2019年北京工业大学材料科学与工程专业考研经验分享

2019年北京工业大学材料科学与工程专业考研经验分享
2019年北京工业大学材料科学与工程专业考研经验分享

北京工业大学材料考研经验帖

一、简介:

材料学院考研由材料科学与工程(学硕)和材料工程(专硕)两个部分组成,两部分都由1、生态环境材料与资源循环技术,2、稀土、难熔金属等功能材料,3、先进材料加工技术,4高性能结构材料技术,5、光电信息和高效能源材料五个研究方向。学校在学硕和专硕上的培养方法方式是完全一致的,两部分的公共课(除英语外,学硕英语一,专硕英语二)、专业课考试内容等都是一样的。其差别在于专硕录取门槛稍微低一点,学硕有硕博连读的优势,当然,专硕也是有这样的机会,只是专硕的话需要加一次答辩,如果有继续深造攻读博士学位意愿的同学建议选择学硕。至于研究方向上的选择,学校的材料专业是双一流学科,研究的都是前沿科技,先进材料加工技术比较火爆,竞争当然也就大,同学可以根据自己的实力评估以及自己比较熟悉或感兴趣的方向选择。

二、参考书目:

1. 《材料科学基础》,徐恒钧主编,刘国勋主审,北京工业大学出版社,2002 年出版。

2. 《材料科学与工程基础》,郭福等译,化学工业出版社,2016 年出版,(译自于,Fundamentals of Materials Science and Engineering, 4th Edition, William D. Callister Jr., John Wiley & Sons Inc., 2013)。

3. 《金属学与热处理》,崔忠圻主编,机械工业出版社,1989 年出版(第二版为2011 年出版)。

4. 《陶瓷导论》,清华大学新型陶瓷与精细工艺国家重点实验室译,高等教育出版社,2016 年出版,(译自于,Introduction to Ceramics, 2nd Edition, Kingery, W. D, John Wiley & Sons Inc., 1976)。

5、同学自己的专业书课本(听过课的书知识点比较容易吸收,所以只要相关的都可以拿来辅助学习。)

三、复习计划和准备经验:

3.1初试篇

时间安排:

本人是从2017年2月下旬开学后开始着手准备的,计划是6月份之前主攻英语和数学,7、8、9月份主攻专业课利用暑假时间跟学长在新祥旭机构集中上课,专业课讲的比较好的10月份主攻政治,11月份开始直到考前每天所有学科安排复习。每天6点半左右起床,晚上10点多图书馆关门回宿舍,该上课的时间上课,其余基本都是泡图书馆。

●课程复习安排:

英语单词每天坚持背,阅读和写作勤于练;数学前期把基础多巩固,后期多加练习,熟能生巧;政治可以留在10月份开始,充分利用市面上的资料快速搞定。公共课结合一些学长提供的一些视频学习效率还是比较高的。

这里主要讲一下需要自己努力的专业课。首先,前期我是按照新祥旭的专业课老师要求把《材料科学基础》认真地过两遍,这是基础学科,考试的重中之重;结合历年真题等资料把金属或非金属相关的知识点强化学习,每个人的背景不一,所以同学自行选择,这里推荐一本同时也是辅导我的学长推荐北京工业大学出版的《材料物理性能学》,虽然参考书目没有,但是个人觉得里面整理得挺好的;其次,中期把前期整理的知识点勤于理解、记忆加背诵,这个过程是在扫你的知识盲区,这一个过程很重要,争取把会考到的知识点搞通搞透;最后,后期一遍又一遍地融会贯通,记忆和理解,这一过程是你专业知识系统化的关键点,会很枯燥,希望同学一定要坚持。

●其他经验:

关于研友,这一方面因人而异,可以是身边的同学朋友,也可以是网上志同道合的朋友,有些人喜欢群居,有些人喜欢独处,同学可以留心,找到你觉得学习起来舒适、学习效率最高的方式,然后每天坚持,切勿三天打鱼两天晒网,随波逐流。关于锻炼,希望同学抽取下午或晚上十几分钟去操场跑跑步、打打球,后期高强度的复习需要一个身体健康、精力充沛的你来支撑。

3.2复试篇

复试包含面试和笔试两部分,面试部分会要求英语自我介绍、文献翻译等,所以前期每天读读专业英文文献是很有必要的,其次自己的专业素质要过硬,前期的本专业知识储备以及对自己喜欢或从事过的实验研究要比较熟悉,通常导师会根据你喜欢或则你接触过的研究作为切入点进行提问,所以,知识面要广也要精。笔试部分和你报考的方向相关,同学在复习时根据自己报考的方向进行相关知识准备就行,前期知识储备有了,答题有理有据,条理、思路清晰一般就没什么大问题。

既然选择了远方,那就风雨兼程!希望学弟学妹们坚持下去,祝你们考上自己心仪的学校。

北工大07 08 09 13材料科学基础-真题及答案

北京工业大学 试卷七 2007年攻读硕士学位研究生入学考试试题 考试科目:材料科学基础 适用专业:材料科学与工程 一、名词解释 1.脱溶(二次结晶) 2.空间群 3.位错交割 4.成分过冷 5.奥氏体 6.临界变形量 7.形变织构 8.动态再结晶 9.调幅分解 10.惯习面 二、填空 1.晶体宏观对称要素有 (1) 、 (2) 、 (3) 、 (4) 和 (5) 。 2.NaCl型晶体中Na+离子填充了全部的 (6) 空隙,CsCl晶体中Cs+离子占据的是 (7) 空隙,萤石中F-离子占据了全部的 (8) 空隙。 3.非均匀形核模型中晶核与基底平面的接触角θ=π/2,表明形核功为均匀形核功的 (9) ,θ= (10) 表明不能促进形核。 4.晶态固体中扩散的微观机制有 (11) 、 (12) 、 (13) 和 (14) 。 5.小角度晶界由位错构成,其中对称倾转晶界由 (15) 位错构成,扭转晶界由 (16) 位错构成。 6.发生在固体表面的吸附可分为 (17) 和 (18) 两种类型。 7.固态相变的主要阻力是 (19) 和 (20) 。 三、判断正误 1.对于螺型位错,其柏氏矢量平行于位错线,因此纯螺位错只能是一条直线。 2.由于Cr最外层s轨道只有一个电子,所以它属于碱金属。 3.改变晶向符号产生的晶向与原晶向相反。 4.非共晶成分的合金在非平衡冷却条件下得到100%共晶组织,此共晶组织称伪共晶。 5.单斜晶系α=γ=90°≠β。 6.扩散的决定因素是浓度梯度,原子总是由浓度高的地方向浓度低的地方扩散。 7.再结晶完成后,在不同条件下可能发生正常晶粒长大和异常晶粒长大。 8.根据施密特定律,晶体滑移面平行于拉力轴时最容易产生滑移。 9.晶粒越细小,晶体强度、硬度越高,塑性、韧性越差。

材料科学与工程基础300道选择题(答案)

第一组 材料的刚性越大,材料就越脆。F 按受力方式,材料的弹性模量分为三种类型,以下哪一种是错误的:D A. 正弹性模量(E) B. 切弹性模量(G) C. 体积弹性模量(G) D. 弯曲弹性模量(W) 滞弹性是无机固体和金属的与时间有关的弹性,它与下列哪个因素无关B A 温度; B 形状和大小; C 载荷频率 高弹性有机聚合物的弹性模量随温度的升高而A A. 上升; B. 降低; C. 不变。 金属材料的弹性模量随温度的升高而B A. 上升; B. 降低; C. 不变。 弹性模量和泊松比之间有一定的换算关系,以下换算关系中正确的是D A. K=E /[3(1+2)]; B. E=2G (1-); C. K=E /[3(1-)]; D. E=3K (1-2); E. E=2G (1-2)。 7.Viscoelasticity”的意义是B A 弹性;B粘弹性; C 粘性 8.均弹性摸量的表达式是A A、E=σ/ε B、G=τ/r C、K=σ。/(△V/V) 9.金属、无机非金属和高分子材料的弹性摸量一般在以下数量级范围内C GPa A.10-102、<10,10-102 B.<10、10-102、10-102 C.10-102、10-102、<10 10.体心立方晶胞的金属材料比面心立方晶胞的同类金属材料具有更高的摸量。T 11.虎克弹性体的力学特点是B A、小形变、不可回复 B、小形变、可回复 C、大形变、不可回复 D、大形变、可回复 13、金属晶体、离子晶体、共价晶体等材料的变形通常表现为,高分子材料则通常表现为和。A A 普弹行、高弹性、粘弹性 B 纯弹行、高弹性、粘弹性 C 普弹行、高弹性、滞弹性 14、泊松比为拉伸应力作用下,材料横向收缩应变与纵向伸长应变的比值υ=ey/ex F 第二组 1.对各向同性材料,以下哪一种应变不属于应变的三种基本类型C A. 简单拉伸; B. 简单剪切; C. 扭转; D. 均匀压缩 2.对各向同性材料,以下哪三种应变属于应变的基本类型ABD A. 简单拉伸; B. 简单剪切; C. 弯曲; D. 均匀压缩 3.“Tension”的意义是A A 拉伸; B 剪切; C 压缩 4.“Compress”的意义是C A 拉伸;B剪切; C 压缩 5.陶瓷、多数玻璃和结晶态聚合物的应力-应变曲线一般表现为纯弹性行为T 6.Stress”and “strain”的意义分别是A A 应力和应变;B应变和应力;C应力和变形

075材料科学基础习题@北工大

1. 有一硅单晶片,厚0.5mm ,其一面上每107个硅原子包含两个镓原子,另一个面经处理后含镓的浓度增高。试求在该面上每107 个硅原子需包含几个镓原子,才能使浓度梯度为2×10-26原子/m 3 2. 为研究稳态条件下间隙原子在面心立方金属中的扩散情况,在厚0.25mm 的金属薄膜的一个端面(面积1000mm m 硅的晶格常数为0.5407nm 。 2 ) 保持对应温度下 的饱和间隙原子,另一端面 3. 一块含0.1%C 的碳钢在930℃渗碳,渗到0.05cm 的地方碳的浓度达到0.45%。在t>0的全部时间,渗碳 气氛保持表面成分为1%, 4. 根据上图4-2所示实际测定lgD 与1/T 的关系图,计算单晶体银和多晶体银在低于700℃温度范围的扩散激活能,并说明两者扩散激活能差异的原因。 5. 设纯铬和纯铁组成扩散偶,扩散1小时后,Matano 平面移动了1.52×10-3cm 。已知摩尔分数C Cr =0.478时,dC/dx=126/cm ,互 扩散系数为1.43×10-9cm 2/s ,试求Matano 面的移动速度和铬、铁的本征扩散系数D Cr ,D Fe 。(实验测得Matano 面移动距离的平方与扩散时间之比为常数。D Fe =0.56×10-9(cm 2 6. 对于体积扩散和晶界扩散,假定Q /s) ) 晶界≈1/2Q 体积7. γ铁在925℃渗碳4h ,碳原子跃迁频率为1.7×10,试画出其InD 相对温度倒数1/T 的曲线,并指出约在哪个温度范围内,晶界扩散起主导作用。 9/s ,若考虑碳原子在γ铁中的八面体间隙跃迁,(a)求碳原子总迁移路程S ; (b)求碳原子总迁移的均方根位移;(c)若碳原子在20℃时跃迁频率为Γ=2.1×10-98.假定聚乙烯的聚合度为2000,键角为109.5°,求伸直链的长度为L /s ,求碳原子的总迁移路程和根均方位移。 max 与自由旋转链的均方根末端距之比值,并解释某些高分 子材料在外力作用下可产生很大变形的原因。(l=0.154nm, h 2=nl 29.已知聚乙烯的Tg=-68℃,聚甲醛的Tg=-83℃,聚二甲基硅氧烷的Tg=-128℃,试分析高分子链的柔顺性与它们的Tg 的一般规律。 ) 10.试分析高分子的分子链柔顺性和分子量对粘流温度的影响。 11.有两种激活能分别为E 1=83.7KJ/mol 和E 2=251KJ/mol 的扩散反应。观察在温度从25℃升高到600℃时对这两种扩散的影响,并 对结果作出评述。

武汉理工大学材料科学基础06研究生入学考试试题

课程 材料科学基础 (共3页,共十题,答题时不必抄题,标明题目序号,相图不必重画,直接做在试卷上) 一、填空题(1.5×20=30分) 1. 结晶学晶胞是( )。 2. 扩散的基本推动力是( ),一般情况下以( )形式表现出来,扩散常伴随着物质的( )。 3. 晶面族是指( )的一组晶面,同一晶面族中,不同晶面的()。 4. 向MgO、沸石、TiO2、萤石中,加入同样的外来杂质原子,可以预料形成间隙型固溶体的固溶度大小的顺序将是( )。 5. 根据烧结时有无液相出现,烧结可分为( ),在烧结的中后期,与烧结同时进行的过程是( )。 6. 依据硅酸盐晶体化学式中( )不同,硅酸盐晶体结构类型主要有( )。 7. 液体表面能和表面张力数值相等、量纲相同,而固体则不同,这种说法是( )的,因为( )。 8. 二级相变是指( ),发生二级相变时,体系的( )发生突变。 9. 驰豫表面是指( ),NaCl单晶的表面属于是( )。 10. 固态反应包括( ),化学动力学范围是指( )。 11.从熔体结构角度,估计a长石、b辉石(MgO·SiO2)、c镁橄榄石三种矿物的高温熔体表面张力大小顺序( )。 二、CaTiO3结构中,已知钛离子、钙离子和氧离子半径分别为 0.068nm, 0.099nm,

0.132nm。(15分) 1. 晶胞中心的钛离子是否会在八面体空隙中“晃动”; 2. 计算TiCaO3的晶格常数; 3. 钛酸钙晶体是否存在自发极化现象,为什么? 三、在还原气氛中烧结含有TiO2的陶瓷时,会得到灰黑色的TiO2-x:(15分) 1.写出产生TiO2-x的反应式; 2.随还原气氛分压的变化,该陶瓷材料的电导率和密度如何变化? 3.从化学的观点解释该陶瓷材料为什么是一种n型半导体。 四、选择题:下列2题任选1题(12分) 1. 简述金属材料、无机非金属材料以及高分析材料腐蚀的特点。 2. 试述材料疲劳失效的含义及特点。 五、现有三种陶瓷材料,它们的主要使用性能如下:(15分) 材料最佳性能用途 Y2O3透明,光线传递光学激光杆 Si3N4高温强度,抗蠕变燃气轮机部件 含Co铁氧体较顽力高能量永久磁铁 在烧结过程中希望材料获得预期的显微结构以使材料最佳性能充分发挥,在控制显微结构因素和工艺条件上应主要考虑哪些相关因素? 六、熔体结晶时:(1)图示核化速率-温度、晶化速率-温度关系及其对总结晶速率的的影响; (2)核化速率与晶化速率的不同对新相的显微结构有何影响,为什么? (3)指出在哪一温度范围内对形成玻璃有利,为什么?(12分) 七、X射线给出立方MgO的晶胞参数是0.4211nm,它的密度是3.6g/cm3。(Mg2+和O2-、Al3+摩尔质量分别是24.3和16、27)(12分)

考研材料科学基础试题及答案

材料科学基础习题 叶荷 11 及材料班2013-1-10 第三章二元合金相图和合金的凝固 一、名词:相图:表示合金系中的合金状态与温度、成分之间关系的图解。匀晶转变:从液相结晶出单相固溶体的结晶过程。 平衡结晶:合金在极缓慢冷却条件下进行结晶的过程。 成分起伏:液相中成分、大小和位置不断变化着的微小体积。 异分结晶:结晶出的晶体与母相化学成分不同的结晶。 枝晶偏析:固溶体树枝状晶体枝干和枝间化学成分不同的现象。共晶转变:在一定温度下,由—定成分的液相同时结晶出两个成分一定的固相的转变过程。 脱溶:由固溶体中析出另一个固相的过程,也称之为二次结晶。 包晶转变:在一定温度下,由一定成分的固相与一定成分的液相作用,形成另一个一定成分的固相的转变过程。 成分过冷:成分过冷:由液相成分变化而引起的过冷度。 二、简答: 1. 固溶体合金结晶特点?答:异分结晶;需要一定的温度范围。

2. 晶内偏析程度与哪些因素有关? 答:溶质平衡分配系数ko;溶质原子扩散能力;冷却速度。 3. 影响成分过冷的因素? 答:合金成分;液相内温度梯度;凝固速度。 4. 相图分折有哪几步?答:以稳定化合物为独立组元分割相图并分析;熟悉相区及相;确定三相平衡转变性质。 三、绘图题 绘图表示铸锭宏观组织三晶区。 四、书后习题 1、何谓相图?有何用途? 答:相图:表示合金系中的合金状态与温度、成分之间关系的图解。 相图的作用:由相图可以知道各种成分的合金在不同温度下存在哪些相、各个相的成分及其相对含量。 2、什么是异分结晶?什么是分配系数?答:异分结晶:结晶出的晶体与母相化学成分不同的结晶。 分配系数:在一定温度下,固液两平衡相中溶质浓度之比值。

材料科学与基础

7. ________________________________________________________ 当塑性变形程度较大时,再结晶形核机制通常是_________________________________ ,塑性变形程 度较小时,再结晶形核机制通常是_________________ o 8. _________________________________________________ 金属在冷塑性变形中的残余应力主要有__________________________________________ 、_______________ 和____________ ,其中导致构件出现外观变形是的___________________ o 14、单晶体常温下的塑性变形主要有_____________________ 和 _____________ ,其中_________ —是基本形式。 15冷变形金属中的织构主要有_________ 织构和_________ 织构,金属的回复分为三种 类型:____________ 、 ______________ 和___________________ o 1、固态相变主要包括三个基本变化_________________________________________ 、 _、___________________ ,在共析钢的冷却过程中,___________ 转变是无扩散型相变,___________ 转变半扩散型相变,_________ 转变无扩散型相变。 3、多晶体金属常温下的塑性变形主要有_________________ 和_________________ , 其中__________________ 是基本形式。 8退伙后的金属塑性变形后其位错密度__________ ,强度_________ o 3. 铅板在室温下的加工属于() A热加工;B 冷加工;C再结晶; 4 进行回复退火可以实现() 、 A应力消除,组织不变;B应力大大下降,组织不变; C应力消除,组织改变;D应力大大下降,组织改变 5、金属在热加工时产生的纤维组织将使金属具有() A.各向异性; B.各向同性; C.伪无向性。 6.钢在再结晶温度以下的变形()o A.有加工硬化,有再结晶现象; B.无加工硬化,无再结晶现象;

材料科学基础考研经典题目doc资料

材料科学基础考研经 典题目

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18.为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19.在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样 条件下,单相固溶体合金凝固的形貌又如何?分析原因

材料科学与工程基础第三章复习资料

3.8 铁具有BCC晶体结构,原子半径为0.124 nm,原子量为55.85 g/mol。 计算其密度并与实验值进行比较。 答:BCC结构,其原子半径与晶胞边长之间的关系为: a = 4R/3= 40.124/1.732 nm = 0.286 nm V = a3 = (0.286 nm)3 = 0.02334 nm3 = 2.3341023 cm3 BCC结构的晶胞含有2个原子, 其质量为:m = 255.85g/(6.0231023) = 1.8551022 g 密度为= 1.8551022 g/(2.3341023 m3) =7.95g/cm3 3.9 计算铱原子的半径,已知Ir具有FCC晶体结构,密度为22.4 g/cm3, 原子量为192.2 g/mol。 答:先求出晶胞边长a,再根据FCC晶体结构中a与原子半径R的关系求R。FCC晶体结构中一个晶胞中的原子数为4, = 4192.2g/(6.0231023a3cm3) = 22.4g/cm3,求得a = 0.3848 nm 由a = 22R求得R = 2a/4 = 1.4140.3848 nm/4 = 0.136 nm 3.10 计算钒原子的半径,已知V 具有BCC晶体结构,密度为5.96 g/cm3,原子量为50.9 g/mol。 答:先求出晶胞边长a,再根据BCC晶体结构中a与原子半径R的关系求R。BCC晶体结构中一个晶胞中的原子数为2, = 250.9g/(6.0231023a3cm3) = 5.96 g/cm3,求得a = 0.305 nm 由a = 4R/3求得R = 3a/4 = 1.7320.305 nm/4 = 0.132 nm 3.11 一些假想的金属具有图3.40给出的简单的立方晶体结构。如果其 原子量为70.4 g/mol,原子半径为0.126 nm,计算其密度。 答:根据所给出的晶体结构得知,a = 2R =20.126 nm = 0.252 nm 一个晶胞含有1个原子, 密度为:= 170.4g/(6.02310230.25231021cm3) = 7.304 g/cm3 3.12 Zr 具有HCP晶体结构,密度为6.51 g/cm3。 (a) 晶胞的体积为多少? 用m3表示 (b) 如果c/a之比为1.593,计算c和a值。 答: V c=nM ZrρN A 对于HCP,每个晶胞有6个原子,M Zr = 91.2g/mol. 因此: V c=6×91.26.51×106×6.02×1023=1.396×10-28m3/晶胞

材料科学基础试题及答案考研专用

一、名词: 相图:表示合金系中的合金状态与温度、成分之间关系的图解。 匀晶转变:从液相结晶出单相固溶体的结晶过程。 平衡结晶:合金在极缓慢冷却条件下进行结晶的过程。 成分起伏:液相中成分、大小和位置不断变化着的微小体积。 异分结晶:结晶出的晶体与母相化学成分不同的结晶。 枝晶偏析:固溶体树枝状晶体枝干和枝间化学成分不同的现象。 共晶转变:在一定温度下,由—定成分的液相同时结晶出两个成分一定的固相的转变过程。 脱溶:由固溶体中析出另一个固相的过程,也称之为二次结晶。 包晶转变:在一定温度下,由一定成分的固相与一定成分的液相作用,形成另一个一定成分的固相的转变过程。 成分过冷:成分过冷:由液相成分变化而引起的过冷度。 二、简答: 1. 固溶体合金结晶特点? 答:异分结晶;需要一定的温度范围。 2. 晶内偏析程度与哪些因素有关? 答:溶质平衡分配系数k0;溶质原子扩散能力;冷却速度。 3. 影响成分过冷的因素? 答:合金成分;液相内温度梯度;凝固速度。

三、书后习题 1、何谓相图?有何用途? 答:相图:表示合金系中的合金状态与温度、成分之间关系的图解。 相图的作用:由相图可以知道各种成分的合金在不同温度下存在哪些相、各个相的成分及其相对含量。 2、什么是异分结晶?什么是分配系数? 答:异分结晶:结晶出的晶体与母相化学成分不同的结晶。 分配系数:在一定温度下,固液两平衡相中溶质浓度之比值。 3、何谓晶内偏析?是如何形成的?影响因素有哪些?对金属性能有何影响,如何消除? 答:晶内偏析:一个晶粒内部化学成分不均匀的现象 形成过程:固溶体合金平衡结晶使前后从液相中结晶出的固相成分不同,实际生产中,液态合金冷却速度较大,在一定温度下扩散过程尚未进行完全时温度就继续下降,使每个晶粒内部的化学成分布均匀,先结晶的含高熔点组元较多,后结晶的含低熔点组元较多,在晶粒内部存在着浓度差。 影响因素:1)分配系数k0:当k0<1时,k0值越小,则偏析越大;当k0>1时,k0越大,偏析也越大。2)溶质原子扩散能力,溶质原子扩散能力大,则偏析程度较小;反之,则偏析程度较大。3)冷却速度,冷却速度越大,晶内偏析程度越严重。 对金属性能的影响:使合金的机械性能下降,特别是使塑性和韧性显著降低,

材料科学基础考研知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。

基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷; 结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的 原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核, 以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过 程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据 T R k ?∝1可知当过冷度T ?为零时临界晶核半径R k 为无穷大,临界形核功(2 1T G ?∝?)也为无穷大。临界晶核半径R k 与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。 铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从 模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。 三、二元合金的相结构与结晶 重点内容:杠杆定律、相律及应用。 基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下 的显微组织。合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。 相律:f = c – p + 1其中,f 为 自由度数,c 为 组元数,p 为 相数。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也 可能得到全部共晶组织,这种共晶组织称为伪共晶。 合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它 方法组合而成的具有金属特性的物质。 合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相 同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。

西南工业大学材料科学与基础第三版(刘智恩)习题解析

第一章原子排列 1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向. 附图1-1 有关晶面及晶向 2. 分别计算面心立方结构与体心立方结构的{100},{110}和{111}晶面族的面间距, 并指出面间距最大的晶面(设两种结构的点阵常数均为a). 解由面心立方和体心立方结构中晶面间的几何关系, 可求得不同晶面族中的面间距如附表1-1所示. 附表1-1 立方晶系中的晶面间距 晶面{100} {110} {111} 面间距FCC 2 a2 4 a3 3 a BCC 2 a2 2 a3 3 a 显然, FCC中{111}晶面的面间距最大, 而BCC中{110}晶面的面间距最大.注意: 对于晶面间距的计算, 不能简单地使用公式, 应考虑组成复合点阵时, 晶面层数会增加. 3. 分别计算fcc和bcc中的{100},{110}和{111}晶面族的原子面密度和<100>,<110>和<111>晶向族的原子线密度, 并指出两种结构的差别. (设两种结构的点阵常数均为a) 解原子的面密度是指单位晶面内的原子数; 原子的线密度是指晶面上单位长度所包含的原子数. 据此可求得原子的面密度和线密度如附表1-2所示.

附表1-2 立方晶系中原子的面密度和线密度 晶面/晶向 {100} {110} {111} <100> <110> <111> 面/线密度BCC 2 1 a2 2 a2 3 3a 1 a 2 2a 23 3a FCC 2 2 a2 2 a2 43 3a 1 a 2 a 3 3a 可见, 在BCC中, 原子密度最大的晶面为{110}, 原子密度最大的晶向为<111>; 在FCC中, 原子密度最大的晶面为{111}, 原子密度最大的晶向为<110>. 4. 在(0110)晶面上绘出[2113]晶向. 解详见附图1-2. 附图1-2 六方晶系中的晶向 5. 在一个简单立方二维晶体中, 画出一个正刃型位错和一个负刃型位错. 试求: (1) 用柏氏回路求出正、负刃型位错的柏氏矢量.(2) 若将正、负刃型位错反向时, 说明其柏氏矢量是否也随之反向.(3) 具体写出该柏氏矢量的方向和大小.(4) 求出此两位错的柏氏矢量和. 解正负刃型位错示意图见附图1-3(a)和附图1-4(a).(1) 正负刃型位错的柏氏矢量见附图1-3(b)和附图1-4(b).

北京工业大学2017年《材料科学基础》硕士考试大纲_北京工业大学考研大纲

北京工业大学2017年《材料科学基础》硕士考试大纲一、考试要求 材料科学基础考试大纲适用于北京工业大学材料科学与工程学院(0805)材 料科学与工程和(085204)材料工程(专业学位);激光工程研究院(0803)光 学工程与(085202)光学工程(专业学位);以及固体微结构与性能研究所(0805) 材料科学与工程学科的硕士研究生入学考试。此课程是材料科学与工程学科的重 要基础理论课,是理解并学习各种材料其结构、加工工艺与性能之间联系的基础。 材料科学基础的考试内容主要包括各类材料共性基础知识部分(原子结构与结合 键、晶体结构、晶体缺陷、相图与相平衡、材料的凝固)、金属材料基础知识部 分(金属晶体中位错、表面与界面、塑性变形与再结晶、金属晶体中扩散、固态 相变、金属材料强韧化)和无机材料基础知识部分(无机材料化学键结构与晶体 结构、无机材料的缺陷、无机材料的相图与相变过程、无机材料的基本制造加工 原理、无机材料的机械性能、无机材料的光学和电学性能),要求考生对其中的 基本概念和基础理论有深入的理解,系统掌握各类基本概念、理论及其计算和分 析的方法,具有综合运用所学知识分析和解决材料科学与工程实际问题的能力。 二、考试内容 考试内容分为材料共性知识、金属材料基础知识和无机材料基础知识三大部 分,总分150分。其中,材料共性知识部分所有学生均需作答,共105分;金属 材料基础知识部分和无机材料基础知识部分考生需根据自己的专业背景二选一 作答,不能混做,共45分。题型一般包括名词解释、填空、判断正误、问答、 计算、分析题等。 (一)材料共性知识部分 1.原子结构与结合键 (1)熟练掌握电离能、电子亲和能、电负性、金属间化合物、电子化合物等 概念,熟练掌握原子核外电子排布,理解光的波粒二象性、测不准原理、泡利不 相容原理、洪特规则、能量最低原理、电子能带结构理论; (2)熟练掌握各种结合键的概念、特点、代表材料,通过结合键及原子间作 用力和键能分析材料的物理化学性质。 2.晶体结构 (1)掌握空间点阵、晶胞、空间群等晶体学基本概念,三大晶族与七大晶系 分类,理解晶体的宏观对称性; (2)熟练掌握简单立方、体心立方、面心立方、密排六方等结构的堆积方式、 配位数、致密度、晶胞原子数、点阵常数与原子半径之间的关系,熟练掌握各种 结构中晶向指数和晶面指数的表征,晶向族、晶面族的确定,晶面间距的计算, 晶带定律的应用。 3.晶体缺陷 (1)熟练掌握晶体缺陷的分类,点缺陷的平衡浓度计算,固溶体的分类、概 念、特点、形成条件及影响因素,缺陷反应方程计算; (2)熟练掌握各类位错的定义及相关的基本概念,如滑移、滑移面、滑移方 向、滑移系、临界分切应力、全位错、不全位错、位错密度等;掌握刃位错、螺 位错的特点及其柏氏矢量的概念、确定与表征方法,掌握发生位错反应的条件及 其产物;

材料科学基础考研经典题目教学内容

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18. 为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19. 在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样条件下,单相 固溶体合金凝固的形貌又如何?分析原因 答:正的温度梯度指的是随着离开液—固界面的距离Z 的增大,液相温度T 随之升高的情况,即0>dZ dT 。在这种条件下,纯金属晶体的生长以接近平面状向前推移,这是由于温度梯度是正的,当界面上偶尔有凸起部分而伸入温度较高的液体中时,它的生长速度就会减慢甚至停止,周围部分的过冷度较凸起部分大,从而赶上来,使凸起部分消失,这种过程使液—固界面保持稳定的平面形状。固溶体合金凝固时会产生成分过冷,在液体处于正的温度梯度下,相界面前沿的成分过冷区呈现月牙形,其大小与很多因素有关。此时,成分过冷区的特性与纯金属在负的温度梯度下的热过冷非常相似。可以按液固相界面前沿过冷区的大小分三种情况讨论:⑴当无成分过冷区或成分过冷区较小时,界面不可能出现较大的凸起,此时平界面是稳定的,合金以平面状生长,形成平面晶。⑵当成分过冷区稍大时,这时界面上凸起的尖部将获得一定的过冷度,从而促进了凸起进一步向液体深处生长,考虑到界面的力学平衡关系,平界面变得不稳定,合金以胞状生长,形成胞状晶或胞状组织。⑶当成分过冷区较大时,平界面变得更加不稳定,界面上的凸起将以较快速度向液体深处生长,形成一次轴,同时在一次轴的侧向形成二次轴,以此类推,因此合金以树枝状生长,最终形成树枝晶。 20. 纯金属晶体中主要的点缺陷类型是什么?试述它们可能产生的途径? 答:纯金属晶体中,点缺陷的主要类型是空位、间隙原子、空位对及空位与间隙原子对等。产生的途径:⑴依靠热振动使原子脱离正常点阵位置而产生。空位、间隙原子或空位与间隙原子对都可由热激活而形成。这种缺陷受热的控制,它的浓度依赖于温度,随温度升高,其平衡态的浓度亦增高。⑵冷加工时由于位错间有交互作用。在适当条件下,位错交互作用的结果能产生点缺陷,如带割阶的位错运动会放出空位。⑶辐照。高能粒子(中子、α粒子、高速电子)轰击金属晶体时,点阵中的原子由于粒子轰击而离开原来位置,产生空位或间隙原子。 21. 简述一次再结晶与二次再结晶的驱动力,并如何区分冷热加工?动态再结晶与静态再结晶后的组 织结构的主要区别是什么? 答:一次再结晶的驱动力是基体的弹性畸变能,而二次再结晶的驱动力是来自界面能的降低。再结晶温

材料科学与工程基础第三章答案

3.8 铁具有BCC 晶体结构,原子半径为0.124 nm,原子量为55.85 g/mol 。计算其密度并与实验值进行比较。 a = 4R/J 3 = 4 0.124/1.732 nm 二 0.286 nm V = a 3 = (0.286 nm)3 = 0.02334 nm P = 2.334 10 23 cm 3 BCC 结构的晶胞含有2个原子, 其质量为:m 二 2 55.85g/(6.023 1023 ) = 1.855 10 22 g 密度为 二 1.855 10 22 g/(2.334 10 23 m 3 ) =7.95g/cm 3 计算铱原子的半径,已知Ir 具有FCC 晶体结构,密度为22.4 g/cm 3 ,原子量为 192.2 g/mol 。 先求出晶胞边长a ,再根据FCC 晶体结构中a 与原子半径R 的 关系求R 。FCC 晶体结构中一个晶胞中的原子数为 4, =4 192.2g/(6.023 1023 a 3 cm 3 ) = 22.4g/cm 3 ,求得 a = 0.3848 nm 由 a = 2^2 R 求得 R = v2 a/4 = 1.414 0.3848 nm/4 = 0.136 nm 3.10计算钒原子的半径,已知 V 具有BCC 晶体结构,密度为5.96 g/cm 3 ,原子量为 50.9 g/mol 。 答:先求出晶胞边长a ,再根据BCC 晶体结构中a 与原子半径R 的 关系求R 。BCC 晶体结构中一个晶胞中的原子数为 2, =2 50.9g/(6.023 1023 a 3 cm 3 ) = 5.96 g/cm 3 ,求得 a = 0.305 nm 由 a = 4R/J 3 求得 R = 73 a/4 = 1.732 0.305 nm/4 = 0.132 nm 3.11 一些假想的金属具有图3.40给出的简单的立方晶体结构。如果 其原子量为70.4 g/mol ,原子半径为0.126 nm ,计算其密度。 答: BCC 结构,其原子半径与晶胞边长之间的关系为: 3.9 答:

北京工业大学:材料科学基础 教学大纲

材料科学基础教学大纲 材料科学基础Ⅱ-1 英文名称:Principles of Materials Science Ⅱ-1 课程编号:0003240 课程类型:学科基础必修课 学时:64 学分:4 适用对象:材料类本科 先修课程:物理化学 使用教材及参考书: 1.《材料科学基础》,徐恒钧编著,北京工业大学出版社,2001年10月 2. Materials Science and Engineering An Introduction, William D. Callister, Jr. John Wiley & Sons(ASIA) Pte Ltd, 2002 一、课程性质、目的和任务 本课程为材料科学与工程一级学科专业基础必修课,是研究材料的成分、结构与性能之间的关系及其变化规律的一门应用基础科学,是进一步学习金属材料、无机非金属材料、高分子材料、复合材料、结构材料及功能材料的基础。它将阐述各种材料的共性基础知识,从材料的组织结构出发,研究材料的结构与材料的制备方法、加工工艺以及材料性能之间的关系。 二、课程教学内容及要求 第一章原子结构与结合键 第一节原子结构:电子波函数及四个量子数[1] 第二节结合键:键型及其性质[2] 第二章材料的结构 第一节晶体学基础:点阵和晶胞[1];晶体对称性[2];晶面指数和晶向指数[1];晶体投影Δ 第二节常见晶体结构:密堆积[1];氯化铯[1]、氯化钠[1];纤锌矿[1];闪锌矿[1];钙钛矿[1];金红石[2];萤石Δ 第三节固溶体结构[2]; 第四节金属间化合物[2]; 第五节硅酸盐结构[2]; 第六节非晶态固体[3]; 第七节准晶体[3]; 第八节能带理论初步Δ 第三章晶体结构缺陷 第一节点缺陷[1]; 第二节位错的结构[1]; 第三节位错的运动[2]; 第四节位错应力场[3]; 第五节位错与缺陷的交互作用[3]; 第六节位错的增殖、塞积与交割[3];

江苏大学材料科学基础考研课程试题集

2004年西北工业大学硕士研究生入学试 题 一、简答题:(共40分,每小题8分) 1、请简述间隙固溶体、间隙相、间隙化合物的异同点? 2、请简述影响扩散的主要因素有哪些。 3、临界晶核的物理意义是什么?形成临界晶核的充分条件是什么? 4、有哪些因素影响形成非晶态金属?为什么? 5、合金强化途径有哪些?各有什么特点? 二、计算、作图题:(共60分,每小题12分) 1、求]111[和]120[两晶向所决定的晶面,并绘图表示出来。 2、氧化镁(MgO )具有NaCl 型结构,即具有O 2-离子的面心立方结构。问: (1) 若其离子半径+2Mg r =0.066nm ,-2O r =0.140nm ,则其原子堆积密度 为多少? (2) 如果+2Mg r /-2O r =0.41,则原子堆积密度是否改变? 3、已知液态纯镍在1.013×105 Pa (1大气压),过冷度为319 K 时发生均匀形核,设临界晶核半径为1nm ,纯镍熔点为1726 K ,熔化热ΔH m = 18075J/mol ,摩尔体积V s =6.6cm 3/mol ,试计算纯镍的液-固界面能和临 界形核功。 4、图示为Pb-Sn-Bi 相图投影图。问: (1)写出合金Q (w Bi =0.7,w Sn =0.2)凝固过程及室温组织; (2)计算合金室温下组织组成物的相对含量。

5、有一钢丝(直径为1mm )包复一层铜(总直径为2mm )。若已知钢的屈服强度σst =280MPa ,弹性模量E st =205GPa ,铜的σCu =140MPa ,弹性模量 E Cu =110GPa 。问: (1)如果该复合材料受到拉力,何种材料先屈服? (2)在不发生塑性变形的情况下,该材料能承受的最大拉伸载荷是多 少? (3)该复合材料的弹性模量为多少? 三、综合分析题:(共50分,每小题25分) 1、某面心立方晶体的可动滑移系为]101[ )111(、 。 (1) 请指出引起滑移的单位位错的柏氏矢量; (2) 若滑移由刃位错引起,试指出位错线的方向; (3) 请指出在(2)的情况下,位错线的运动方向; (4) 假设在该滑移系上作用一大小为0.7MPa 的切应力,试计算单位 刃位错线受力的大小和方向(取点阵常数为a =0.2nm )。 2、若有,某一Cu-Ag 合金(w Cu =0.075,w Ag =0.925)1Kg ,请提出一种方案 从该合金中提炼出100g 的Ag ,且要求提炼得到的Ag 中的Cu 含量w Cu 低于0.02。(假设液相线和固相线固相线均为直线)。 2005年西北工业大学硕士研究生入学 试题 一、简答题(每题8分,共40分) 1. 请简述二元合金结晶的基本条件有哪些。 2. 同素异晶转变和再结晶转变都是以形核长大方式进行的,请问两者之间有何差别? 3. 两位错发生交割时产生的扭折和割阶有何区别? 4. 请简述扩散的微观机制有哪些?影响扩散的因素又有哪些? 5. 请简述回复的机制及其驱动力。

“材料科学与工程基础”习题答案题目整合版

“材料科学与工程基础”第二章习题 1. 铁的单位晶胞为立方体,晶格常数a=0.287nm ,请由铁的密度算出每个单位晶胞所含的原子数。 ρ铁=7.8g/cm31mol 铁=6.022×1023个=55.85g 所以,7.8g/1(cm)3=(55.85/6.022×1023)X/(0.287×10-7)3cm3 X =1.99≈2(个) 2.在立方晶系单胞中,请画出: (a )[100]方向和[211]方向,并求出他们的交角; (b )(011)晶面和(111)晶面,并求出他们得夹角。 (c )一平面与晶体两轴的截距a=0.5,b=0.75,并且与z 轴平行,求此晶面的密勒指数。 (a )[211]和[100]之夹角θ=arctg 2=35.26。 或 cos θ==35.26θ=o (b ) cos θ==35.26θ=o (c )a=0.5b=0.75z=∞ 倒数24/30取互质整数(320) 3、请算出能进入fcc 银的填隙位置而不拥挤的最大原子半径。 室温下的原子半径R =1.444A 。(见教材177页) 点阵常数a=4.086A 最大间隙半径R’=(a-2R )/2=0.598A 4、碳在r-Fe (fcc )中的最大固溶度为2.11﹪(重量百分数),已知碳占据r-Fe 中的八面体间隙,试计算出八面体间隙被C 原子占据的百分数。 在fcc 晶格的铁中,铁原子和八面体间隙比为1:1,铁的原子量为55.85,碳的原子量为12.01 所以(2.11×12.01)/(97.89×55.85)=0.1002 即碳占据八面体的10%。

5、由纤维和树脂组成的纤维增强复合材料,设纤维直径的尺寸是相同的。请由计算最密堆棒的堆垛因子来确定能放入复合材料的纤维的最大体积分数。 见下图,纤维的最密堆积的圆棒,取一最小的单元,得,单元内包含一个圆(纤维)的面积。 2 0.9064==。 即纤维的最大体积分数为90.64%。 6、假设你发现一种材料,它们密排面以ABAC 重复堆垛。这种发现有意义吗?你能否计算这种新材料的原子堆垛因子? fcc 和hcp 密排面的堆积顺序分别是ABCABC……和ABAB…,如果发现存在ABACABAC……堆积的晶体,那应该是一种新的结构,而堆积因子和fcc 和hcp 一样,为0.74。 7.在FCC 、HCP 和BCC 中最高密度面是哪些面?在这些面上哪些方向是最高密度方向? 密排面密排方向 FCC{111)}<110> HCP(0001)(1120) BCC{110)}<111> 8.在铁中加入碳形成钢。BCC 结构的铁称铁素体,在912℃以下是稳定的,在这温度以上变成FCC 结构,称之为奥氏体。你预期哪一种结构能溶解更多碳?对你的答案作出解释。 奥氏体比铁素体的溶碳量更大,原因是1、奥氏体为FCC 结构,碳处于八面体间隙中,间隙尺寸大(0.414R )。而铁素体为BCC 结构,间隙尺寸小,四面体间隙0.291R ,八面体间隙0.225R ;2、FCC 的间隙是对称的,BCC 的间隙是非对称的,非对称的2

相关文档
最新文档