα+cos11α)+(cos2α+cos12α)]

注意到cos9α=cos8α,cos10α=cos7α,cos11α=cos6α,cos12α=cos5α,有ef=2[(cos3α+cos8α)+(cos4α+cos7α)+(cosα+cos6α)+(cos2α+cos5α)]

=2( cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α)

=-1

因为0 < 3α < 5α < 6α < 7α < π

所以有cos3α > cos6α,cos5α > cos7α

两式相加得cos3α+cos5α> cos6α+cos7α

2(cos3α+cos5α)> 2(cos6α+cos7α)

即 e > f,又ef=-1 < 0

所以有e > 0, f < 0

可解得

e=

2

4 2+

+b

b

,【f=

2

4 2+

-b

b

由c =2(cosα+cos4α),得cosα+cos4α=

2c ,即cos 172π+cos 178π=2

c e =2(cos3α+cos5α),应用积化和差公式,得cosαcos4α=4e ,即 cos 172πcos 178π=4

e

因为0<172π<178π<2π,所以cos 172π>cos 17

>0

所以cos 172π=442e c c -+,【cos 178π=4

42e

c c --】

于是,我们得到一系列的等式:

a =2171+-,

b =217

1--,c =242++a a ,e =2

42++b b ,

cos 172π=4

42e

c c -+

有了这些等式,只要依次作出a 、b 、c 、e ,便可作出cos 17

解读高斯正十七边形的作法(下)

解读高斯正十七边形的作法 正十七边形的尺规作法: 步骤1:在平面直角坐标系xOy 中作单位圆O 步骤2:在x 轴负半轴上取点N ,使|ON|= 41,易知|NB|=417,以N 为圆心,NB 为半径作弧,交x 轴于F 、F’,易知|OF|= 2a ,|OF’|=2b 步骤3:此时|FB|=122+?? ? ??a =242+a ,以F 为圆心,|FB|为半径作弧,交x 轴正半轴于G ,此时|OG|=2 422++a a =c 步骤4:.类似地,|F’B|=122 +?? ? ??b =242+b ,以F’为圆心,|F’B|为半径作弧,交x 轴正半轴于点G’,此时|OG’|=2422++b b =e 步骤5:以|CG’|为直径作圆,交y 轴正半轴于点H ,易知OH 2=1·e

步骤6:以H 为圆心, 21|OG|为半径作弧,交x 轴正半轴于点K ,则有|OK|=222OH OG -??? ??=222e c -?? ? ??=242e c -步骤7:以K 为圆心,|KH|=2 1|OG|为半径作弧,交x 轴正半轴于点L ,则|OL|=2 42e c c -+步骤8:取OL 的中点M ,则|OM|=4 42e c c -+=cos 172π步骤9:过点M 作y 轴的并行线交单位圆O 于两点A 2和A 17,则Α为正十七边形的第一个顶点,A 2为第二个顶点,A 17为第十七个顶点,从而作出正十七边形。 正十七边形边长的表达式 在上面得到的一系列等式: a =2171+-, b =2171--, c =242++a a ,e =2 42++b b ,cos 172π=4 42e c c -+中,依次求出c =4 17234171-++-,

数学王子高斯的故事

数学王子高斯的故事 1796年的一天,德国歌廷根大学,一个19岁的很有数学天赋的青年吃完晚饭,开始做导师单独布置给他的每天例行的三道数学题。 像往常一样,前两道题目在两个小时内顺利地完成了。第三道题写在一张小纸条上,是要求只用圆规和一把没有刻度的直尺做出正17边形。青年做着做着,感到越来越吃力。开始,他还想,也许导师见我每天的题目都做的很顺利,这次特意给我增加难度吧。但是,时间一分一秒地过去了,第三道题竟毫无进展。青年绞尽脑汁,也想不出现有的数学知识对解开这道题有什么帮助。 困难激起了青年的斗志:我一定要把它做出来!他拿起圆规和直尺,在纸上画着,尝试着用一些超常规的思路去寻求答案。 终于,当窗口露出一丝曙光时,青年长舒了一口气,他终于做出了这道难题! 见到导师时,青年感到有些内疚和自责。他对导师说:“您给我布置的第三道题我做了整整一个通宵,我辜负了您对我的栽培……” 导师接过青年的作业一看,当即惊呆了。他用颤抖的声音对青年说:“这真是你自己做出来的?”青年有些疑惑地看着激动不已的导师,回答道:“当然,但是,我很笨,竟然花了整整一个通宵才做出来。”导师请青年坐下,取出圆规和直尺,在书桌上铺开纸,叫青年当着他的面做一个正17边形。 青年很快地做出了一个正17边形。导师激动地对青年说:“你知不知道,你解开了一道有两千多年历史的数学悬案?阿基米德没有解出来,牛顿也没有解出来,你竟然一个晚上就解出来了!你真是天才!”多年以后,这个青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我不可能在一个晚上解决它。” 这个青年就是数学王子高斯。 有些事情,在不清楚它到底有多难时,我们往往能够做得更好!

高斯与正十七边形

高斯与正十七边形 数学就象一棵美丽的星球,他那博大精深、简明透彻的数学美就是他的引力场。许许多多人类的精英被他的引力所吸引,投入他的怀抱为他献出了自己毕生的精力。被誉为“数学王子”的伟大数学家高斯就是其中之一。 高斯是个数学天才,幼年时巧妙地计算1+2+3+…+100为101×50=5050的故事几乎尽人皆知。其实,学生日期的高斯不仅数学成绩优异,而且各科成绩都名列前茅。小学毕业后,高斯考了文科学校。由于他古典文学成绩突出,入学后直接上了二年级。两年以后高斯又升入了高中哲学班。 15岁时,高斯在一位公爵的资助下上了大学-卡罗琳学院。在那里,他掌握了希腊文、拉丁文、法文、英文有丹麦文,又学会了代数、几何、微积分。语言学和数学是他最喜爱的两门课程。 18岁时,高斯进入了哥廷根大学深造。这时,高斯面临着一个非常痛苦的选择:是把语言学作为自己的终生事业?还是把数学作为自己的终生事业?两棵下不了决心进行最后的选择。 后来,一次数学研究上的突破改变了两个引力场的均衡。高斯终于下定决心,飞向了数学之星。 事情是这样的,尺规作图是几何学的重要内容之一,从古希腊开始,人们一直认为正多边形是最美的图形,因此,用尺规作图法能够作出哪些正多边形,历来就是一个极具魅力的问 题。到高斯的时代,人们已经解决了边数是n 23?、n 24?、n 25?、n 253??(=n 0,1, 2,3……)的正多边形的尺规作图问题。但是,还没有人能作出正7边形、正11边形、正17边形等等。很多人认为,当边数是大于5的素数时,那样的正多边形是不可以用尺规作图完成的。 高斯一直对正多边形尺规作图问题非常着迷。经过持久地,如醉如痴的思考与画图,于1796年3月30日,19岁的高斯出人意料地作出了正17边形。并且,他把正多边形作图问题与高次方程联系起来,彻底解决了哪些正多边形能作出,哪些正多边形不能作出。他证明 了一切边数形如122+t (=t 0,1,2,3,……)的正多边形都只可以作出,而边数为7、11、14,……的正多边形是作不出的。 正17边形作图问题不仅震撼了数学界,也震撼了高斯自己的心灵。他再也无法控制自己,在数学美的巨大引力的作用下,飞向了自己理想的星球-他选择了数学。 从此,高斯的数学成就象喷泉一样涌了出来。他在几乎所有的数学学科中留下了自己的光辉成就,成为伟大的数学家。 高斯直到晚年还十分欣赏使自己走上数学之路的正17边形,对数学美的赞叹与追求伴高斯渡过了他的一生。高斯逝世后,人们按照他的遗嘱,在他的雕像下面建立了一座正17边枎的底座,用他非常欣赏的《李尔王》中的诗句赞美道:“你,自然,我的女神,我要为你的规律而献身”。

初中尺规作图详细讲解含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习 惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图 有如下三条: ⑴经过两已知点可以画一条直线; ⑵已知圆心和半径可以作一圆; ⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴三等分角问题:三等分一个任意角; ⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、

(完整word)数学家高斯的故事

(一): 高斯是德国数学家,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大,能够和阿基米德、牛顿、欧拉并列,有“数学王子”之称。 他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。 高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论之后由黎曼发展。高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个之后被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳*近,天文学家虽然有40天的时间能够观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且到达的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法这天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星“智神星”方面也获得类似的成功。 由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。 在古今中外的著名数学家当中,像高斯那样从小就具有高度数学才华的,恐怕极为少见。 高斯于1777年4月30日出生于德国一个农民家庭。他从小就酷爱数学,据说在他还不满三岁的时候,有一天,他观看父亲算帐,计算结束后,父亲念出了钱数准备写下时,身边传来细小的声音:“爸爸,算错了,总数就应是……”。父亲惊讶不止,复算结果,发现孩子的答案是正确的。高斯读小学的时候,有一次,老师出了一道难题,要他们从1加起,加2,加3,加4,……一向加到100,满以为这下准能把学生们难住。没想到高斯一会儿就算了出来。老师一看,答数是5050,一点不错,大吃一惊。高斯是这样算的:1与100、2与99、3与98……每一对的和都是101,而100以内这样的数共有50对,101×50=5050,他的这种计算方法,代数上称为等差级数求和公式。那时高斯才10岁。 高斯对数学的兴趣越来越浓,数学上的定理、公式和求证方法一个又一个地被他发现和证实。 11岁时,他发现了X+yn的展开式。 17岁时,他发现了数论中的二次互反律。 1796年3月30日,年仅18岁的高斯,又有了堪称数学史上最惊人的发现,他用代数

正十七边形做法及证明.

步骤一: 给一圆O,作两垂直的直径OA、OB, 作C点使OC=1/4OB, 作D点使∠OCD=1/4∠OCA 作AO延长线上E点使得∠DCE=45度 步骤二: 作AE中点M,并以M为圆心作一圆过A点, 此圆交OB于F点,再以D为圆心,作一圆 过F点,此圆交直线OA于G4和G6两点。 步骤三: 过G4作OA垂直线交圆O于P4, 过G6作OA垂直线交圆O于P6, 则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。以1/2弧P4P6为半径,即可在此圆上截出正十七边形的所有顶点。 正十七边形的尺规作图存在之证明:

设正17边形中心角为a,则17a=360度,即16a=360度-a 故sin16a=-sina,而 sin16a=2sin8acos8a=22sin4acos4acos8a=2 4 sinacosacos2acos4acos8a 因sina不等于0,两边除之有: 16cosacos2acos4acos8a=-1 又由2cosacos2a=cosa+cos3a等,有 2(cosa+cos2a+…+cos8a=-1 注意到 cos15a=cos2a,cos12a=cos5a,令 x=cosa+cos2a+cos4a+cos8№a y=cos3a+cos5a+cos6a+cos7a 有: x+y=-1/2 又xy=(cosa+cos2a+cos4a+cos8a(cos3a+cos5a+cos6a+cos7a =1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a 经计算知xy=-1 又有 x=(-1+根号17/4,y=(-1-根号17/4 其次再设:x1=cosa+cos4a,x2=cos2a+cos8a y1=cos3a+cos5a,y2=cos6a+cos7a 故有x1+x2=(-1+根号17/4 y1+y2=(-1-根号17/4 最后,由cosa+cos4a=x1,cosacos4a=(y1/2 可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出

《数学王子——高斯》的教学设计

《数学王子——高斯》的教学设计 教材分析:“历史使人明智”,学习一些数学史知识,可以使同学们了解数学的发展轨迹和数学发展过程中若干重要事件、重要人物和重要成果。本节课是在介绍了微积分的诞生后,展现了近代数学巨星高斯的一生事迹和主要贡献,让学生感受数学家高斯严谨的治学态度和勇于开拓创新的精神,有助于开拓学生的视野、启迪他们的思维,对他们数学学习大有裨益。 学情分析:学生对课本以外的数学知识知道得不多,对数学家高斯了解得更少,为更好地提高学生的人文数学素养,激发他们学习数学的兴趣,让数学家的优秀品质鼓舞和激励他们,有必要对学生进行数学家和数学史的介绍。 教学目标知识与技能:了解高斯的生平事迹和他在数学、物理以及天文学的主要贡献。 过程与方法:通过图片和讲解,对高斯一生的主要事迹进行介绍,开展学生谈论,在讨论与交流中体会数学家身上的优秀品质。情感、态度与价值观:感受数学家高斯的严谨治学、学以致用的态度和敢于开拓创新的精神,激发学生学习数学的兴趣,激励他们在学习上要精益求精,勇于探索。 教学重难点: 重点:高斯一生事迹、主要成就 难点:从高斯身上总结出数学巨星的优秀品质 教学方法:讲解与讨论相结合教学辅助手段:

课件(图片、文字和视频)教学时间:45分钟 教学过程 一、高斯简介:高斯肖像图片展示,视频引入,详细介绍高斯的生平。 二、社会背景介绍:通过社会背景的介绍了解当时的学习环境。 三、高斯一生的奋斗历程(一)初显天赋——慧眼识珠 1.四岁纠错2.十岁求和【师生活动】通过视频和教师口述,展示了一个爱动脑筋,勤于观察的少年高斯,以及在贫穷的家庭里仍然勤奋刻苦学习,初露端倪的他引起了老师的注意。老师慧眼识珠,对高斯额外的指点和帮助。(二)贵人资助——如虎添翼介绍高斯在公爵的资助下,年轻的高斯已鹤立鸡群,在数学上取得了丰硕的成果。图片和文字展示,讲解以下两个故事。1、19岁.破解二千多年的数学悬案故事1:一晚上解决的数学悬案。高斯用了一个晚上的时间解决了两千多年来无数数学家为之奋斗都没能解决的问题,即只用圆规和没有刻度的直尺作正十七边形。2、22岁博士毕业然后回到故乡布伦瑞克 3.在费迪南公爵的资助下出版了第一篇著作---《算术研究》 【师生活动】通过正十七边形的求作和《算术研究》的问世这两个小故事,展示一位数学巨星在公爵的资助下的崛起,19岁的高斯虽然初出茅庐,但在数学上已炉火纯青。告诉学生即使天赋再好的人,也要潜心和用心学习,才能有所作为,才能跨越更高的台阶。(三)学以致用——开拓创新介绍高斯在几何,物理、天文和大地

17边形画法

步骤一: 给一圆O,作两垂直的半径OA、OB, 作C点使OC=1/4OB, 作D点使∠OCD=1/4∠OCA, 作AO延长线上E点使得∠DCE=45度。 步骤二: 作AE中点M,并以M为圆心作一圆过A点,此圆交OB于F点, 再以D为圆心,作一圆过F点,此圆交直线OA于G4和G6两点。 步骤三: 过G4作OA垂直线交圆O于P4, 过G6作OA垂直线交圆O于P6, 则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。 连接P4P6,以1/2弧P4P6为半径,在圆上不断截取,即可在此圆上截出正十七边形的所有顶点。 正十七边形的尺规作图存在之证明: 设正17边形中心角为a,则17a=360度,即16a=360度-a

故sin16a=-sina,而 sin16a=2sin8acos8a=4sin4acos4acos8a=16sinacosacos2acos4acos8a 因sina不等于0,两边除之有: 16cosacos2acos4acos8a=-1 又由2cosacos2a=cosa+cos3a等,有 2(cosa+cos2a+…+cos8a)=-1 注意到cos15a=cos2a,cos12a=cos5a,令 x=cosa+cos2a+cos4a+cos8№a y=cos3a+cos5a+cos6a+cos7a 有: x+y=-1/2 又xy=(cosa+cos2a+cos4a+cos8a)(cos3a+cos5a+cos6a+cos7a) =1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a) 经计算知xy=-1 又有 x=(-1+根号17)/4,y=(-1-根号17)/4 其次再设:x1=cosa+cos4a,x2=cos2a+cos8a y1=cos3a+cos5a,y2=cos6a+cos7a 故有x1+x2=(-1+根号17)/4 y1+y2=(-1-根号17)/4 最后,由cosa+cos4a=x1,cosacos4a=(y1)/2 可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出

初中尺规作图详细讲解(含图)

初中数学尺规作图讲解 初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条: ⑴ 经过两已知点可以画一条直线; ⑵ 已知圆心和半径可以作一圆; ⑶ 两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴ 三等分角问题:三等分一个任意角; ⑵ 倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶ 化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴ 正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵ 四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的 表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释

正十七变形的尺规作图-推荐下载

尺规作图:正十七边形 2009-09-07 17:24:09 尺规作图是指使用圆规和没有刻度的直尺在有限步骤内的作图问题。看似几何问题,实则是一 个代数问题。比如要作一个角等于π/3,就是在给定的线段的垂直平分线上截取长度为√3/2的 线段,而作一条直线的垂线则是给定复平面上的一个点z=1,作出z'=√(-1)这个点。把这个 说法更一般化一点,尺规作图问题可以描述成:在复平面上给定那个点z_0,z_1,……,z_n(这 些点的共轭可以得到),求复平面上全体可有这些点出发经直尺和圆规在有限步骤内可作出的 点(数)的集合M。如果z∈M,即z可作,则z是F[x]中一个2^t次多项式的根, F=Q(z_0,z_1,……,z_n,\bar(z_0),\bar(z_1),……,\bar(z_n)),其中Q为有理数域,\bar(z_k)为 z_k的共轭,1≤k≤n。 现在来看一下所谓的尺规作图三大难题。 1,三等分角。给定一个角θ,要得到α=θ/3,即作出cos(α)。而我们有 cos(θ)=cos(3α)=4cos(α)^3-3cos(α), 令cos(α)=a,cos(3α)=b为已知,则有 (2a)^3-3(a)-2b=0, 在一般情况下,这个方程不一定是可约的(如取θ=π/3),在这时2a不可做,因为他不可能是一个2^t次多项式的根。除此之外尚有很多可以被三等分的角,如只要n不是3的倍数,则 α=π/3必可三等分。事实上n和3互素,因此存在证书u和v,是的3u+nv=1,1/3n=u/n+v/3,所以α/3=π/3n=uπ/n+vπ/3,π/n和π/3都可作,所以α/3也可作。 2,倍立方。即做一个正方体的体积是原正方体体积的2倍,相当于要作出x^3-2等于0的根,同1,这是不可能的。 3,化圆为方。即作一个正方形使其面积等于给定的原的面积。这相当于要作出x^2-π=0的根。但是π不是代数数,即不是任何多项式的根,所以√π也是不可作的。 尺规作图里面还有一个经典的问题,作正n边形。比如正三角形,正四边形,正五边形,正六 边形,正八边形,这些都是很容易就能做出来的,但是很长时间内人们找不到作正七变形和正 九边形的方法。这一领域的下一个进展是1796年,高斯给出了正十七边形的作法。1801年,高斯证明了如果k是费马素数,那么就可以用直尺和圆规作出正十七边形。事实上可进一步推 广为如下结论:正n边形可作当且仅当n=(2^e)p_1p_2...p_r,e为非负整数,p_k为费马素数 1≤k≤r。可以做如下简单的思考:要作正n边形,实际上就是要作n次本原单位根ω,使得 ω^n-1=0。又[Q(ω):Q]=φ(n),根据前面的讨论知φ(n)必为2^t的形式。若n=(2^e)(p_1) ^a_1(p_2)^a_2...(p_r)^a_r,则φ(n)=(2^(e-1))(p_1-1)(p_1)^(a_1-1)(p_2-1)(p_2)^(a_2-1)...(p_r-1)(p_r)^(a_r-1),要使其为为2^t的形式必有p_k为费马素数且a_k=1,1≤k≤r。 所谓费马素数是指形为F_n=2^(2^n)+1形式的素数。当初费马猜想所有这种形状的数都是素数,他验证了前五个3,5,17,257,65537,这些都是素数。但是1738年欧拉证明了当n=5时,F_5=4294967297=641*6700417,因此他不是素数。事实是此后人们再也没有发现其他的费马素数,甚至猜想费马素数只有费马当初验证的5个数。

高斯破解数学难题

高斯破解数学难题 1796年的一天,在德国哥廷根大学,一个19岁的青年吃完晚饭,开始做导师单独布置给他的每天例行的两道数学题。像往常一样,前2道题目在2个小时内顺利地完成了。但青年发现今天导师给他多布置了一道题。第三道题写在一张小纸条上,是要求只用圆规和一把没有刻度的直尺做出正17边形。他也没有多想,就做了起来。然而,青年感到非常吃力。 开始,他还想,也许导师特意给我增加难度吧。但是,随着时间一分一秒地过去了,第三道题竟毫无进展。青年绞尽脑汁,感到自己学到的数学知识对解开这道题没有什么帮助。困难激起了青年的斗志:我一定要把它做出来!他拿起圆规和直尺,在纸上画着,尝试着用一些超常规的思路去解这道题...当窗口露出一丝曙光时,青年长舒了一口气,他终于做出了这道难题!见到导师时,青年感到有些内疚和自责。他对导师说:“您给我布置的第三道题我做了整整一个通宵,我辜负了您对我的栽培……”导师接过学生的作业一看,当即惊呆了。他的声音都颤抖了,说:“这……真是你自己……做出来的?”青年有些疑惑地看着激动不已的导师,回答道:“是的,但我很笨,竟然花了整整一个晚上才做出来。” 导师让他坐下,取出圆规和直尺,在书桌上铺开纸,叫青年当着他的面做这道题。青年很快就解开了这道题。导师激动地对青年说:“你知不知道,你解开了一道有两千多年历史的数学难题?牛顿也没有解出来,阿基米德没有解出来,你竟然一个晚上就解出来了!你真是

天才啊!我最近正在研究这道难题,昨天给你布置题目时,不小心把写有这个题目的小纸条夹在了给你的题目里。”后来,每当这个青年回忆这件事时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能就无法解开它。这个青年就是数学王子高斯。 点评:孩子大都少有循规蹈矩思想,少有畏惧心理。有些事情,在不清楚它到底有多难时,孩子往往能够做得更好。其实,畏难情绪害怕的不是困难,而是害怕自身,对自己没有信心。所以,在教育孩子的过程中,不要以自己的眼光把畏难情绪也灌输给孩子;应该鼓励孩子敢想敢做,建立自信。

正十七边形尺规作图和详解

解读“数学王子”高斯正十七边形的作法 一、高斯的传奇故事 高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。父亲算了好一会儿,终于将结果算出来了。可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。这时的高斯只有3岁! 高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。有一天,布德勒让全班学生计算 1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。小朋友们开始计算:“1 + 2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。” 布德勒抬头一看,大吃一惊。小石板上写着 5050,一点也没有错!高斯的算法是 1 + 2 +3+……+98+99+100 100+99+98+……+3+ 2+1 101+101+101+……+101+101+101=101×100=10100 10100÷2=5050 高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁! 1796年的一天,德国哥廷根大学。高斯吃完晚饭,开始做导师给他单独布置的三道数学题。前两道题他不费吹灰之力就做了出来了。第三道题写在另一小纸条上:要求只用圆规和没有刻度的直尺,作出一个正十七边形。

还原正态分布之高斯推导过程

《概率论与数理统计》大作业 题目:还原正态分布之高斯推导过程 学院:化学工程学院 姓名:赵振华 学号: 班级序号:14 专业班级:装控1407 任课教师:李明 2016年4月27日还原正态分布之高斯推导过程 摘要:正态分布是概率中最重要的分布,其发现极大的促进了概率论和数理统计的发展,虽然正态分布的获得过程本身包含着大量的数理统计思想,对之有详尽的了解有益于对其他理论的理解,但其推导过程一般少见于统计着作,因此本文将正态分布函数形式的推导过程还原与众,弥补众多着作的正态分布的发现和推导过程。

背景前言 正态分布又称高斯分布,是由数学家棣莫弗和数学王子高斯各自独立发现的,1733年,棣莫弗有二项分布的逼近推导出正态分布,1809年高斯在推导误差分布函数是发现正态分布,两位数学家在不同的数学文化背景下,采用不同的方式得到相同的正态分布,可谓知识都是相同的,两种方式可相互证明,更体现正态分布的客观性和科学性。中心极限定理表明:“任何随机分布当样本足够大时,都会逼近正态分布。”正态分布在数理统计研究历史上具有里程碑式的意义。但是正态分布的推导过程能被统计学着作提到的少之又少,又有许多想本人一样的学生对正太分布的来源和其推导过程有着强烈的兴趣,于是几费周折在陈希孺院士《数理统计学简史》一书上找到一两百字的有关介绍,再结合其他资料整理得到两种推导过程,但是本人还是大二,目前只能理解和深入研究高斯的推导过程,故本主要介绍了高斯的正态分布的推导过程。 1、高斯正态分布之推导 最初的高斯密度分布函数思想动机来源于对误差规律的认识。众所周知,随机误差属于一种典型的随机变量。直觉上,对一个物体的测量,用多次测量的结果的算术平均数作为总体平均真值的估计肯定优于用单次测量结果作为其估计值,而且似乎并不存在其它更好的估计量。那么误差随机变量所服从的分布或者说其密度函数一定是这么一个“周密”的函数,它总能使样本的算术平均数成为总体真值估计量

教育家名人故事:高斯解数学难题-作文

教育家名人故事:高斯解数学难题 年的一天,在德国哥廷根大学,一个岁的青年吃完晚饭,开始做导师单独布置给他的每天例行的两道数学题,像往常一样,前道题目在个小时内顺利地完成了。 但青年发现今天导师给他多布置了一道题。 第三道题写在一张小纸条上,是要求只用圆规和一把没有刻度的直尺做出正边形。 他也没有多想,就做了起来。 然而,青年感到非常吃力。 开始,他还想,也许导师特意给我增加难度吧。 但是,随着时间一分一秒地过去了,第三道题竟毫无进展。 青年绞尽脑汁,感到自己学到的数学知识对解开这道题没有什么帮助。 困难激起了青年的斗志:我一定要把它做出来!他拿起圆规和直尺,在纸上画着,尝试着用一些超常规的思路去解这道题当窗口露出一丝曙光时,青年长舒了一口气,他终于做出了这道难题!见到导师时,青年感到有些内疚和自责。 他对导师说:您给我布置的第三道题我做了整整一个通宵,我辜负了您对我的栽培……导师接过学生的作业一看,当即惊呆了。 他的声音都颤抖了,说:这……真是你自己……做出来的?青年有些疑惑地看着激动不已的导师,回答道:是的,但我很笨,竟然花了整

整一个晚上才做出来。 导师让他坐下,取出圆规和直尺,在书桌上铺开纸,叫青年当着他的面做这道题。 青年很快就解开了这道题。 导师激动地对青年说:你知不知道,你解开了一道有两千多年历史的数学难题?牛顿也没有解出来,阿基米德没有解出来,你竟然一个晚上就解出来了!你真是天才啊!我最近正在研究这道难题,昨天给你布置题目时,不小心把写有这个题目的小纸条夹在了给你的题目里。 后来,每当这个青年回忆这件事时,总是说:如果有人告诉我,这是一道有两千多年历史的数学难题,我可能就无法解开它。 这个青年就是数学王子高斯。

高斯的正十七边形

《高斯的正十七边形》 如果问你正十七边形的问题是哪位数学家最先解出来的?你一定会毫不犹豫地说出答案,但是你知道他是怎么做到的吗?这你就得猜了吧,而且,你猜的答案肯定是:像普通数学家一样,都希望自己能解出千古难题,然后再经过仔细的、不懈的努力研究,最终得出了答案。对不起,你答错了。 故事大概是这样的:1796年的一天,在德国哥延根大学,一位十九岁的学生刚吃完晚饭就开始做导师每天例行给他留的三道作业题,前两道题他不费吹灰之力就做了出来,第三道题是:要求只用圆规和一把没有刻度的直尺画出一个正十七边形。这道题把他难住了——他所学过的数学知识竟然对解出这道题没有任何帮助,困难激起了他的斗志,他试着用各种各样的思路去解题,经过一晚上的思考和琢磨,他终于在第二天清晨解出了这道难题。当他把作业交给导师时,他很惭愧,因为他觉得自己用的时间太长,辜负了老师的希望。但是当导师看完作业后,激动地问:“这是你用圆规和有刻度的直尺做的吗?”“是的,我太笨了,居然用了一个晚上才做出来。”高斯惭愧的说。导师顿时惊得目瞪口呆原来,第三道题导师留错了,这道题其实是一道连阿基米德、牛顿这些人一辈子也都没能解出来的千古难题,这位学生竟然只用一个晚上就做出来了,这位学生就是数学王子——高斯。在这件事情发生后,高斯回忆道,如果提前告诉他那是一道千古难题,那么他可能一辈子也解不出来那道题。高斯解出那道题的关键,其实就在于他并不知道他正在解答一道千古难题,而只是以为在做普普通通的作业。从这个故事中我们可以看出:在我们不清楚困难到底有多大的时候,我们反而更有力量去解决它!那么就是说,有时候真正阻碍我们成功的东西,并不是困难本身,而是我们对困难的恐惧,这种恐惧让我们不相信自己的能力,自然也就在困难面前投降了。阿基米德和牛顿也许就是因此没能解出这道题的。如果我们能够把这种恐惧感给克服掉、化解掉,那么我们会发现很多的难题会变得容易、很多的困难会迎刃而解。这个故事给我的启示是:一个人克服了对困难的恐惧,就意味着拥有了解决困难的信心,那么他的力量就会加倍发挥出来,有时候甚至能获得超能量。

数学王子高斯的故事

数学王子高斯的故事 德国著名大科学家高斯出生在一个贫穷的家庭。他还不会讲话,就自己学计算了,三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 高斯八岁时进入乡村小学读书。一天,数学老师出了这样一道题目:“你们今天替我算从1加2加3一直到100的和。” 教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。 还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?” 老师头也不抬,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。” 数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢? 高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得很惊奇。以后,他常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后在数学上作了一些重要的研究了。

著名的数学家小欧拉的故事 大数学家欧拉是一个被学校除了名的小学生。回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。 爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。 小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。 父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。 小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。" 父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。 父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。

正n边形的画法

正四边形的画法 正四边形:过任意两点AB作直线,在直线上截取AC,分别以A、C为圆心,AC、CA为半径作圆,作以A、C为顶点的两个平角的角平分线(作直角或垂直的方法),分别交⊙A于D、E,交⊙C于F、G,连接DF、EG,则四边形ABFD ABGE为所求作正四边形。 正五边形的画法 正五边形:作直线AB,截取线段AB,作BC⊥BA,且AB=2BC(作AB的垂直平分线),连接AC。以C为圆心,BC为半径作圆交AC于P,再以A为圆心,AP为半径作圆,交AB于M。以M为圆心,MB为半径作圆交AB的垂直平分线于D,以A、D为圆心,AD、AB为半径作圆交于一点E,以B、D为圆心,BD、AB为半径作圆交于一点F。连接AD、BD、AE、BF、EF。则五边形ADBFE 为正五边形。 一先画个圆 2 在画出这个圆的一对成直角的直径 3 随便选你画的直径上你任何一个半径,找到它的中点 4 用圆规以这个你找的中点为一点,量出与你找中点所在半径所垂直的半径与圆的边的交点的长度 5 保持这个长度 6 以你所找的中点为圆心,以你找的长度画圆 7 我们就可以看见中点所在的直径上有有了一个点 8 找到新的点,还是用圆规量出与你点所在半径垂直的半径与圆边的交点的距离 9 保持这个距离在圆的边上找一点,画个圆,得到3个点,在分别用其他两个点画园,又可以得到两个点 11 连接5个点 正六边形的画法 正六边形:作⊙O,及过O点作直线AB,交⊙O于A、B。分别以A、B为圆心,AO、BO 为半径作圆交⊙O于C、D、E、F(C、E在AB同侧),连接AC、AD、BE、BF、CD、EF,则六边形ACEBFD为所求作正六边形。

小学奥数关于高斯的数学手抄报资料

小学奥数关于高斯的数学手抄报资料卡尔·弗里德里希·高斯的简介资料: 卡尔·弗里德里希·高斯是德国数学家、物理学家、天文学家、大地测量学家。和牛顿、阿基米德,被誉为有史以来的三大数学家, 是近代数学奠基者之一,18岁时发现了质数分布定理和最小二乘法。通过对充足多的测量数据的处理后,能够得到一个新的、概率性质的 测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并 成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态 分布(或高斯分布),并在概率计算中大量使用。1799年高斯于黑尔姆施泰特大学因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。高斯的肖像已经被印在从1989年至2001年流通的10元面值德国马克的纸币上。 【篇二】 数学家高斯的故事资料 还在少年时代,高斯就显示出了他的数学才能。据说,一天晚上,父亲在计算工薪账目,高斯在旁边指出了其中的错误,令父亲大吃一惊。10岁那年,有一次老师让学生将1,2,3,…连续相加,一直加 到100,即1+2+3+…+100。高斯没有像其他同学那样急着相加,而是 仔细观察、思考,结果发现: 1+100=101,2+99=101,3+98=101,…,50+51=101一共有50个101,于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷,惊讶得说不出话。其他学生过了很长时间才交卷,而且没有一个是算对的。从此,小高斯“神童”的美名不 胫而走。村里一位伯爵知道后,慷慨出钱资助高斯,将他送入附近的 的学校实行培养。

中学毕业后,高斯进入了德国的哥廷根大学学习。刚进入大学时,还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后,决定研 究数学。卡斯特纳本人并没有多少数学业绩,但他培养高斯的成功, 足以说明一名好教师的重要作用。 从哥廷根大学毕业后,高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长,并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法,19岁时发现了正17边形的尺规作图法,并给出可用尺规作出正多边形的条件,解决了这个欧几里 得以来一直悬而未决的问题。为了这个发现,在他逝世后,哥廷根大 学为他建立了一个底座为17边形棱柱的纪念像。 【篇三】 卡尔·弗里德里希·高斯生平资料: 高斯有"数学王子"、"数学家"的美称、被认为是人类有史以来" 最伟大的四位数学家之一"(阿基米德、牛顿、高斯、欧拉)。早年就 推翻了18世纪数学的理论和方法,而以他自己革新的数论开辟了通往 19世纪中叶分析严密化的道路。他不但对纯粹数学作出了意义长远的 贡献,而且对20世纪的天文学、大地测量学和电磁学的实际应用也作 出了重要的贡献。他的名言︰「数学,科学的皇后;算术,数学的皇后」贴切地表达了他对数学在科学中的关键作用的感性理解。人们还 称赞高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰、……, 人类智力领域的几乎所有褒奖之词,对于高斯都不过度。 高斯开辟了很多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18─19世纪之交的中坚人物。如果我们把18世纪的数学 家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是 高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

相关文档
最新文档