低温固相合成综述

低温固相合成综述
低温固相合成综述

研究生课程论文封面

课程名称 材料制备与合成

开课时间 10-11学年第一学期

学院 数理与信息学院

学科专业 凝聚态物理

号 2009210663 姓名 朱伶俊

学位类别 理学

任课教师 李正全

交稿日期

成绩

评阅日期

评阅教师

签名

浙江师范大学研究生学院制

低温固相合成综述

目前,环境污染、能源过度消耗队地球及人类带来的危害已经越来越大。人们在发展经济的同时也在积极面对怎样克服对环境的污染,保护我们的生态平衡。近十几年来,由于传统的化学反应里在溶液或气相中进行,其反应需要能耗高,时间长,污染环境严重以及工艺复杂,因此越来越多的人将目光投向曾经被人类很早就利用过的固相化学反应。低温固相化学反应法是20世纪80年代发展起来的一种新的合成方法,并且发展极为迅速。其制备工艺简单,反应条件温和,节约能源,产率高,污染低等优点,使其再化学合成领域中日益受到重视。固相反应法已经成为了人们制备新型无机功能材料的重要手段之一。

1、低温固相合成的发展

固相化学反应是人类最早使用的化学反应之一,我们的祖先早就掌握了制陶工艺,将制得的陶器用作生活日用品。但固相化学作为一门学科被确认却是在20世纪初,原因自然是多方面的,除了科学技术不发达的限制外,更重要的原因是人们长期的思想束缚。自亚里士多德时起,直至距今80多年前,人们广泛相信“不存在液体就不发生固体间的化学反应”。直到1912年,Hedvall在Berichte 杂志发表了《关于林曼绿》(CaO和ZnO的粉末固体反应)为题的论文,有关固相化学的历史才正式拉开序幕。事实上,许多固相反应在低温条件下便可发生。早在1904年,Pfeifer等发现加热[Cr(en)3]Cl3或[Cr(en)3](SCN)3分别生成cis-[Cr(en)2Cl2]Cl和trans-[Cr(en)2(SCN)2]SCN;1963年,Tscherniajew等首先用K2[PtI6]与KCN固-固反应,制取了稳定产物

K2[Pt(CN)6]。虽然这些早期的工作已发现了低温下的固相化学反应,但由于受到传统固相反应观念的束缚,人们对它的研究没有像对待高温固相反应那样引起足够的重视,更未能在合成化学领域中得到广泛应用。然而研究低温固相反应并开发其合成应用的价值的意义是不言而喻的。

1993年Mallouk教授在 Science 上发表评述:“传统固相化学反应合成所得的是热力学稳定的产物,而那些介稳中间物或动力学控制的化合物往往只能在较低温度下存在,它们在高温时分解或重组成热力学稳定的产物。为了得到介稳固态相反应产物,扩大材料的选择范围,有必要降低固相反应温度。”可见,降低反应温度,不仅可获得更新的化合物,为人类创造更加丰富的物质财富,而且可最直接地提供人们了解固相反应机理所需要的实验佐证,为人类尽早地实现能动、合理地利用固相化学反应进行定向合成和分子装配,最大限度地发挥固相反

应的内在潜力创造条件。

我国的一些科学工作者在低温固相合成方面也作了许多开创性的工作。例如,1988年,忻新泉等开始报道“固态配位化学反应研究”系列,探讨了室温或近室温条件下固-固态化学反应。1990年开始合成新的原子簇化合物,并测定了数以百计的晶体结构。

2、低温固相合成反应原理

在较长的一段时间里,人们对低热固相反应机制的理解都是通过和高温固相反应一样,即先获得动力学参数,然后再进一步推测与判断反应机制,所有固相化学反应和溶液中的化学反应一样,必须遵守热力学的限制,即反应的Gibbs

函数改变小于零。然而,由于低维固体与三维固体结构上的差异及一些试验现象表明,低热固相反应必然有其独特的扩散机制。

2.1固相合成方法

指那些有固态物质参加的反应。也就是说,反应物必须是固态物质的反应,才能称为固态反应。固相反应不使用溶剂,具有高选择性、高产率、工艺过程简单等优点,是人们制备新型固体材料的主要手段之一。可以认为固相化学反应是指有固体物质直接参与的反应,它既包括经典的固-固反应,也包括固-气反应和固-液反应。可见,所有固相化学反应都是非均相反应。

根据固相化学反应发生的温度分为:

固相反应

高热固相反应中热固相反应低热固相反应

2.2三类固相化学反应的特点

高热固相反应:反应温度高于600 ℃。传统固相反应通常是指高温固相反应。只限于制备那些热力学稳定的化合物,而对于低热条件下稳定的介稳态化合物或动力学上稳定的化合物不适于采用高温合成。

中热固相反应:由于一些只能在较低温度下稳定存在而在高温下分解的介稳化合物,在中热固相反应中可使产物保留反应物的结构特征,由此而发展起来的前体合成法、熔化合成法、水热合成法的研究特别活跃。可提供重要机理信息,可

获得动力学控制的、只能在较低温度下稳定存在而在高温下分解的介稳化合物,可使产物保留反应物的结构特征。

低热固相反应:反应温度降至室温或接近室温。因而,低热固相反应又叫室温固相反应,指的是在室温或近室温(≤100℃)的条件下,固相化合物之间所进行的化学反应。最大的特点在于反应温度降至室温或接近室温,固相化合物之间的化学反应具有便于操作和控制的优点。此外还有不使用溶剂、高选择性、高产率、污染少、节省能源、合成工艺简单等特点。

2.3低热固相合成方法的原理

(1)三步反应机制:

国际上:90年代中期,Kaupp等通过原子力显微镜观察有机固相反应,提出了三步反应机理:

相重建(Phase Rebuilding)

相转变(Phase Transformation)

晶体分解或分离(Crystal Disintration or Detachement)

(2)扩散机制

我国学者忻新泉领导的研究小组于1988年开始报导“固态配位化学反应研究”系列,对室温或近室温下的固相配位化学反应进行了比较系统的研究,探讨了低热固相反的机理,提出低热固相反应为扩散-反应-成核-产物晶粒生长四个过程。固相反应发生起始于两个反应物分子的扩散接触,接着发生化学作用,生成产物分子。此时生成的产物分子分散在母体反应物中,只能当做一种杂质或缺陷的分散存在,只有当产物分子集积到一定大小,才能出现产物的晶核,从而完成成核过程。随着晶核的长大,达到一定的大小后出现产物的独立晶相。

由于各阶段进行的速率在不同的反应体系或同一反应体系不同的反应条件下不尽相同,使得各个阶段的特征并非清晰可辨,总反应特征只表现为反应的决速步的特征。

3、固相合成方法的适用范围

3.1、合成原子簇化合物:传统的Mo(W,V)-Cu(Ag)-S(Se)簇合物的合成都是在溶液中进行的。低热固相反应合成方法利用较高温度有利于簇合物的生成,而低沸点溶剂(如CH2Cl2)有利于晶体生长的特点,开辟了合成原子簇化合物的新途径。

3.2、合成新的多酸化合物:多酸化合物因具有抗病毒、抗癌和抗艾滋病等生物活性作用以及作为多种反应的催化剂而引起了人们的广泛兴趣。这类化合物通常由溶液反应制得。目前,利用低热固相反应方法,已制备出多个具有特色的新的

多酸化合物。

3.3、合成新的配合物:应用低热固相反应方法可以方便地合成单核和多核配合物

[C5H4N(C16H33)]4[Cu4Br8]、

[Cu0.84Au0.16(SC(Ph)NHPh)(Ph3P)2Cl]、[Cu2(PPh3)4(NCS)2]、

[Cu(SC(Ph)NHPh)(PPh3)2X] (X=Cl,Br,I)、

[Cu(HOC6H4CHNNHCSNH2)(PPh3)2X](X=Br,I)等,并测定了它们的晶体结构。 3.4、合成固配化合物:低热固相配位化学反应中生成的有些配合物只能稳定地存在于固相中,遇到溶剂后不能稳定存在而转变为其他产物,无法得到它们的晶体,因此,表征这些物质的存在主要依据谱学手段推测,这也是这类化合物迄今未被化学家接受的主要原因。我们将这一类化合物称为固配化合物

3.5、合成配合物的几何异构体:金属配合物中,由于中心离子和配位体的相对几何位置不同所引起的异构现象,称为配合物的几何异构现象。它主要发生在平面正方形和八面体的配合物中。

3.6、合成反应中间体:利用低热固相反应分步进行和无化学平衡的特点,可以通过控制固相反应发生的条件而进行目标合成或实现分子组装,这是化学家梦寐以求的目标,也是低热固相化学的魅力所在。

3.7、合成非线性光学材料:非线性光学材料的研究是目前材料科学中的热门课题。近十多年来,人们对三阶非线性光学材料的研究主要集中在半导体和有机聚合物上。

3.8、纳米材料:低热或室温固相反应法还可制备纳米材料,它不仅使合成工艺大为简化,降低成本,而且减少由中间步骤及高温固相反应引起的诸如产物不纯、粒子团聚、回收困难等不足,为纳米材料的制备提供了一种价廉而又简易的全新方法。

3.9、合成有机化合物:众所周知,加热氰酸铵可制得尿素(Whler反应),这是一个典型的固相反应,可恰恰又是有机化学诞生的标志性反应。然而,在有机化学的发展史上扮演过如此重要角色的固相反应本身却被有机化学家们遗忘殆尽,即使在找不到任何理由的情况下,亦总是习惯地将有机反应在溶液相中发生,这几乎已成了思维定势。

低温固相合成的发展现状与研究进展

低温固相合成的发展现状与研究进展 ??? 摘要:本文对低温固相合成这种无机合成新方法进行综述,介绍了我国近年纳米材料、发光材料、半导体材料的低温固相合成的技术研究现状,并对其发展方向提出展望. 关键词:低温固相合成;纳米材料;发光材料;半导体材料 Low-Temperature Solid-State Synthesis of Development Status and Research Progress ??? Abstract:This paper are reviewed some new method about the Low-temperature solid-State synthesis of inorganic synthesis. The Nano-materials Luminescent materials Semiconductor materials by solid state reactions at low temperature in recent years, these synthetic technologies are reviewed, and development direction for this field is put out. Key words:Low-Temperature Solid-State Synthesis;Nano-materials;Luminescent materials;Semiconductor materials 低温固相合成化学是室温或近室温(小于40℃)条件下的固-固相化学反应是近几年刚刚发展起来的一个新研究领域。相对于传统的高温固相反应而言,低温固相反应可以合成一些热力学不稳定产物或动力学控制的化合物,这对人们了解固相反应机理,尽早实现利用固相化学反应行定向合成和分子装配大有益处。此外,从能量学和环境学的角度考虑,低温固相反应可大大节约能耗,减少三废排放,是绿色化工发展的一个主要趋势。 目前,低温固相合成化学可以合成出二百多种簇合物,其中有些是利用液相不易得到的新型簇合物:如鸟巢状结构、双鸟巢状结构、半开口的类立方烷结构。利用低温固相反应方法可以方便地合成单核和多核配合物,还可以合成高温固相反应及液相反应无法合成的固配化合物等。利用低温固相反应可以合成各种功能材料,如非线性光学材料等,气敏材料等,还有化学防伪材料、生物活性材料,铁电材料,无机抗苗剂及荧光材料等。利用低温固相反应合成各种纳米材料是最近的研究热点,用该方法合成的氧化物、金属及合金等已在许多方面取得了应用。 1、低温固相合成方法合成纳米材料的发展现状与研究进展 1.1纳米氧化镍的低温固相合成及电容性能研究及展望 韩丹丹,景晓燕,王君,徐鹏程,李蕾,公敬欣通过低热固相反应法合成了纳米氧化镍,在不同温度热处理条件下研究氧化镍的结构、形貌及其作为超级电容器电极材料的电化学性能。采用XRD和SEM表征产物的结构特点,采用循环伏安和恒流充放电等方法表 征其电化学性能。XRD测试结果表明,所制备的氧化镍为立方相,且随着热处理温度升高,晶型趋于完整。SEM和电化学测试结果表明,高温热处理(>400℃)使样品团聚更为严重,导致电极材料利用率降低,质子传递阻力加大,比电容急剧下降;低温处理颗粒分布均匀,粒子间存在孔道,使电极具有较大的比容量(228 F/g)和良好的化学稳定性,在20 mV/s 快速扫描速率下,电极显示出良好的倍率特性。 纳米氧化镍可以做成超级电容器的电极,超级电容器具有更高的比电容量,可存储的比电容量为静电电容器的10倍以上。同时,它又具有传统化学电源无法比拟的高功率密度、长循环寿命及优越的脉冲充放电性能。因此对纳米氧化镍合成的研究有着重要的意义[1]。1.2纳米硫化镉低温固相合成的新方法研究 唐文华,邹洪涛,蒋天智,刘吉平以硫代乙酰胺(TAA)与氯化镉为原料,用低温固相反应合成纳

低温固相合成综述

研究生课程论文封面 课程名称 材料制备与合成 开课时间 10-11学年第一学期 学院 数理与信息学院 学科专业 凝聚态物理 学 号 2009210663 姓名 朱伶俊 学位类别 理学 任课教师 李正全 交稿日期 成绩 评阅日期 评阅教师 签名 浙江师范大学研究生学院制

低温固相合成综述 目前,环境污染、能源过度消耗队地球及人类带来的危害已经越来越大。人们在发展经济的同时也在积极面对怎样克服对环境的污染,保护我们的生态平衡。近十几年来,由于传统的化学反应里在溶液或气相中进行,其反应需要能耗高,时间长,污染环境严重以及工艺复杂,因此越来越多的人将目光投向曾经被人类很早就利用过的固相化学反应。低温固相化学反应法是20世纪80年代发展起来的一种新的合成方法,并且发展极为迅速。其制备工艺简单,反应条件温和,节约能源,产率高,污染低等优点,使其再化学合成领域中日益受到重视。固相反应法已经成为了人们制备新型无机功能材料的重要手段之一。 1、低温固相合成的发展 固相化学反应是人类最早使用的化学反应之一,我们的祖先早就掌握了制陶工艺,将制得的陶器用作生活日用品。但固相化学作为一门学科被确认却是在20世纪初,原因自然是多方面的,除了科学技术不发达的限制外,更重要的原因是人们长期的思想束缚。自亚里士多德时起,直至距今80多年前,人们广泛相信“不存在液体就不发生固体间的化学反应”。直到1912年,Hedvall在Berichte 杂志发表了《关于林曼绿》(CaO和ZnO的粉末固体反应)为题的论文,有关固相化学的历史才正式拉开序幕。事实上,许多固相反应在低温条件下便可发生。早在1904年,Pfeifer等发现加热[Cr(en)3]Cl3或[Cr(en)3](SCN)3分别生成cis-[Cr(en)2Cl2]Cl和trans-[Cr(en)2(SCN)2]SCN;1963年,Tscherniajew等首先用K2[PtI6]与KCN固-固反应,制取了稳定产物 K2[Pt(CN)6]。虽然这些早期的工作已发现了低温下的固相化学反应,但由于受到传统固相反应观念的束缚,人们对它的研究没有像对待高温固相反应那样引起足够的重视,更未能在合成化学领域中得到广泛应用。然而研究低温固相反应并开发其合成应用的价值的意义是不言而喻的。 1993年Mallouk教授在 Science 上发表评述:“传统固相化学反应合成所得的是热力学稳定的产物,而那些介稳中间物或动力学控制的化合物往往只能在较低温度下存在,它们在高温时分解或重组成热力学稳定的产物。为了得到介稳固态相反应产物,扩大材料的选择范围,有必要降低固相反应温度。”可见,降低反应温度,不仅可获得更新的化合物,为人类创造更加丰富的物质财富,而且可最直接地提供人们了解固相反应机理所需要的实验佐证,为人类尽早地实现能动、合理地利用固相化学反应进行定向合成和分子装配,最大限度地发挥固相反

固相合成基础 SPPS

一、多肽合成概论 1.多肽化学合成概述: 1963年,R.B.Merrifield[1]创立了将氨基酸的C末端固定在不溶性树脂上,然后在此树脂上依次缩合氨基酸,延长肽链、合成蛋白质的固相合成法,在固相法中,每步反应后只需简单地洗涤树脂,便可达到纯化目的.克服了经典液相合成法中的每一步产物都需纯化的困难,为自动化合成肽奠定了基础.为此,Merrifield获得1984年诺贝尔化学奖. 今天,固相法得到了很大发展.除了Merrifield所建立的Boc法(Boc:叔丁氧羰基)之外,又发展了Fmoc 固相法(Fmoc:9-芴甲氧羰基).以这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改造和完善. Merrifield所建立的Boc合成法[2]是采用TFA(三氟乙酸)可脱除的Boc为α-氨基保护基,侧链保护采用苄醇类.合成时将一个Boc-氨基酸衍生物共价交联到树脂上,用TFA脱除Boc,用三乙胺中和游离的氨基末端,然后通过Dcc活化、耦联下一个氨基酸,最终脱保护多采用HF法或TFMSA(三氟甲磺酸)法.用Boc法已成功地合成了许多生物大分子,如活性酶、生长因子、人工蛋白等. 多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物,由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值。通过多肽全合成可以验证一个新的多肽的结构;设计新的多肽,用于研究结构与功能的关系;为多肽生物合成反应机制提供重要信息;建立模型酶以及合成新的多肽药物等。 多肽的化学合成技术无论是液相法还是固相法都已成熟。近几十年来,固相法合成多肽更以其省时、省力、省料、便于计算机控制、便于普及推广的突出优势而成为肽合成的常规方法并扩展到核苷酸合成等其它有机物领域。本文概述了固相合成的基本原理、实验过程,对其现状进行分析并展望了今后的发展趋势。 从1963年Merrifield发展成功了固相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。其基本原理是:先将所要合成肽链的羟末端氨基酸的羟基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上的氨基酸作为氨基组份经过脱去氨基保护基并同过量的活化羧基组分反应,接长肽链。重复(缩合→洗涤→去保护→中和及洗涤→下一轮缩合)操作,达到所要合成的肽链长度,最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。其中α-氨基用BOC(叔丁氧羰基)保护的称为BOC固相合成法,α-氨基用FMOC(9-芴甲氧羰基)保护的称为FMOC固相合成法, 2.固相合成的基本原理

固相合成法制备莫来石粉体

固相合成法制备莫来石粉体

实验10 固相合成法制备莫来石粉体 一、实验目的 1. 掌握固相合成制备技术及其形成机理。 2. 学习并掌握体积密度和气孔率计算并掌握莫来石表征方法。 二、实验原理 莫来石是生产一般耐火材料广泛应用的铝硅酸盐材料,常压条件下,仅在Al2O3·SiO2,系统中才存在其稳定晶相。莫来石的化学组成范围从3Al2O3·2SiO2到接近2Al2O3·SiO2。其晶体属斜方晶系,除非在无液相的条件下烧结,通常晶体都为拉伸的针状结晶。一般来讲,莫来石是由各种天然形成的铝硅酸盐材料,诸如众所周知的硅线石、蓝晶石或红柱石是通过高温处理而生产出来的。这些矿物因产地不同,其组成也不同,其铝、硅比及微量杂质含量也不同。为确保获得莫来石最佳产量进行的热处理,常常会产生大量的不均匀硅质玻璃,如加入铝矾土来提高Al2O3含量,则会混进诸如二氧化铁,氧化铁等杂质,实际上进一步改变了组分,就会极大地影响耐火度。合成莫来石的高温性能不仅要简单地寄托在组成物(整个加工阶段中非常严格的质量控制)固有的高温稳定性上,而且要在转化过程期间,能够控制结晶的生长。莫来石的耐高温及物理损坏性能和它的最初的结晶尺寸有直接关系,结晶大,会使耐火材料全部性能良好,而这也是高温处理过程的作用。晶体的增长依赖于原料的整体性、混合料的均匀性和混合料在高温下的停留时间。通过对合成莫来石的微观结构及性能进行控制,由于它具有高熔点,低热膨胀性、抗蠕变、化学惰性、高温时略微提高的抗折强度及良好的介质性能,在对各种结构及电学性能有所要求的不同材料中获得广泛的应用。通过对莫来石合成工艺、方法、原料的选择等方面的控制,并借助改进其微观结构(通过改变粒度、外形、组成、基质分布、界面特征,以及其他方面来控制其微观结构或性能),可以使其性能满足所需要的标准和要求。大量的成果是用于合成高纯度莫来石,直接地应用在各种结构和电学要求的领域中。莫来石主要的合成方法有醇盐沉淀法,化学湿混法、溶胶法及烧结反应、结合反应法,莫来石可以采用工业原料合成,也可以采用天然矿物原料合成,电熔法合成的莫来石晶粒发育良好呈针状或柱状解理明显,易于破碎;烧结法合成的莫来石晶粒细小,通常呈粒状,无明显解理存在,破碎

低温固相合成综述

研究生课程论文封面 课程名称材料制备与合成_____ 开课时间10-11 学年第一学期 学院数理与信息学院 学科专业凝聚态物理 ________ 学号2009210663 ____________ 姓名朱伶俊__________ 学位类别理学 ___________ 任课教师李正全 __________ 交稿日期___________________________ 成绩________________________ 评阅日期___________________________ 评阅教师 签名________________________

浙江师范大学研究生学院制 低温固相合成综述 目前,环境污染、能源过度消耗队地球及人类带来的危害已经越来越大。人们在发展经济的同时也在积极面对怎样克服对环境的污染,保护我们的生态平衡。近十几年来,由于传统的化学反应里在溶液或气相中进行,其反应需要能耗高,时间长,污染环境严重以及工艺复杂,因此越来越多的人将目光投向曾经被人类很早就利用过的固相化学反应。低温固相化学反应法是20世纪80年代发展起来的一种新的合成方法,并且发展极为迅速。其制备工艺简单,反应条件温和,节约能源,产率高,污染低等优点,使其再化学合成领域中日益受到重视。固相反应法已经成为了人们制备新型无机功能材料的重要手段之一。 1、低温固相合成的发展 固相化学反应是人类最早使用的化学反应之一,我们的祖先早就掌握了制陶 工艺,将制得的陶器用作生活日用品。但固相化学作为一门学科被确认却是在20世纪初,原因自然是多方面的,除了科学技术不发达的限制外,更重要的原因是人们长期的思想束缚。自亚里士多德时起,直至距今80多年前,人们广泛相信“不存在液体就不发生固体间的化学反应”。直到1912年,Hedvall在Berichte杂志发表了《关于林曼绿》(CaO和ZnO的粉末固体反应)为题的论文,有关固相化学的历史才正式拉开序幕。事实上,许多固相反应在低温条件下 便可发生。早在1904年,Pfeifer 等发现加热[Cr(en)3]Cl3 或[Cr(en)3](SCN)3 分别生成cis-[Cr(en)2Cl2]CI 和trans-[Cr(en)2(SCN)2]SCN ;1963 年,Tscherniajew等首先用K2[Pt 16]与KCN固-固反应,制取了稳定产物 K2[Pt(CN)6]。虽然这些早期的工作已发现了低温下的固相化学反应,但由于受到传统固相反应观念的束缚,人们对它的研究没有像对待高温固相反应那样引起足够的重视,更未能在合成化学领域中得到广泛应用。然而研究低温固相反应并开发其合成应用的价值的意义是不言而喻的。 1993 年Mallouk教授在Scienee上发表评述:“传统固相化学反应合成所得的是热力学稳定的产物,而那些介稳中间物或动力学控制的化合物往往只能在较低温度下存在,它们在高温时分解或重组成热力学稳定的产物。为了得到介稳固态相反应产物,扩大材料的选择范围,有必要降低固相反应温度。”可见,降低反应温度,不仅可获得更新的化合物,为人类创造更加丰富的物质财富,而且

第六章答案

第六章固相反应答案 1 若由MgO和Al O3球形颗粒之间的反应生成MgAl2O4是通过产物层的扩散进行的,(1) 2 画出其反应的几何图形,并推导出反应初期的速度方程。(2)若1300℃时D Al3+>D Mg2+,O2-基本不动,那么哪一种离子的扩散控制着MgAl2O4的生成?为什么? 解:(1)假设: a)反应物是半径为R0的等径球粒B,x为产物层厚度。 b)反应物A是扩散相,即A总是包围着B的颗粒,且A,B同产物C是完全接触的,反应自球表面向中心进行。 c)A在产物层中的浓度梯度是线性的,且扩散截面积一定。 反应的几何图形如图8-1所示: 根据转化率G的定义,得

将(1)式代入抛物线方程中,得反应初期的速度方程为: (2)整个反应过程中速度最慢的一步控制产物生成。D 小的控制产物生成,即D Mg 2+小,Mg 2+扩散慢,整个反应由Mg 2+的扩散慢,整个反应由Mg 2+的扩散控制。 2 镍(Ni )在10132.5Pa 的氧气中氧化,测得其质量增量如下表: 温 度 时 间 温 度 时 间 1(h ) 2(h ) 3(h ) 4(h ) 1(h ) 2(h ) 3(h ) 4(h ) 550℃ 600℃ 9 17 13 23 15 29 20 36 650℃ 700℃ 29 56 41 75 50 88 65 106 (1) 导出合适的反应速度方程;(2) 计算其活化能。 解:(1)将重量增量平方对时间t 作图,如图8-2所示。由图可知,重量增量平方与时 间呈抛物线关系,即符合抛物线速度方程式 。又由转化率的定义,得 将式(1)代入抛物线速度方程式中,得反应速度方程为:

材料合成与制备_复习资料(有答案)

第一章溶胶-凝胶法 名词解释 1. 胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的质量可以忽略不计,粒子之间的相互作用主要是短程作用力。 2. 溶胶:溶胶是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸为1nm-100nm,这些固体颗粒一般由10^3个-10^9个原子组成。 3. 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般为1%-3%。 4. 多孔材料:是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。 填空题 1.溶胶通常分为亲液型和憎液型型两类。 2.材料制备方法主要有物理方法和化学方法。 3.化学方法制备材料的优点是可以从分子尺度控制材料的合成。 4.由于界面原子的自由能比内部原子高,因此溶胶是热力学不稳定体系,若无其它条件限制,胶粒倾向于自发凝聚,达到低比表面状态。 5.溶胶稳定机制中增加粒子间能垒通常用的三个基本途径是使胶粒带表面电荷、利用空间位阻效应、利用溶剂化效应。 6.溶胶的凝胶化过程包括脱水凝胶化和碱性凝胶化两类。 7.溶胶-凝胶制备材料工艺的机制大体可分为三种类型传统胶体型、无机聚合物型、络合物型。 8.搅拌器的种类有电力搅拌器和磁力搅拌器。 9.溶胶凝胶法中固化处理分为干燥和热处理。 10.对于金属无机盐的水溶液,前驱体的水解行为还会受到金属离子半径的大小、电负性和配位数等多种因素的影响。 简答题 溶胶-凝胶制备陶瓷粉体材料的优点? 制备工艺简单,无需昂贵的设备;对多元组分体系,溶胶-凝胶法可大大增加其化学均匀性;反应过程易控制,可以调控凝胶的微观结构;材料可掺杂的范围较宽(包括掺杂量及种类),化学计量准确,易于改性;产物纯度高,烧结温度低等。 第二章水热溶剂热法 名词解释 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(如有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成、易氧化、易水解或对水敏感的材料。 3、超临界流体:是指温度及压力都处于临界温度或临界压力之上的流体。在临界状态下,物质有近于液体的溶解特性以及气体的传递特性。 4、微波水热合成:微波加热是一种内加热,具有加热速度快,加热均匀无温度梯度,无滞后效应等特点。微波对化学反应作用是非常复杂的,但有一个方面是反应物分子吸收了微波

陆佩文版无机材料科学基础习题及解答第六章固相反应

第六章固相反应 6-1 若由MgO和Al2O3球形颗粒之间的反应生成MgAl2O4是通过产物层的扩散进行的, (1)画出其反应的几何图形,并推导出反应初期的速度方程。(2)若1300℃时D Al3+>D Mg2+,O2-基本不动,那么哪一种离子的扩散控制着MgAl2O4的生成?为什么? 解:(1)假设: a)反应物是半径为R0的等径球粒B,x为产物层厚度。 b)反应物A是扩散相,即A总是包围着B的颗粒,且A,B同产物C是完全接触的,反应自球表面向中心进行。 c)A在产物层中的浓度梯度是线性的,且扩散截面积一定。 反应的几何图形如图6-1所示: 根据转化率G的定义,得

将(1)式代入抛物线方程中,得反应初期的速度方程为: (2)整个反应过程中速度最慢的一步控制产物生成。D小的控制产物生成,即D Mg2+小,Mg2+扩散慢,整个反应由Mg2+的扩散慢,整个反应由Mg2+的扩散控制。 6-2 由Al2O3和SiO2粉末反应生成莫来石,过程由扩散控制,如何证明这一点?已知扩散活化能为209 kJ/mol,1400℃下,1h完成10%,求1500℃下,1h和4h各完成多少?(应用杨德方程计算) 解:如果用杨德尔方程来描述Al2O3和SiO2粉末反应生成莫来石,经计算得到合理的结果,则可认为此反应是由扩散控制的反应过程。 由杨德尔方程,得 又,故 从而1500℃下,反应1h和4h时,由杨德尔方程,知

所以,在1500℃下反应1h时能完成15.03%,反应4h时能完成28.47%。 6-3 比较杨德方程、金斯特林格方程优缺点及适应条件。 解:两个方程都只适用稳定扩散的情况。杨德尔方程在反应初期具有很好的适应性,但杨氏模型中假设球形颗粒截面始终不变。因而只适用反应初期转化率较低的情况。而金斯格林方程考虑了在反应进程中反应截面面积随反应过程变化这一事实,因而金氏方程适用范围更广,可以适合反应初、中期。 6-4 粒径为1μm球状Al2O3由过量的MgO微粒包围,观察尖晶石的形成,在恒定温度下,第1h有20%的Al2O3起了反应,计算完全反应的时间。(1)用杨德方程计算;(2)用金斯特林格方程计算。 解:(1)用杨德尔方程计算: 代入题中反应时间1h和反应进度20%,得 h-1 故完全反应(G=1)所需的时间h (2)用金斯格林方程计算:

固相有机合成方法及应用

1963年Me而6eld发明了多肽的固相合成法,为有机合成史揭开了新的一页。固相有机合成反应产物分离、提纯方法简单,环境污染小,是一种较理想的合成方法。近年来,随着对连接分子和切割方法研究的不断深入以及各种新型树脂的发明,固相有机合成技术得到了迅速的发展和广泛的应用,成为目前有机化学的重要领域之一。因此,研究固相有机合成具有重大的理论意义和实践意义,为发展绿色化学与技术开拓了新途径。 一、固相有机合成技术进展 固相有机合成(solid—phaseorganicsynthesis,简称sPOS)就是把反应物或催化剂键合在固相高分子载体上,生成的中间产物再与其它试剂进行单步或多步反应,生成的化合物连同载体过滤、淋洗,与试剂及副产物分离,这个过程能够多次重复,可以连接多个重复单元或不同单元,最终将目标产物通过解脱试剂从载体上解脱出来(产物脱除反应)。固相合成采用过量的反应试剂以使反应进行完全,所以即使反应不太完全也可以进行,并且通过简单过滤就能分离纯化产物。 目前已被公认为固相条件下成熟的反应主要有N一芳基化反应、脱保护反应、Pauson—Khand反应、卤代反应、生成吲哚和苯并呋喃等杂环化合物的有关反应(如Fischer合成,Pd—hetemannulation)、生成烯键的有关反应(如wittig,Home卜Emmons反应,易位反应)、氧化/还原反应(如醇一醛、酮,硫醚一砜,硝 那么第一个通道下一次开始播放的时间相对第八个通道也是延时N/8时间播放。这样相邻通道播放的是相同节目,但时间间隔均是N/8。用户点播时,其点播信息经节目请求计算机处理后,由节目播放控制计算机将马上要播放的通道号、授权等信息返送给用户接收设备,用户在N/8时间内就可看到自己点播的节目。 2.视频点播(VOD)。视频服务器不仅可用于准视频点播系统,也可用于视频点播(VOD)系统。VOD的全称为Video0nDemand,即视频点播技术,也称交互式电视点播系统,意即按需要的视频流播放。“在想看的时候看想看的节目”,用户可以根据自己的意愿选择收看电视节目,从根本上改变了过去被动式收看电视的不足,完全实现了由用户掌握获得信息的主动权。VOD还可以实现Intemet、收发电子邮件、家庭购物、旅游指南、订票预约、股票交易等其他功能。因此可以说,这一技术的出现使用户可以按自己的需要来安排工作和娱乐时间,真正实现了由用户掌握收视主动权,极大地提高和改善了人们的生活质量和工作效率。这种应用规模比较大,必须将多台多通道的视频服务器组成能共享大容量硬盘存储体和能处理传输流的宽带网络,才能满足众多用户对节目的各种点播需求。用户点播信息可以有两种路径传给点播受理服务器:一种是通过城市的有线电视HFc网络的上行通道传给点播受理服务器;另一种是通过通用浏览器在互联网上对节目进行选择后,将点播信息传给点播受理服务器。点播受理服务器将有关信息处理后,传给播放控制计算机,由它控制播放用户所点播的节目,并通过HFc下行通道传到用户终端。用户接收有两种形式:一种是普通电视机+机顶盒,另一种是计算机+接收卡,借助计算机显示器收看。 河南科技2004.7上25  万 方数据

多肽固相合成法综述

多肽固相合成法综述 【摘要】:多肽是人体中重要的生命活性物质,其化学合成有着非常重要的意义。多肽固相化学合成法是蛋白质研究领域的重要的研究方法之一,近年来,由于其省时、省力、省料、便于计算机控制等优点而得到了很大的发展。本文介绍了多肽固相合成法的诞生、原理、分类、过程以及前景展望。 【关键词】:多肽;固相合成 1 概述 多肽是生物体内的具有特定功能的生命活性物质,是由多种氨基酸按照一定的排列顺序通过肽键结合而成的,其分子结构介于氨基酸与蛋白质之间。目前,多肽的化学合成法有液相法和固相法两种。固相合成法由于其省时、省力、省料、便于计算机控制等优点在药物研发领域、蛋白质结构研究领域、免疫学研究领域表现出了显著的优越性并且在生物制药及蛋白质工程中有着广阔的应用前景。 2 多肽固相合成 2.1诞生 1963年,Merrifield首次提出了多肽固相合成法(SPPS)这个具有里程碑意义的合成方法,可以说它带来了多肽化学合成上的一次革命。在这之前,大量科学家在多肽合成以及氨基酸保护方面取得了不少成绩,为多肽固相合成法的诞生提供了实验和理论基础。60年代末,Merrifield发明了世界上第一台多肽合成仪,并首次合成生物蛋白酶-具有124个氨基酸的核糖核酸酶。1984年,Merrifield也因为在多肽固相合成领域的突出贡献获得了诺贝尔化学奖。 2.2原理 将所要合成的肽链的第一个氨基酸的羧基以共价键的形式与固相载体(高分子树脂)相连接,再以结合在固相载体上的氨基酸的氨基作为合成起点,脱去氨基保护基并同过量的活化羧基反应以延长肽链,不断重复这

个步骤,即缩合成肽-洗涤-脱保护-洗涤-缩合成肽,直到得到目的肽链。最后,将肽链从树脂上裂解下来,进行氧化折叠、纯化、化学修饰等步骤得到所要的多肽。 2.3分类 多肽固相合成法有两种:一是Merrifield所建立的Boc合成法,它是采用TFA(三氟乙酸)可脱除的Boc(叔丁氧羰基)为α-氨基保护基,侧链保护采用苄醇类。合成时将一个Boc-氨基酸衍生物共价交联到树脂上,用TFA 脱除Boc,用三乙胺中和游离的氨基末端,然后通过DCC活化、偶联下一个氨基酸,最终脱保护多采用HF 法或TFMSA(三氟甲磺酸)法。在Boc合成法中,反复地用酸来脱保护,这种处理带来了一些问题:如在肽与树脂的接头处,当每次脱Boc基时会有肽从树脂上脱落,合成的肽链越长,这样的损失越严重;此外,酸处理会引起侧链的一些副反应,Boc合成法尤其不适于合成含有色氨酸等对酸不稳定的肽类。1978年,Meienlofer和Atherton等人采用Carpino报道的Fmoc(9-芴甲氧羰基)基团作为α-氨基保护基,成功地进行了多肽的Fmoc固相合成。Fmoc法与Boc法的根本区别在于采用了碱可脱除的Fmoc为α-氨基的保护基,侧链的保护采用TFA可脱除的叔丁氧基等,树脂采用90%TFA可切除的对烷氧苄醇型树脂,最终的脱保护过程避免了强酸处理。 2.4步骤 2.4.1树脂的选择、活化及氨基酸的固定 多肽固相合成的载体在合成条件下应该是惰性、不溶性的交联聚合物,能够对单体中活性基团进行选择性保护和去保护。有两种载体类型可以选择:微孔溶胀型和大孔非溶胀型,在大多数固相合成中,由于机械强度高,不易破坏,功能基化反应速度快,负载容量高的特点,溶胀型树脂优于非溶胀型树脂。根据树脂上导入反应基团的不同,将其分为氯甲基树脂、羧基树脂、氨基树脂,Boc法通常选择氯甲基树脂(Merrifield树脂),Fmoc 法通常选择羧酸树脂(Wang氏树脂)。 树脂需要活化,将其在固相反应器中用DMF浸泡溶胀两个小时,减压抽去溶剂达到活化目的。

固相合成法制备莫来石粉体

实验10 固相合成法制备莫来石粉体 一、实验目的 1. 掌握固相合成制备技术及其形成机理。 2. 学习并掌握体积密度和气孔率计算并掌握莫来石表征方法。 二、实验原理 莫来石是生产一般耐火材料广泛应用的铝硅酸盐材料,常压条件下,仅在Al2O3·SiO2,系统中才存在其稳定晶相。莫来石的化学组成范围从3Al2O3·2SiO2到接近2Al2O3·SiO2。其晶体属斜方晶系,除非在无液相的条件下烧结,通常晶体都为拉伸的针状结晶。一般来讲,莫来石是由各种天然形成的铝硅酸盐材料,诸如众所周知的硅线石、蓝晶石或红柱石是通过高温处理而生产出来的。这些矿物因产地不同,其组成也不同,其铝、硅比及微量杂质含量也不同。为确保获得莫来石最佳产量进行的热处理,常常会产生大量的不均匀硅质玻璃,如加入铝矾土来提高Al2O3含量,则会混进诸如二氧化铁,氧化铁等杂质,实际上进一步改变了组分,就会极大地影响耐火度。合成莫来石的高温性能不仅要简单地寄托在组成物(整个加工阶段中非常严格的质量控制)固有的高温稳定性上,而且要在转化过程期间,能够控制结晶的生长。莫来石的耐高温及物理损坏性能和它的最初的结晶尺寸有直接关系,结晶大,会使耐火材料全部性能良好,而这也是高温处理过程的作用。晶体的增长依赖于原料的整体性、混合料的均匀性和混合料在高温下的停留时间。通过对合成莫来石的微观结构及性能进行控制,由于它具有高熔点,低热膨胀性、抗蠕变、化学惰性、高温时略微提高的抗折强度及良好的介质性能,在对各种结构及电学性能有所要求的不同材料中获得广泛的应用。通过对莫来石合成工艺、方法、原料的选择等方面的控制,并借助改进其微观结构(通过改变粒度、外形、组成、基质分布、界面特征,以及其他方面来控制其微观结构或性能),可以使其性能满足所需要的标准和要求。大量的成果是用于合成高纯度莫来石,直接地应用在各种结构和电学要求的领域中。莫来石主要的合成方法有醇盐沉淀法,化学湿混法、溶胶法及烧结反应、结合反应法,莫来石可以采用工业原料合成,也可以采用天然矿物原料合成,电熔法合成的莫来石晶粒发育良好呈针状或柱状解理明显,易于破碎;烧结法合成的莫来石晶粒细小,通常呈粒状,无明显解理存在,破碎比较困难;采用工业原料合成的莫来石纯度较

相关文档
最新文档