220吨循环流化床锅炉各专业规程

220吨循环流化床锅炉各专业规程
220吨循环流化床锅炉各专业规程

第一章 锅炉运行规程

1 设备概况

1.1 基本概况

锅炉型号

UG-220/9.8-M14

额定蒸发量 220 t/h

最大连续蒸发量 260 t/h

额定蒸汽温度 540

C

额定蒸汽压力(表压)

9.8 MPa

给水温度

150

C

锅炉排烟温度

135

C

排污率

< 1 %

空气预热器进风温度 20

C

锅炉计算热效率 90.77 %

按设计煤

种)

锅炉保证热效率 90%

一次热风温度

170

C

二次热风温度

170

C

一、二次风量比 55

45

循环倍率 25

?30

锅炉飞灰份额

~66 %

脱硫效率(钙硫摩尔比为 3 时) > 88 %

燃煤低位发热量

19040KJ/kg

燃煤煤颗粒度

粒度范围 0~10mm

燃料消耗量 42.89 t/h

(按设计煤

种)

石灰石消耗量

3.287 t/h

(按设计煤种)

锅炉基本尺寸如下:

炉膛宽度(两侧水冷壁中心线间距离)

8770mm 炉膛深度(前后水冷壁中心线间距离)

7090mm

炉膛顶棚管标高 40100mm

锅筒中心线标高

运转层标高 操作层标高

锅炉深度(柱 Z 1 与柱 Z 4 之间距离)

26280mm

1.2 锅炉结构简述

本锅炉采用中国科学院工程热物理研究所的循环流化床燃烧技术, 结合无锡 锅炉厂多年来生产循环流化床锅炉的经验, 是双方合作开发的新一代产品。 锅炉 为高温高压,单锅筒横置式,单炉膛,自然循环,全悬吊结构,全钢架n 型布置。 锅炉运转层以上露天,运转层以下封闭,在运转层

9m 标高设置混凝土平台。炉

膛采用膜式水冷壁, 锅炉中部是蜗壳式汽冷旋风分离器, 尾部竖井烟道布置两级 三组对流过热器,过热器下方布置三组省煤器及一、二次风各二组空气预热器。 锅炉燃烧系统流程 :

给煤机将煤送入落煤管进入炉膛, 锅炉燃烧所需空气分别由一、 二次风机提 供。一次风机送出的空气经一次风空气预热器预热后由左右两侧风道引入炉下水 冷风室,通过水冷布风板上的风帽进入燃烧室; 二次风机送出的风经二次风空气 预热器预热后, 通过分布在炉膛前后墙上的喷口喷入炉膛, 补充空气, 加强扰动 与混合。燃料和空气在炉膛内流化状态下掺混燃烧, 并与受热面进行热交换。 炉 膛内的烟气 (携带大量未燃尽碳粒子 )在炉膛上部进一步燃烧放热。离开炉膛并夹 带大量物料的烟气经蜗壳式汽冷旋风分离器之后, 绝大部分物料被分离出来, 经 返料器返回炉膛,实现循环燃烧。分离后的烟气经转向室、高温过热器、低温过 热器、省煤器、一、二次风空气预热器由尾部烟道排入电袋除尘器进行除尘后排 出。 锅炉汽水侧流程 :

给水经过水平布置的三组省煤器加热后进入锅筒。 锅筒内的锅水由集中下降 管、分配管进入水冷壁下集箱、上升管、炉内水冷屏、上集箱,然后从引出管进 入锅筒。锅筒内设有汽水分离装置。 饱和蒸汽从锅筒顶部的蒸汽连接管经连接烟

锅炉最高点标高(大板梁) 48800mm

锅炉宽度(两侧柱间中心距离) 23000mm 44500mm

9000mm 6400mm

道引至汽冷旋风分离器,然后依次经过尾部汽冷包墙管、低温过热器、一级喷水减温器、炉内屏式过热器、二级喷水减温器、高温过热器,最后将合格的过热蒸汽引向汽轮机或减温减压器。

1.3主、辅设备参数

1)本体

2)辅机

循环流化床锅炉的特点

循环流化床锅炉的特点 循环流化床锅炉的特点 循环流化床锅炉是近十几年发展起来的一项高效、低污染清洁燃烧技术。因其具有燃烧效率高、煤种适应性广、烟气中有害气体排放浓度低、负荷调节范围大、灰渣可综合利用等优点,在当今日益严峻的能源紧缺和环境保护要求下,在国内外得到了迅速的发展,并已商品化,正在向大型化发展。 1.1 独特的燃烧机理 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其炉子称为流化床

锅炉。流化理论用于燃烧始于上世纪20年代,40年代以后主要用于石油化工和冶金工业。 流化燃烧是一种介于层状燃烧与悬浮燃烧之间的燃烧方式。煤预先经破碎加工成一定大小的颗粒(一般为<8mm)而置于布风板上,其厚度约在350~500mm左右,空气则通过布风板由下向上吹送。当空气以较低的气流速度通过料层时,煤粒在布风板上静止不动,料层厚度不变,这一阶段称为固定床。这正是煤在层燃炉中的状态,气流的推力小于煤粒重力,气流穿过煤粒间隙,煤粒之间无相对运动。当气流速度增大并达到某一较高值时,气流对煤粒的推力恰好等于煤粒的重力,煤粒开始飘浮移动,料层高度略有增长。如气流速度继续增大,煤粒间的空隙加大,料层膨胀增高,所有的煤粒、灰渣纷乱混杂,上下翻腾不已,颗粒和气流之间的相对运动十分强烈。这种处于沸腾状态的料床,称为流化床。这种燃烧方式即为流化燃烧。当风速继续增大并超过一定限度时,稳定的沸腾工况就被破坏,颗粒将全部随气流飞走。物料的这种运动形式叫做气力输送,这正是煤粉在煤粉炉中随气流悬浮燃烧的情景。

1.2 锅炉热效率较高 由于循环床内气—固间有强烈的炉内循环扰动,强化了炉内传热和传质过程,使刚进入床内的新鲜燃料颗粒在瞬间即被加热到炉膛温度(≈850℃),并且燃烧和传热过程沿炉膛高度基本可在恒温下进行,因而延长了燃烧反应时间。燃料通过分离器多次循环回到炉内,更延长了颗粒的停留和反应时间,减少了固体不完全燃烧损失,从而使循环床锅炉可以达到88~95%的燃烧效率,可与煤粉锅炉相媲美。 1.3 运行稳定,操作简单 循环流化床锅炉的给煤粒度一般小于10mm,因此与煤粉锅炉相比,燃料的制备破碎系统大为简化。循环流化床锅炉燃料系统的转动设备少,主要有给煤机、冷渣器和风机,较煤粉炉省去了复杂的制粉、送粉等系统设备,较链条炉省去了故障频繁的炉排部分,给燃烧系统稳定运行创造了条件。

哈锅循环流化床锅炉技术情况介绍

哈锅循环流化床锅炉技术情况介绍 哈锅的循环流化床锅炉技术主要源于与国外公司的技术合作,技术引进以及国内科研院所的合作。结合国内的市场情况以及用户的特殊要求,哈锅将合作、引进的技术进行有机的结合,并进行多方面的优化设计,推出具有哈锅特色、符合中国国情的循环流化床锅炉技术,为哈锅打开并占领国内循环流化床锅炉市场创造了技术上的优势。多年来,哈锅在原有的基础上,总结多台投运锅炉的运行经验,不断改革创新,推出新技术新产品,大大丰富了自己的设计思路和设计方案,从而满足了不同用户的各种要求。到目前为止,哈锅设计的燃料包括烟煤,贫煤、褐煤,无烟煤,煤矸石,煤泥以及煤+气混烧等,涉及燃料覆盖面很广;采用的回料阀包括单路回料阀和双路回料阀;采用的风帽包括大直径的钟罩式风帽和猪尾巴管式风帽;使用的冷渣器包括风水联合冷渣器、滚筒冷渣器和螺旋冷渣器;采用的点火启动方式包括床上点火、床下点火以及床上+床下联合点火启动;给煤方式包括前墙给煤、后墙给煤和前墙+后墙联合给煤。 下面详细介绍一下哈锅循环硫化床锅炉技术改进情况: 1、分离器 哈锅利用引进技术对分离器设计进行了优化,以提高分离器的分离效率,这些优化措施主要有: a、分离器入口烟道向下倾斜,使进入分离器的烟气带有向下倾角,给烟气中的固体颗粒一个向下的动能,有助于气固分离。 b、偏置分离器中心筒,即可减轻中心筒的磨损,又可改善中心筒周围的流场提高分离效率。 c、独有的导涡器(中心筒)设计,有效控制上升气流的流速,减少漩涡气流对颗粒的裹带,提高分离效率。 d、分离器入口烟道设置成加速段,提高分离器的入口烟速,有利于气固分离。 经过优化后分离器分离效率可达到99.5%以上,切割粒径d50=10-30um、d99=70-80um。高效分离器是降低飞灰可燃物的有效措施,同时也是实现高循环倍率的重要保证。

循环流化床锅炉技术(岳光溪)

循环流化床技术发展与应用 岳光溪清华大学热能工程系 摘要:循环流化床燃烧技术对我国燃煤污染控制具有举足轻重的意义。我国自上世纪八十年代后采取引进和自我开发两条路线,完全掌握了中小型循环流化床锅炉设计制造技术,在大型循环流化床燃烧技术上已经完成了首台135MWe超高压再热循环流化床锅炉的示范工程。引进的300MWe循环流化床锅炉进入示范实施阶段。燃煤循环流化床锅炉已在中国中小热电和发电厂得到大面积推广使用。中国积累的设计运行经验对世界上循环流化床燃烧技术的发展做出了重要贡献。超临界循环流化床锅炉是今后循环流化床燃烧技术发展极为重要的方向,是大型燃煤电站污染控制最具竞争力的技术。我国已经具备开发超临界循环流化床锅炉的能力,在政府支持下可以实现完全自主知识产权的超临界循环流化床锅炉,扭转过去反复引进的被动局面。 前言 能源与环境是当今社会发展的两大问题。我国是缺油,但煤炭资源相对丰富大国。石油天然气对我国是战略资源,要尽量减少直接燃用。目前一次能源消耗中煤炭占65%,在可预见的若干年内还会维持这个趋势。可见发展高效、低污染的清洁燃煤技术是当今亟待解决的问题。 循环流化床是近年来在国际上发展起来的新一代高效、低污染清洁燃烧技术,具有许多其它燃烧方式所没有的优点: 1)由于循环流化床属于低温燃烧,因此氮氧化物排放远低于煤粉炉,仅为120ppm左右。并可实现燃烧中直接脱硫,脱硫效率高且技术设备简单和经济,其脱硫的初投资及运行费用远低于煤粉炉加FGD,是目前我国在经济上可承受的燃煤污染控制技术; 2)燃料适应性广且燃烧效率高,特别适合于低热值劣质煤; 3)排出的灰渣活性好,易于实现综合利用。 4)负荷调节范围大,负荷可降到满负荷的30%左右。 因此,在我国目前环保要求日益严格,煤种变化较大和电厂负荷调节范围较大的情况下,循环流化床成为发电厂和热电厂优选的技术之一。我国的循环流化床燃烧技术的来自于自主开发、国外引进、引进技术的消化吸收三个主要来源。上世纪八十年代以来,我国循环流化床锅炉数量和单台容量逐年增加。据不完全统计,现有近千台35~460t/h 循环流化床蒸汽锅炉和热水锅炉在运行、安 106.78t/h,见图1;参数从中压、次高压、高压发 展到超高压,单台容量已经发展到670t/h,见图2。 截至2003年,投运台数已有700多台。单炉最大 容量为465t/h,发电量150MWE。近三年,我国 循环流化床锅炉发展迅速,100MWe以上循环流 化床锅炉订货量达到近80台,100MWe以下循环 流化床锅炉订货超过200台。今后,随着环保标 准的提高,供热及电力市场对循环流化床锅炉的 需求将会进一步扩大。

解析循环流化床锅炉超低排放改造可行性

解析循环流化床锅炉超低排放改造可行性 发表时间:2019-10-12T11:11:01.613Z 来源:《云南电业》2019年4期作者:赵亮 [导读] 近几年随着我国可持续发展理念的不断深化,使得环境问题逐渐成为了社会关注的焦点问题。与此同时,国家也针对各个领域企业的排污、排烟情况制定了一系列的排放标准。 山西京玉发电有限责任公司山西省朔州市 032700 摘要:近几年随着我国可持续发展理念的不断深化,使得环境问题逐渐成为了社会关注的焦点问题。与此同时,国家也针对各个领域企业的排污、排烟情况制定了一系列的排放标准。 关键词:循环流化床;超低排放;改造;可行性 进入新时期后,环保理念与节能理念正在实现全方位的深入,尤其是针对化工领域而言。锅炉循环流化床本身包含了复杂性较高的锅炉内在结构,其在运行时将会排放相对较高的烟尘和其他类型污染物。在当前状况下,电力企业及其有关部门正在着手引进超低排放的模式用来全面改造现有的锅炉装置,进而将全面减排与节能的根本理念渗透在锅炉运行的整个流程中。与传统运行模式相比,建立于超低排放前提下的全新运行模式体现为更高层次的环保实效性,针对此项节能举措有必要致力于全面推广。 一、超低排放改造具备的可行性 通常来讲,循环流化床锅炉将会排出相对较多的烟尘和其他污染物,对于人体健康增添了威胁性,同时也无益于保障最根本的环境洁净度。通过运用超低排放改造的手段与措施,电力企业针对自身现有的流化床装置着手进行改造,从源头上杜绝较高污染带来的威胁性,确保其符合当前绿色化工的宗旨与目标。实质上,传统模式的流化床系统存在较大可能将会排放过高的污染物,其中典型性的污染成分包含二氧化硫、烟尘与氮氧化物等。因此在全面施行超低排放改造时,应当确保限制于每立方米40毫克以内的二氧化硫排出量、每立方米20毫克的烟尘总量以及每立方米180毫克以内的氮氧化物总量。 我厂设有330MW机组的大型循环流化床系统,具体在改造时,关键集中于布袋除尘、湿法脱硫以及尿素脱硝等措施。与此同时,技术人员还能运用在线监测模式来随时测查锅炉排放量。在某个时间段,锅炉排放如果超出了最大限度,那么对此就要着手进行适度的调控。对于在线监测仪将其设计为粉尘监测装置,运用改造与升级的方式来优化其现有的监测精度。 二、脱硫部分改造 第一,石灰石注入点改造。本次石灰石技术改造结合福斯特惠勒循环流化床锅炉固有特点、紧凑式旋风分离器及炉膛出口的高宽比、炉内喷钙脱硫技术进行石灰石注入点的改造工作,在实际改造过程中,应注重合理布置并选择炉膛喷射的具体位置。一般情况下,炉膛石灰石注入点主要有以下4种位置:①给煤管给入,当石灰粉进入炉膛内部后,无法与烟气充分混合,致使给煤管给入普遍存在脱硫效果不佳的现象;②二次风中给入,由于二次风压较低且穿透力较差,使得运行工程中经常会出现石灰粉与烟气混合不充分的现象;③独立开口,在石灰粉进入炉膛后,混合扩散性较差,有改造时间长、破坏原有耐火材料的缺点;④返料器侧面中部人孔给入,有利于提高石灰石细粉利用率、缩短原有炉内喷钙固硫时间、提高石灰石在炉内与二氧化硫混合接触能力,该改造需要有合适的位置和温度,具有投料后反应时间长、效果滞后的缺点。 第二,锅炉密相区设置蒸汽喷枪改造,为了防止由断煤偏烧引起的二氧化硫超标排放的现象,相关工作人员应在锅炉密集区增设蒸汽喷枪,且每台循环流化床锅炉应配置3个蒸汽喷枪并将这3支蒸汽喷枪分别设置在锅炉密集区的左墙、右墙、后墙的中部,且每支蒸汽喷枪应满足出力为5t/h、蒸汽参数为P=1.15MP、T=315℃等基本条件,导致二氧化硫超标排放的主要原因为是循环流化床锅炉在正常运行过程中由于给煤机断煤是的锅炉内部的布风板煤炭无法均匀分布,从而导致锅炉密相区温度呈现出混乱状态。因此,本次改造将通过在锅炉密相区上部设置蒸汽喷枪的方式来提高锅炉密相区的脱硫的稳定性,在断煤等锅炉非正常运行状态下,紧急投入蒸汽喷枪,控制二氧化硫排放浓度不会突升,避免硫化物排放超标。因此,在改造过程中相关技术人员需要根据实际情况选择炉膛石灰石注入点的位置非常关键。此外,在选择石灰石注入点温度区域时应以835℃~850℃为宜。在本次改造过程中,结合实际情况最终选择从分离器的中部人孔注入的方式,且通过将原有石灰石输送管线易磨损弯头全部更换为新型耐磨弯头的方式,提高石灰石输送管线的稳定性,同时降低循环流化床锅炉出现故障的概率。 三、脱硝部分改造 脱硝系统主要的工作原理为:氨水在运输到指定位置时通过氨水卸载泵注入将氨水注入到氨水储存罐,然后通过氨水输送泵将氨水输送到指定的计量混合系统。与此同时,储存在稀释水储罐中的稀释水也会通过输送泵输送到计量混合系统,根据系统实时反馈出的具体情况,氨水与稀释水会在计量混合系统内进行充分混合,氨水在经过稀释后会进入喷射系统,并通过喷嘴与压缩空气进行混合,当稀释后的氨水完全雾化后将会借助喷嘴喷入锅炉炉膛内,而这时雾化的氨水会与烟气中的NOX发生化学反应,并在合适的温度下将有害气体还原成氮气和水。 我厂将在本次改造过程中组织相关技术人员在锅炉正常运行状态下,检查炉膛及尾部受热面是否存在漏风现象,若是存在应及时将锅炉漏风得具体部位以及情况详细记录,并在检查结束后对出现漏风现象的部位进行全面补漏工作,以减轻锅炉漏风现象。减少锅炉漏风有利于降低锅炉的排烟热损失,同时还可以在一定程度上提高锅炉燃烧热效率,减少锅炉的烟气量、降低反应区过剩空气系数、提高喷氨区的烟气温度,使得脱硝系统的脱硝效率可以达到相关设计值并起到有效抑制氨逃逸率的作用。 此外,在改造脱硝系统的过程中采取以下四种有效措施对脱硝烟系统进行优化:第一,控制合理的锅炉燃烧空气系数。过剩空气系数越大,燃烧形成的氮氧化物会受到空气系数的影响,当过剩空气系数增加时燃烧形成的氮氧化物浓度也会随之增加,因此应在充分保证锅炉安全运行、不影响煤的燃尽、不影响脱硫系统运行前提下采用“低氧燃烧”的工艺技术,使得锅炉满负荷运行时可有效将省煤器入口的烟气含氧量控制在4.2%左右,使得脱硝前的浓度NOX低于设计值,则脱硝后的NOX浓度小于50mg/Nm3。第二,控制二次风比例。CFB的燃烧风比是影响NOX排放浓度的重要因素,因此在锅炉燃烧中应重点关注CFB的燃烧风比,在锅炉启动过程的后期逐步提高二次风比例,控制脱硝前的NOX排放浓度。第三,控制脱硝氨氮摩尔比。选取合适的氨氮摩尔比以保证NOX脱除率和氨逃逸率符合重要技术指标,当氨氮摩尔比超过2时会增加氨逃逸率,严重影响到了脱硝效率。因此在脱硝烟系统运行中应将氨氮摩尔比控制在1.5,最大时不超过2.0。第四,

循环流化床锅炉培训题库

一、填空题 1、水和水蒸气的饱和压力随饱和温度的升高而(升高)。 2、锅炉蒸发设备的水循环分为(自然循环)和(强制循环)两种。 3、锅炉的热效率,就是锅炉的(有效)利用热量占(输入)锅炉热量的百分数。 4、实际空气量与理论空气量的比值称为(过剩空气)系数。 5、锅炉排污分为(定期排污)和(连续排污)两种。 6、热力学第一定律主要说明(热能)和(机械能)之间相互转换和总量守恒。 7、管道上产生的阻力损失分为(沿程阻力)损失和(局部阻力)损失。 8、冲洗水位计时,应站在水位计的(侧面),打开阀门时应(缓慢小心)。 9、(实际空气量)与(理论空气量)的比值称为过剩空气系数。 10、电除尘器的工作过程分为(尘粒荷电)、(收集灰尘)、(清除捕集灰尘)三个阶段。 11、循环流化床料层不正常流化状态主要有(沟流)、(气泡和节涌)、(分层)。 12、完全燃烧的必要条件是(充足的燃烧时间)、(合适的空气量)、(相当高的炉膛温度)、(煤与空气的良好混合)。 13、运行分析有(岗位分析)、(专业分析)、(专题分析)、(事故分析)。 14、锅炉的燃烧设备包括(燃烧室)、(燃烧器)和(点火装置)。 15、蒸发设备主要由(汽包)、(下降管)、和(水冷壁)等组成 16、锅炉按水循环方式的不同可分为(自然循环锅炉)、(强制循环锅炉)、(直流锅炉)、(复合循环锅炉)等。 17、锅炉本体设备主要由(燃烧设备)、(蒸发设备)、(对流受热面)、(锅炉墙体构成烟道)和(钢架构件)等组成。 18、离心泵启动前应(关闭)出口门,(开启)入口门。 19、停止水泵前应将水泵出口门(逐渐关小),直至(全关)。 20、水泵汽化的内在因素是因为(温度)超过对应压力下的(饱和温度)。 21、润滑油对轴承起(润滑)和(冷却)、(清洗)等作用。 22、按工作原理分类,风机主要有(离心式)和(轴流式)两种。 23、闸阀的特点是结构(简单),流动阻力(小),开启,关闭灵活,但其密封面易于(磨损)。 24、转动机械发生强烈(振动),窜轴超过(规定)值,并有扩大危险时,应立即停止运行。 25、轴承室油位过高,使油环运动阻力(增加),油环可能不随轴转动,影响(润滑)作用,散热也受影响,油温会升高,同时会从轴及轴承缝隙中(漏油)。 26、逆止阀的作用是在该泵停止运行时,防止压力水管路中液体向泵内(倒流),致使水泵(转子倒转),损坏设备。 27、离心式风机主要零部件:(机壳)、(叶轮)、(主轴)、(轴承箱体)、(密封组件)、(润滑装置)、(联轴器)等。 28、布风装置由(风室)、(布风板)和(风帽)等组成。

循环流化床锅炉部分部件原理

基本原理篇 第一章循环流化床锅炉的基本原理 第一节流态化过程循环流化床锅炉燃烧是一个特殊的气固两相流动体系中发生的物理化学过程,是一种新型燃用固体燃料的的锅炉。粒子团不断聚集、沉降、吹散、上升又在聚集物理衍变过程,是循环床中气体与固体粒子间发生剧烈的热量与质量交换,形成炉内的循环;同时气流对固体颗粒有很大的夹带作用,使大量未燃尽的燃料颗粒随烟气一起离开炉膛,被烟气带出的大部分物料颗粒经过旋风分离器的分离又从新回到炉膛,来保持炉内床料不变的连续工作状态,这就是炉外的物料循环系统,也是循环流化床锅炉所特有的物料循环—循环从此而来。 咱们看一下这幅燃烧、循环分离图

1. 流态化:当气体以一定的速度流过固体颗粒层时,只要气体对固体颗粒产生作用力与固体颗粒所受的外力(主要是固体的重力)相平衡时,颗粒便具有了类似流体的性质,这种状态成为流态化, 简称流化。固体颗粒从固体床、起始流态化、鼓泡流态化、‘柱塞’流态化、湍流流态化、气力输送状态的六种流化状态。 2. 临界流化速度:颗粒床层从静止状态转变为流态化时的最低速度, 称为临界流化速度。此时所需的风量称为临界流化速度。 3. 流化床表现在流体方面的特性。 流化床看上去非常象沸腾的液体, 在许多方面表

现出类似液体的特性, 主要表现在以下几个方面: 1) 床内颗粒混合良好。因此,当加热床层时, 整个床层的温度基本均匀。 2) 床内颗粒可以象流体一样从容器侧面的孔喷出, 并能像液体一样从一个容器流向另一个容器。 3) 高于床层表观密度的颗粒会下沉, 小于床层表观密度的颗粒会浮在床面上。 4) 当床体倾斜时, 床层的上表面保持水平。 第二节循环流化床的基本原理 1. 循环流化床的特点: 1) 不再有鼓泡床那样清晰的界面,固体颗粒充面整个上升段空间。 2) 有强烈的热量、质量、和动量的传递过程。 3) 床层压降随流化速度和颗粒质量流量变化。 4) 低温的动力控制燃烧,也就是我们所说的床温在850-950℃之间范围,因为这个范围对灰的不会软化、碱金属不会升华受热面会减轻结渣和空气中不能生成大量的NOx。 5) 通过上升段内的存料量,固体物料在床内的停留时间可在几分钟至数小时范围内调节。 2.循环流化床锅炉的传热 1)颗粒与气流之间,以对流换热为主;

循环流化床锅炉原理说明

一、循环流化床锅炉及脱硫 1、循环流化床锅炉工作原理 煤和脱硫剂被送入炉膛后,迅速被炉膛内存在的大量惰性高温物料(床料)包围,着火燃烧所需的的一次风和二次风分别从炉膛的底部和侧墙送入,物料在炉膛内呈流态化沸腾燃烧。在上升气流的作用下向炉膛上部运动,对水冷壁和炉内布置的其他受热面放热。大颗粒物料被上升气流带入悬浮区后,在重力及其他外力作用下不断减速偏离主气流,并最终形成附壁下降粒子流,被气流夹带出炉膛的固体物料在气固分离装置中被收集并通过返料装置送回炉膛循环燃烧直至燃尽。未被分离的极细粒子随烟气进入尾部烟道,进一步对受热面、空气预热器等放热冷却,经除尘器后,由引风机送入烟囱排入大气。 燃料燃烧、气固流体对受热面放热、再循环灰与补充物料及排渣的热量带入与带出,形成热平衡使炉膛温度维持在一定温度水平上。大量的循环灰的存在,较好的维持了炉膛的温度均化性,增大了传热,而燃料成灰、脱硫与补充物料以及粗渣排除维持了炉膛的物料平衡。 煤质变化或加入石灰石均会改变炉内热平衡,故燃用不同煤种的循环流化床锅炉在设计及运行方面都有不同程度的差异。循环流化床锅炉在煤种变化时,会对运行调节带来影响。试验表明,各种煤种的燃尽率差别极大,在更换煤种时,必须重新调节分段送风和床温,使燃烧室适应新的煤种。 加入石灰石的目的,是为了在炉内进行脱硫。石灰石的主要化学成份是CaO .而煤粉燃烧后产生的SO2、SO3等,若直接通过烟囱排入大气层,必然会造成污染。加入石灰石后,石灰石中的的Cao 与烟气中的SO2、SO3等起化学反应,生成固态的CaSO3 、CaSO4 (即石膏),从而减少了空气中的硫酸类的酸性气体的污染。另外,由于流化床锅炉的燃烧温度被控制在800-900 ℃范围内,煤粉燃烧后产生的NOx 气体也会大大减少硝酸类酸性气体。 2、循环流化床锅炉的特点 可燃烧劣质煤 因循环流化床锅炉特有的飞灰再循环结构,飞灰再循环量的大小可改变床内(燃烧室)的吸收份额,即任何劣质煤均可充分燃烧,所以循环流化床锅炉对燃料的适应性特别好。

220t 循环流化床锅炉运行分析

220t循环流化床锅炉运行分析 摘要:重点分析了220t/h循环流化床运行中存在的问题,并提出了解决办法。 关键词:循环流化床运行 1.前言 循环流化床锅炉具有高效、低污染、低成本等特点。循环流化床的燃烧是介于层燃和室燃之间的一种燃烧技术,是采用流态化的燃烧,具有很多优点: 燃料适用性广; 燃烧效率高; 燃烧强度大,温度分布均匀; 由于采用低温分级燃烧,高效脱硫、烟气SO2和NOX的排放量少; 负荷调节比例大; 灰渣综合利用性能好。正是由于这些优点,近10年来我国的循环流化床锅炉得到了迅速的发展。但是纵观我国循环流化床锅炉的运行情况,故障率高、运行周期短的问题已成为普遍现象。主要表现在给煤系统故障、排渣故障、风室漏料等。下面结合霍煤鸿骏铝电公司电厂两台武汉锅炉厂生产的220t/h循环流化床锅炉的运行情况,分析一下循环流化床锅炉运行中常见的问题,并找出解决办法。 2.设备概况 霍煤鸿骏铝电公司电厂1、2号炉是武汉锅炉厂生产的循环流化床锅炉。系高压、单炉膛、平衡通风、自然循环汽包炉、膜式水冷壁、采用汽冷式旋风分离器进行气固分离室内布置。锅炉主要由四部分组成:燃烧室、高温旋风分离器、返料密封装置和尾部对流烟道。燃烧室位于锅炉前部,底部为后墙水冷壁弯制的水冷布风板和风室。燃烧室后有两个平行布置内径5米的高温旋风分离器。密封返料装置位于旋风分离器下,与燃烧室和旋风分离器相连接。燃烧室、旋风分离器、和密封返料装置构成了粒子循环回路。尾部对流烟道再锅炉后部,烟道上部的四周及顶棚由包墙组成,其内烟气流程依次布置有三级过热器和一级过热器,下部烟道内依次布置有省煤器和卧式空气预热器,一二次风分开布置。锅内采用单段蒸发系统,下降管采用集中与分散结合的供水方式。过热蒸汽温度采用两级喷水减温调节。锅炉采用床下点火,水冷风室下布置两台启动燃烧器。每个燃烧室装有一只简单机械雾化油枪。点火风引自一次风出口。点火时将一次风加热到900℃左右,耐火保温层厚度为200mm。炉排渣采用滚筒冷渣器,由链斗式输送机送入渣仓。冷渣器布置在启动燃烧器下面,并列布置三台。为保证尾部受热面良好的传热效果在过热器省煤器空气预热器处布置蒸汽吹灰器。锅炉配有一次风机一台、二次风机一台、引风机两台、高压流化风机两台。2号炉于2005年2月17日经过72小时试运行投入生产,1号炉于2005年8月13日经过72小时试运行生产。

循环流化床锅炉的原理及结构

循环流化床锅炉的原理及结构 循环流化床锅炉是在炉膛里把燃料控制在特殊的流化状态下燃烧产生蒸汽的设备。 循环流化床锅炉工作原理及特点: 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其锅炉称为流化床锅炉。 循环流化床锅炉是在鼓泡流化床锅炉技术的基础上发展起来的新炉型,循环流化床锅炉炉内流化风速较高(一般为4~8m/s),在炉膛出口加装了气固物料分离器。被烟气携带排出炉膛的细小固体颗粒,经分离器分离后,再送回炉内循环燃烧。 循环流化床锅炉可分为两个部分:第一部分由炉膛(快速流化床)、气固物料分离器、固体物料再循环设备等组成,上述部件形成了一个固体物料循环回路。第二部分为对流烟道,布置有过热器、省煤器和空气预热器等,与其它常规锅炉相近。 循环流化床锅炉燃烧所需的一次风和二次风分别从炉膛的底部和侧墙送入,燃料的燃烧主要在炉膛中完成,炉膛四周布置有水冷壁用于吸收燃烧所产生的部分热量。炉膛内燃烧所产生的大量烟气携带物料经分离器入口加速段加速进入分离器,将烟气和物料。物料经料斗、料腿、返料阀再返回炉膛;烟气自中心筒进入分离器出口区,流经转向室、进入尾部烟道。 锅炉给水经省煤器加热后进入汽包,汽包内的饱和水经集中下降管、分配管进入水冷壁下集箱,加热蒸发后流入上集箱,然后进入汽包;饱和蒸汽流经顶棚管、后包墙管、进入低温过热器,由低过加热后进入减温器调节汽温,然后经高过将蒸汽加热到额定蒸汽温度,进入汇汽集箱至主气管道。 循环流化床锅炉燃烧的基本特点: (1)低温的动力控制燃烧 循环流化床燃烧是一种在炉内使高速运动的烟气与其所携带的湍流扰动极强的固体颗粒密切接触,并具有大量颗粒返混的流态化燃烧反应过程;同时,在炉外将绝大部分高温的固体颗粒捕集,并将它们送回炉内再次参与燃烧过程,反复循环地组织燃烧。炉膛温度一般控制在850-950℃之间,(850℃左右为最佳脱硫温度)低于一般煤的灰熔点。

循环流化床锅炉中心筒的技术改造

龙源期刊网 https://www.360docs.net/doc/3f17005785.html, 循环流化床锅炉中心筒的技术改造 作者:贾启河包云鹏 来源:《城市建设理论研究》2013年第02期 摘要:针对内蒙古京海煤矸石发电有限责任公司#1循环流化床锅炉A中心筒脱落更换等问题,对影响它们的因素进行了技术分析。在此基础上,为锅炉更换了新型中心筒。 中图分类号:TK22 文献标识码:A 文章编号: 1 前言 京海发电有限责任公司两台330MW国产循环流化床机组。锅炉是由东方锅炉厂生产,型号为DG1177/17.4-II1型循环流化床锅炉,亚临界参数,单炉膛,一次中间再热自然循环汽包、紧身封闭、平衡通风、固态排渣、全钢架悬吊结构、炉顶设密封罩壳。配备300MW级亚临界中间再热单轴双缸双排汽、直接空冷式汽轮机发电机组,#1锅炉2010年9月投产。锅炉炉膛出口设置三个汽冷旋风分离器,旋风分离器分离锅炉出口外循环床料,将外循环物料中较大的颗粒分离送入炉膛进行再次燃烧。分离器中心筒由直段及锥段两部分构成,中心筒总高6650mm,直段φ4149×12mm,直段上部由12块扇形分段组成高2400mm,锥顶 φ4970×12mm、高1348mm,中心筒材料为RA253MA。中心筒以锥段(最上部)为固定段, 通过穿过直段上部每块扇形(中心线)六个卡板与锥段连接,从而使中心筒固定在分离器外壳上。 锅炉自投产以来中心筒都发生不同程度的变形,2012年4月16日#1炉B级检修期间,在对A旋风分离器中心筒碳化部位割孔检查,发现整个中心筒直段全部脱落,仅剩下1块直段上部扇形板靠卡板固定在锥段上,坠落到分离器下部直段中心筒变形严重。我公司与东方锅炉(集团)股份有限公司取得联系,由东方锅炉(集团)股份有限公司设计处出方案,我公司根据方案对#1锅炉A中心筒进行更换及技术改造。 原因分析 采用焊接固定支撑使筒体膨胀受限,造成固定部分向内卷曲变形,形如西瓜皮,由于金属热胀冷缩,密封浇注料及隔热填充物受挤压形成缝隙,形成新的通道,造成了烟气直接短路,部分烟气未经分离(未通过中心筒)直接进入尾部烟道,整个分离器的效果降低,并且形成的通道更加剧中心筒受热变形,使进入烟道的可燃物增多,经常在烟道再燃烧,过热蒸汽超温严重,灰含碳量增加,锅炉的安全经济性不能得到保障。 3新中心筒简介

220t循环流化床锅炉运行规程

220t/h循环流化床锅炉运行规程 1 锅炉设备系统简介 1 1.1 锅炉设备规范及特性 1 1.2 燃料特性 1 1.3 灰渣特性 2 1.4 石灰石特性 2 1.5 汽水品质 3 1.6 锅炉计算汇总表 3 1.7 炉膛水冷壁 6 1.8 高效蜗壳式汽冷旋风分离器7 1.9 汽包及汽包内部设备7 1.10 燃烧设备8 1.11 过热器系统及其调温装置9 1.12 省煤器9 1.13 空气预热器10 1.14 锅炉范围内管道10 1.15 吹灰装置10 1.16 密封装置10 1.17 炉墙11 1.18 膨胀系统11 2 锅炉辅助设备及运行11 2.1 转机运行通则11 2.2 引风机及电机13 2.3 高压流化风机及电机14 2.4 一次风机及所配电机14 2.5 二次风机及所配电机16 2.6 电子称重给煤机17 2.7 电锅炉17 2.8 冷渣器19 2.9 MGB410XN系列埋刮板输送机21 2.10 ZBT系列重载板链斗式提升机21 2.11 冷渣系统启停顺序21 3. 锅炉的烘炉及试验22 3.1 烘炉22 3.2 锅炉冷态空气动力场试验23 3.3 MFT主燃料跳闸试验23 3.4 OFT试验24 3.5 锅炉水压试验25 3.6 安全门校验26 4 锅炉机组的启动27 4.1 禁止锅炉启动的条件27 4.2 锅炉启动前的检查和准备27 4.3 锅炉上水28

4.4 投入锅炉底部加热28 4.5 锅炉吹扫29 4.6 锅炉冷态启动投油及升温、升压29 4.7 投煤30 4.8 热态启动30 4.9 锅炉启动过程中的注意事项31 5 锅炉正常运行的调整31 5.1 锅炉调整的任务31 5.2 运行主要参数的控制31 5.3 负荷调节32 5.4 水位调节32 5.5 汽压调节32 5.6 汽温调节32 5.7 床温调节33 5.8 床压调节33 5.9 NOX、SO2排放浓度调节34 5.10 配风调节34 5.11 其他34 6 锅炉停炉34 6.1 正常停炉34 6.2 停炉热备用35 6.3 停炉后的冷却35 6.4 停炉注意事项36 6.5 锅炉停炉保养36 7 锅炉机组的典型事故处理37 7.1 事故处理总原则37 7.2 紧急停炉37 7.3 申请停炉38 7.4 主燃料切除(MFT)38 7.5 床温过高或过低39 7.6 床压高或低40 7.7 锅炉缺水40 7.8 满水事故41 7.9 水冷壁爆管41 7.10 过热器爆管42 7.11 省煤器泄漏42 7.12 床面结焦43 7.13 烟道再燃烧43 7.14 流化不良44 7.15 骤减负荷44 7.16 J阀回料器堵塞45 7.17 厂用电中断45 7.18 其他45 8电除尘器运行规程45

循环流化床锅炉详细资料

循环流化床锅炉机组控制Automation Control in CFBB Unit 徐昌荣张小辉 2000.5 北京和利时系统工程股份有限公司Beijing HollySys Co., Ltd

第一章循环流化床锅炉 一、前言 目前工业世界正在面临三个严重问题:能源(En e rg y)、环境(E nv i ro nm en t)、经济(E c on om y),即三“E”问题。流态化燃烧技术正是解决三“E”问题的有力工具。现在世界各国已认识到采用循环流化床锅炉能经济地解决能源和环境保护问题。因此各工业发达国家对循环流化床(C F B)锅炉技术的开发、研制都给予很大的重视。世界各国对环境保护的要求日趋严格,由于煤粉炉对所用燃料品质要求高(发热量和挥发分必须大于一定值,否则难以燃烧)且脱硫装置的投资和运行、费用昂贵(如尾部烟气脱硫装置的投资要占发电机组总投资的15~20%),传统煤粉燃烧锅炉受到严重挑战。应运而生的循环流化床锅炉具有两段低温燃烧、强化传热、燃料适应广以及负荷调节范围大能减少NOx(N O、N O2的总称)生成量和加入石灰石脱硫的优点,更适应目前的环保要求。 现在世界已有50多家公司提供循环流化床锅炉产品,对锅炉设计,各个公司和制造厂对循环流化床锅炉制造技术已提供大量的数据资料,而对循环流化床锅炉控制系统设计与运行方面的资料确很少。至今,国内一些循环流化床锅炉机组由于控制系统设计的缺陷和运行人员对循环流化床锅炉燃烧过程了解不够而造成一些事故和自动投入率低。另外,还存在因对循环流化床锅炉的控制不够熟悉,而造成启动延迟、水冷壁爆管等问题。实际上还有许多是由于确乏对运行人员的培训造成的。 循环流化床锅炉是在沸腾炉基础上发展起来的,它完全是一种‘反应器’,其性能与常规煤粉炉不同,其原因之一是它的燃烧室内的床料具有相当大的惰性和蓄热能力,如果采用常规煤粉炉运行经验的控制手段来控制、监视循环流化床锅炉,那就势必

循环流化床锅炉的优缺点

是在鼓泡床锅炉(沸腾炉)的基础上发展起来的,因此鼓泡床的一些理论和概念可以用于循环流化床锅炉。但是又有很大的差别。早期的循环流化床锅炉流化速度比较高,因此称作快速循环循环床锅炉。快速床的基本理论也可以用于循环流化床锅炉。鼓泡床和快速床的基本理论已经研究了很长时间,形成了一定的理论。要了解循环流化床的原理,必须要了解鼓泡床和快速床的理论以及物料从鼓泡床→湍流床→快速床各种状态下的动力特性、燃烧特性以及传热特性。 一、循环流化床锅炉的优点。 1.燃料适应性广,这是循环流化床锅炉的重要优点。循环流化床 锅炉既可燃烧优质煤,也可燃烧劣质燃料,如高灰煤、高硫煤、高硫高灰煤、高水分煤、煤矸石、煤泥,以及油页岩、泥煤、 炉渣、树皮、垃圾等。他的这一优点,对充分利用劣质燃料具

有总大意义。 2.燃烧效率高。国外循环流化床锅炉的燃烧效率一般髙达99%。 我国自行设计的循环流化床锅炉燃烧效率髙达95%-99%。该锅炉燃烧效率的主要原因是燃烧尽率高。运行锅炉的实例数据表明,该型锅炉的炉渣可燃物图仅有1%-2%,燃烧优质煤时,燃烧效率与煤粉炉相当,燃烧劣质煤是,循环流化床锅炉的燃烧率比煤粉炉约高5%。 3.燃烧污染排放量低。想循环流化床内直接加入石灰石,白云石 等脱硫剂,可以脱去燃料燃烧生成的SO2。根据燃料中所含的硫量大小确定加入脱硫剂量,可达到90%的脱硫效率。循环硫化床锅炉NOχ的生成量仅有煤粉炉的1∕4-1/3。标准状态下NOχ的排量可以控制在300mg/m3以下。因此循环流化床是一种经济、有效、低污染的燃烧技术。与煤粉炉加脱硫装置相比,循环流化床锅炉的投资可降低1∕4-1/3。 4. 燃烧强度高,炉膛截面积小炉膛单位截面积的热负荷高是循 环流化床锅炉的另一主要优点。其截面热负荷约为 3.5~ 4.5MW/m2,接近或高于煤粉炉。同样热负荷下鼓泡流化床锅炉 需要的炉膛截面积要比循环流化床锅炉大2~3倍。 5.负荷调节范围大,负荷调节快 当负荷变化时,只需调节给煤量、空气量和物料循环量,不必 像鼓泡流化床锅炉那样采用分床压火技术。也不象煤粉锅炉 那样,低负荷时要用油助燃,维持稳定燃烧。一般而言,循

循环流化床锅炉低氮燃烧改造

循环流化床锅炉低氮燃烧改造 3台240t/h锅炉是年产85万吨甲醇装置的动力源输出设备,为单汽包、自然循环、循环流化床燃烧方式。为满足锅炉现有SCR烟气脱硝装置后烟气使用条件,同时提高锅炉出力负荷,降低锅炉炉膛出口氮氧化物排放量,文章介绍甲醇分公司已实施的2台240t/h锅炉本体改造过程及达到的改造效果。 标签:循环流化床锅炉;低氮燃烧;改造 1 3台锅炉运行现状介绍 (1)锅炉带负荷困难,240t/h的循环流化床锅炉最高能带至 220t/h负荷,有时只能带180t/h负荷,影响对化工工艺主装置的供汽及供电。 (2)锅炉床温偏高(975℃),偏离设计值(790℃-920℃),炉内整个温度场分布不均匀,炉膛底部床层温度和炉膛出口烟气温度相差较大,炉膛出口水平烟道温度较低。锅炉稀相区压差小,锅炉风帽、分离器结构及回料器风系统设计不合理,锅炉主循环回路运行不正常。 (3)氮氧化物生成量高,最高达到650mg/Nm3,而炉膛出口水平烟道(脱硝喷枪位置)温度较低,影响SNCR烟气脱硝效率。锅炉各主要运行风量测点设置空气预热器入口,屏幕显示的锅炉风量受空气预热器漏风影响,不能准确反映锅炉运行状况。 (4)为了使锅炉能带较大负荷必须高炉温运行,炉膛供风量偏大,导致锅炉磨损严重,能耗较高。 2 项目实施内容 2.1 锅炉布风装置改造 改造方案选取了较低的风帽外罩小孔速度以降低外罩磨损,通过芯管小孔调节布风板阻力以保证布风板具有良好的阻力特性。针对甲醇分公司循环流化床锅炉风帽磨损严重的问题,对风帽外罩小孔区域进行了加厚,以提高其耐磨性和使用寿命。将风帽外罩风孔向下倾斜20°,减少相邻风帽风孔的扰动,减少床料反窜;风帽芯管上端部利用端板焊死,防止风帽脱落从芯管漏渣,便于安装施工。材质方面采用铸造方式进行加工,风帽外罩及芯管材质统一采用ZG40Cr25Ni20。改造后的风帽阻力从2.3kPa提升至4.3kPa,由于目前风机余量较大,加之改造后可以降低一部分一次风量,因此风帽阻力可以满足运行需要。 2.2 旋风分离器中心筒改造

220吨循环流化床锅炉各专业规程

第一章 锅炉运行规程 1 设备概况 1.1 基本概况 锅炉型号 UG-220/9.8-M14 额定蒸发量 220 t/h 最大连续蒸发量 260 t/h 额定蒸汽温度 540 C 额定蒸汽压力(表压) 9.8 MPa 给水温度 150 C 锅炉排烟温度 135 C 排污率 < 1 % 空气预热器进风温度 20 C 锅炉计算热效率 90.77 % 按设计煤 种) 锅炉保证热效率 90% 一次热风温度 170 C 二次热风温度 170 C 一、二次风量比 55 : 45 循环倍率 25 ?30 锅炉飞灰份额 ~66 % 脱硫效率(钙硫摩尔比为 3 时) > 88 % 燃煤低位发热量 19040KJ/kg 燃煤煤颗粒度 粒度范围 0~10mm 燃料消耗量 42.89 t/h (按设计煤 种) 石灰石消耗量 3.287 t/h (按设计煤种) 锅炉基本尺寸如下: 炉膛宽度(两侧水冷壁中心线间距离) 8770mm 炉膛深度(前后水冷壁中心线间距离) 7090mm 炉膛顶棚管标高 40100mm

锅筒中心线标高 运转层标高 操作层标高 锅炉深度(柱 Z 1 与柱 Z 4 之间距离) 26280mm 1.2 锅炉结构简述 本锅炉采用中国科学院工程热物理研究所的循环流化床燃烧技术, 结合无锡 锅炉厂多年来生产循环流化床锅炉的经验, 是双方合作开发的新一代产品。 锅炉 为高温高压,单锅筒横置式,单炉膛,自然循环,全悬吊结构,全钢架n 型布置。 锅炉运转层以上露天,运转层以下封闭,在运转层 9m 标高设置混凝土平台。炉 膛采用膜式水冷壁, 锅炉中部是蜗壳式汽冷旋风分离器, 尾部竖井烟道布置两级 三组对流过热器,过热器下方布置三组省煤器及一、二次风各二组空气预热器。 锅炉燃烧系统流程 : 给煤机将煤送入落煤管进入炉膛, 锅炉燃烧所需空气分别由一、 二次风机提 供。一次风机送出的空气经一次风空气预热器预热后由左右两侧风道引入炉下水 冷风室,通过水冷布风板上的风帽进入燃烧室; 二次风机送出的风经二次风空气 预热器预热后, 通过分布在炉膛前后墙上的喷口喷入炉膛, 补充空气, 加强扰动 与混合。燃料和空气在炉膛内流化状态下掺混燃烧, 并与受热面进行热交换。 炉 膛内的烟气 (携带大量未燃尽碳粒子 )在炉膛上部进一步燃烧放热。离开炉膛并夹 带大量物料的烟气经蜗壳式汽冷旋风分离器之后, 绝大部分物料被分离出来, 经 返料器返回炉膛,实现循环燃烧。分离后的烟气经转向室、高温过热器、低温过 热器、省煤器、一、二次风空气预热器由尾部烟道排入电袋除尘器进行除尘后排 出。 锅炉汽水侧流程 : 给水经过水平布置的三组省煤器加热后进入锅筒。 锅筒内的锅水由集中下降 管、分配管进入水冷壁下集箱、上升管、炉内水冷屏、上集箱,然后从引出管进 入锅筒。锅筒内设有汽水分离装置。 饱和蒸汽从锅筒顶部的蒸汽连接管经连接烟 锅炉最高点标高(大板梁) 48800mm 锅炉宽度(两侧柱间中心距离) 23000mm 44500mm 9000mm 6400mm

循环流化床锅炉简介

循环流化床锅炉简介 摘要:本文主要对国内外循环流化床发展现状进行了简略的总结、归纳,并通过与 国外循环流化床技术大型化、高参数的发展趋势对比,对我国循环流化床锅炉技术 发展前景进行展望同时,阐述了主要研究方法,技术路线和关键科学技术问题。 关键词:循环流化床;国内外现状;研究方法;技术路线;科学技术问题;前景 Abstract: This paper briefly summarized the current situation about the development of circulating fluidized bed at home and abroad,compared with the foreign circulating fluidized bed technology which has a large development trend,and investigated the prospects of circulating fluidized bed boiler technology in China.At the same time, this paper expounds the main research method, the technical route and to solve the key technological problems. Key words: CFB;development at home and abroad;research method;technical route ; key technological problems ;prospect 1 前言 循环流化床锅炉是从鼓泡床沸腾炉发展而来的一种新型燃煤锅炉技术,它的工作原理是将煤破碎成0~10mm 的颗粒后送后炉膛,同时炉膛内存有大量床料(炉渣或石英砂),由炉膛下部配风,使燃料在床料中呈“流态化”燃烧,并在炉膛出口或过热器后部安装气固分离器,将分离下来的固体颗粒通过回送装置再次送入炉膛燃烧[1]。 循环流化床锅炉的运行特点是燃料随床料在炉内多次循环,这为燃烧提供了足够的燃尽时间,使飞灰含碳量下降。对于燃用高热值燃料,运行良好的循环流化床锅炉来说,燃烧效率可达98%~99%相当于煤粉燃烧锅炉的燃烧效率。 循环流化床锅炉具有良好的燃烧适应性,用一般燃烧方式难以正常燃烧的石煤、煤矸石、泥煤、油页岩、低热值无烟煤以及各种工农业垃圾等劣质燃料,都可在循环流化床锅炉中有效燃烧。 由于其物料量是可调节的,所以循环流化床锅炉具有良好的负荷调节性能和低负荷运行性能,以能适应调峰机组的要求与环境污染小的优点[2],因此在电力、供热、化工生产等行业中得到越来越广泛的应用。 2 循环流化床锅炉国内外研究现状 2.1 国外研究现状及分析 国际上,循环流化床锅炉的主要炉型有以下流派:德国Lurgi公司的Lurgi型;原芬兰Ahlstrom公司(现为美国Foster Wheeler公司)的Pyroflow型;德国Babcock公司和VKW公司开发的Circofluid型;美国F. W.公司的FW型;美国巴威(Babcock&Wilcox)公司开发的内循环型;英国Kaverner公司的MYMIC型。 大型化、高参数是目前各种循环流化床锅炉的发展趋势,国际上大型CFB 锅炉技术正在向超临界参数发展。国际上在20世纪末开展了超临界循环流化床的研究。世界上容量为100~300MW的CFB电站锅炉已有百余台投入运行。Alhstrom和FW公司均投入大量人力物力开发大容量超临界参数循环流化床锅炉。由F.W.公司生产出了260MW循环流化床锅炉,并安装在波兰[3]。特别是2003年3月F.W.公司签订了世界上第一台也是最大容量的460MW 超临界循环流化床锅炉合同,将安装在波兰南部Lagisza电厂[4]。由西班牙的Endesa

相关文档
最新文档