高中物理复习专题 动量与能量

高中物理复习专题 动量与能量
高中物理复习专题 动量与能量

专题三动量与能量

思想方法提炼

牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题.

一、能量

1.概述

能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度.

高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。在每年的高考物理试卷中都会出现考查能量的问题。并时常发现“压轴题”就是能量试题。

2.能的转化和守恒定律在各分支学科中表达式

(1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。(动能定理)

(2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。(功能原理)

注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能

(2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。(3)W G=-△E P重力做正功,重力势能减小;重力做负功,重力势能增加。重力势能变化只与重力做功有关,与其他做功情况无关。

(4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。

注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。

(5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。

(6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出

功之差。

(7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。(可以以粒子的动能、光子等形式向外释放)

动量与能量的关系

1.动量与动能

动量和能量都与物体的某一运动状态相对应,都与物体的质量和速度有关.但它们存在明显的不同:动量的大小与速度成正比p=mv;动能的大小与速度的平方成正比Ek=mv2/2两者的关系:p2=2mE k

动量是矢量而动能是标量.物体的动量发生变化时,动能不一定变化;但物体的动能一旦发生变化,则动量必发生变化.

2.动量定理与动能定理

动量定理:物体动量的变化量等于物体所受合外力的冲量.△p=I,冲量I=Ft 是力对时间的积累效应

动能定理:物体动能的变化量等于外力对物体所做的功.△E k=W,功W=Fs 是力对空间的积累效应.

3.动量守恒定律与机械能守恒定律

动量守恒定律与机械能守恒定律所研究的对象都是相互作用的物体系统,(在研究某个物体与地球组成的系统的机械能守恒时,通常不考虑地球的影响),且研究的都是某一物理过程.动量守恒定律的内容是:一个系统不受外力或者所受外力之和为0,这个系统的总动量保持不变;机械能守恒定律的内容是:在只有重力和弹簧弹力做功的情形下,系统机械能的总量保持不变运用动量守恒定律值得注意的两点是:(1)严格符合动量守恒条件的系统是难以找到的.如:在空中爆炸或碰撞的物体受重力作用,在地面上碰撞的物体受摩擦力作用,但由于系统间相互作用的内力远大于外界对系统的作用,所以在作用前后的瞬间系统的动量可认为基本上是守恒的.(2)即使系统所受的外力不为0,但沿某个方向的合外力为0,则系统沿该方向的动量是守恒的.

动量守恒定律的适应范围广,不但适应常见物体的碰撞、爆炸等现象,也适应天体碰撞、原子的裂变,动量守恒与机械能守恒相结合的综合的试题在高考中多次出现,是高考的热点内容.

【例1】如图所示,滑块A、B的质量分别为m1与m2,m1<m2,由轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧。两滑块一起以恒定的

速率v0向右滑动.突然轻绳断开.当弹簧

伸至本身的自然长度时,滑块A的速度

正好为0.求:

(1)绳断开到第一次恢复自然长度的过程中弹簧释放的弹性势能Ep;

(2)在以后的运动过程中,滑块B是否会有速度为0的时刻?试通过定量分析证明你的结论.

【解析】(1)当弹簧处压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和,当弹簧伸长到自然长度时,弹性势能为0,因这时滑块A的速度为0,故系统的机械能等于滑块B的动能.设这时滑块B的速度为v,则有E=m2v2/2.

因系统所受外力为0,由动量守恒定律

(m1+m2)v0=m2v.

解得E=(m1+m2)2v02/(2m2).

由于只有弹簧的弹力做功,系统的机械能守恒

(m1+m2)v02/2+E p=E.

解得E p=(m1-m2)(m1+m2)v02/2m2.

(2)假设在以后的运动中滑块B可以出现速度为0的时刻,并设此时A的速度为v1,弹簧的弹性势能为E′p,由机械能守恒定律得

m1v12/2+E′p=(m1+m2)2v02/2m2.

根据动量守恒得(m1+m2)v0=m1v1,

求出v1代入上式得:

(m1+m2)2v02/2m1+E′p=(m1+m2)2v02/2m2.

因为E′p≥0,故得:

(m1+m2)2v02/2m1≤(m1+m2)2v02/2m2

即m1≥m2,这与已知条件中m1<m2不符.

可见在以后的运动中不可能出现滑块B的速度为0的情况.

【解题回顾】“假设法”解题的特点是:先对某个结论提出可能的假设.再利用已知的规律知识对该假设进行剖析,其结论若符合题意的要求,则原假设成立.“假设法”是科学探索常用的方法之一.在当前,高考突出能力考察的形势下,加强证明题的训练很有必要.

【例2】如图所示,质量为m的有孔物体A

套在光滑的水平杆上,在A下面用细绳挂一质量

为M的物体B,若A固定不动,给B一水平冲量I,

B恰能上升到使绳水平的位置.当A不固定时,要使

B物体上升到使绳水平的位置,则给它的水平冲量

至少多大?

【解析】当A固定不动时,B受到冲量后以A为圆心做圆周运动,只有重力做功,机械能守恒.在水平位置时B的重力势能应等于其在最低位置时获得的动能Mgh=E k=p2/2M=I2/2M.

若A不固定,B向上摆动时A也要向右运动,当B恰能摆到水平位置时,它们具有相同的水平速度,把A、B看成一个系统,此系统除重力外,其他力

不做功,机械能守恒.又在水平方向上系统不受外力作用,所以系统在水平方向上动量守恒,设M 在最低点得到的速度为v 0,到水平位置时的速度为v. Mv 0=(M+m)v.

Mv 02/2=(M+m)v 2/2+Mgh.

I ′=Mv 0.

I ′= 【解题回顾】此题重要的是在理解A 不固定,B 恰能上升到使绳水平的位置时,其竖直方向的分速度为0,只有水平速度这个临界点.另外B 上升时也不再是做圆周运动,此时绳的拉力对B 做功(请同学们思考一下,绳的拉力对B 做正功还是负功),有兴趣的同学还可以分析一下系统以后的运动情况. 【例3】下面是一个物理演示实验,它显示: 图中下落的物体A 、B 经反弹后,B 能上升到比

初始位置高的地方.A 是某种材料做成的实心球,质量

m 1=0.28kg ,在其顶部的凹坑中插着质量m 2=0.1kg 的

木棍B.B 只是松松地插在凹坑中,其下端与坑底之间

有小间隙. 将此装置从A 的下端离地板的高度H=1.25m

处由静止释放.实验中,A 触地后在极短的时间内反弹, 且其速度大小不变;接着木棍B 脱离球A 开始上升,而球A 恰好停留在地板上,求木棍B 上升的高度.重力加速度(g=10m/s 2)

【解析】根据题意,A 碰地板后,反弹速度的大小等于它下落到地面时的速度的大小,由机械能守恒得

(m 1+m 2)gH=(m 1+m 2)v 2/2,v 1= . A 刚反弹时速度向上,立刻与下落的B 碰撞,碰前B 的速度v 2= . 由题意,碰后A 速度为0,以v 2表示B 上升的速度,

根据动量守恒m 1v 1-m 2v 2=m 2v ′2.

令h 表示B 上升的高度,有m 2v ′22/2=m 2gh ,

由以上各式并代入数据得:h=4.05m. 【例4】质量分别为m 1、m 2的小球在一

直线上做弹性碰撞,它们在碰撞前后的

位移—时间图像如图所示,若m 1=1kg,

m 2的质量等于多少?

【解析】从位移—时间图像上可看出:m 1和m 2

于t=2s 时在位移等于8m 处碰撞,碰前m 2的速度为0,m 1的速度v 0=△s/△t=4m/s

m

m M I

gH

2gH 2

碰撞后,m1的速度v1=-2m/s,

m2的速度v2=2m/s,

由动量守恒定律得m1v0=m1v1+m2v2,

m2=3kg.

【解题回顾】这是一道有关图像应用的题型,关键是理解每段图线所对应的两个物理量:位移随时间的变化规律,求出各物体碰撞前后的速度.不要把运动图像同运动轨迹混为一谈.

【例5】云室处在磁感应强度为B的匀强磁场中,一质量为M的静止的

原子核在云室中发生一次α衰变,α粒子的质量为m,电量为q,其运动轨迹在与磁场垂直的平面内.现测得α粒子运动的轨道半径为R,试求在衰变过程中的质量亏损.(注:涉及动量问题时,亏损的质量可忽略不计)

【解析】α粒子在磁场中做圆周运动的向心力是洛伦兹力,设α粒子的运动

速度为v,由牛顿第二定律得qvB=mv2/R.

衰变过程中,粒子与剩余核发生相互作用,设衰变后剩余核的速度为v′,衰变过程中动量守恒(M-m)v′=mv.

α粒子与剩余核的动能来源于衰变过程中亏损的质量,有

△m·c2=(M-m)v′2/2+mv2/2.

解得:△m=M(qBR)2/[2c2m(M-m)].

【解题回顾】此题知识跨度大,综合性强,将基础理论与现代物理相结合.考查了圆周运动、洛伦兹力、动量守恒、核裂变、能量守恒等知识.这类题型需注意加强.

【例6】如图所示,一轻绳穿过光滑的定滑轮,

两端各拴有一小物块.它们的质量分别为m1、m2,已知

m2=3m1,起始时m1放在地上,m2离地面的高度

h=1.0m,绳子处于拉直状态,然后放手.设物块与地面相碰

时完全没有弹起(地面为水平沙地),绳不可伸长,绳中

各处拉力均相同,在突然提起物块时绳的速度与物块的

速度相同,试求m2所走的全部路程(取3位有效数字)

【解析】因m2>m1,放手后m2将下降,直至落地.

由机械能守恒定律得

m2gh-m1gh=(m1+m2)v2/2.

m2与地面碰后静止,绳松弛,m1以速度v上升至最高点处再下降.

当降至h时绳被绷紧.

高中物理动量定理解题技巧讲解及练习题(含答案)及解析

高中物理动量定理解题技巧讲解及练习题(含答案)及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求: (i )C 与A 碰撞前的速度大小 (ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是 32 mv 0. 【解析】 【分析】 【详解】 试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3? 0m m v mv -+= 解得:10 v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得: 012 3(3)mv mv m m v =+- 在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032 CA I mv =- 即A 、C 碰过程中C 对A 的冲量大小为032 mv . 方向为负. 考点:动量守恒定律 【名师点睛】 本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择. 3.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小

高中物理动态平衡专题

高中物理动态平衡专题 在有关物体平衡的问题中,有一类涉及动态平衡。这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。 一 物体受三个力作用 例1. 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 解析:取球为研究对象,如图1-2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。F 1的方向不变,但方向不变,始终与斜面垂直。F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F 2。由此可知,F 2先减小后增大,F 1随β增大而始终减小。 例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( ) A .F N 先减小,后增大 B .F N 始终不变 C .F 先减小,后增大 D.F 始终不变 解析:取BO 杆的B 端为研究对象,受到绳子拉力(大小为F )、BO 杆的支持力F N 和悬挂重物的绳子的拉力(大小为G )的作用,将F N 与G 合成,其合力与F 等值反向,如图2-2所示, 图2-1 图2-2 图1-1 图1-2 F 1 G F 2 图1-3

高中物理受力分析(动态平衡问题)典型例题(含答案)【经典】(可编辑修改word版)

3 5 知识点三:共点力平衡(动态平衡、矢量三角形法) 1.(单选)如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕 O 点转至水平位置,则此过程中球对挡板的压力 F 1 和球对斜面的压力 F 2 的变化情况是( ).答案 B A .F 1 先增大后减小,F 2 一直减小 B .F 1 先减小后增大,F 2 一直减小 C .F 1 和 F 2 都一直减小 D .F 1 和 F 2 都一直增大 2、 (单选)(天津卷,5)如图所示,小球用细绳系住,绳的另一端固定于 O 点.现用水平力 F 缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平, 此过程中斜面对小球的支持力 F N 以及绳对小球的拉力 F T 的变化情况是( ).答案 D A .F N 保持不变,F T 不断增大 B .F N 不断增大,F T 不断减小 C .F N 保持不变,F T 先增大后减小 D .F N 不断增大,F T 先减小后增大 3.(单选)如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力 F 1、半球面对小球的支持力 F 2 的变化情况正确的是( ). 答案 B A .F 1 增大,F 2 减小 B .F 1 增大,F 2 增大 C .F 1 减小,F 2 减小 D .F 1 减小,F 2 增大 4、(单选)如图所示,一物块受一恒力 F 作用,现要使该物块沿直线 AB 运动,应该再加上另 一个力的作用,则加上去的这个力的最小值为( ).答案 B A .F cos θ B .F sin θ C .F tan θ D .F cot θ 5.(单选)如图所示,一倾角为 30°的光滑斜面固定在地面上,一质量为 m 的小木块在水平力 F 的作用下静止在斜面上.若只改变 F 的方向不改变 F 的大小,仍使木块静止,则此时力 F 与水平 面的夹角为( ).答案 A A .60° B .45° C .30° D .15° 6.(多选)一铁架台放于水平地面上,其上有一轻质细线悬挂一小球,开始时细线竖直,现将水平力 F 作用于小球上,使其缓慢地由实线位置运动到虚线位置,铁架台始终保持静止,则在这 一过程中( ). 答案:AD A .细线拉力逐渐增大 B .铁架台对地面的压力逐渐增大 C .铁架台对地面的压力逐渐减小 D .铁架台所受地面的摩擦力逐渐增大 7、(多选)(苏州调研)如图所示,质量均为 m 的小球 A 、B 用两根不可伸长的轻绳连接后悬挂于 O 点,在外力 F 的作用下,小球 A 、B 处于静止状态.若要使两小球处于静止状态且悬线 OA 与竖直方 向的夹角 θ 保持 30°不变,则外力 F 的大小( ).答案 BCD A .可能为 mg B .可能为 mg 3 2 C .可能为 2mg D .可能为 mg 8、(单选)如图所示,轻绳的一端系在质量为 m 的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆 MN 上.现用水平力 F 拉绳上一点,使物体处于图中实线位置,然后改变 F 的大小使 其缓慢下降到图中虚线位置,圆环仍在原来的位置不动.在这一过程中,水平拉力 F 、环与杆 的摩擦力 F 摩和环对杆的压力 F N 的变化情况是( ).答案 D A .F 逐渐增大,F 摩保持不变,F N 逐渐增大 B .F 逐渐增大,F 摩逐渐增大,F N 保持不 变

高一物理动态平衡专题习题和答案

高中物理动态平衡专题习题及答案 1. 如图所示,电灯悬挂于两墙之间,更换绳OA ,使连接点A 向上移,但保持O 点位置不变,则A 点向上移时,绳OA 的拉力( ) A .逐渐增大 B .逐渐减小 C .先增大后减小 D .先减小后增大 2. 如图所示,质量不计的定滑轮用轻绳悬挂在B 点,另一条轻绳一端系重物C ,绕过滑轮后,另一端固定在墙上A 点,若改变B 点位置使滑轮位置发生移动,但使A 段绳子始终保持水平,则可以判断悬点B 所受拉力F T 的大小变化情况是: ( ) A .若 B 向左移,F T 将增大 B .若B 向右移,F T 将增大 C .无论B 向左、向右移,F T 都保持不变 D .无论B 向左、向右移,F T 都减小 3.如图所示,绳子的两端分别固定在天花板上的A 、B 两点,开始在绳的中点O 挂一重物G ,绳子OA 、OB 的拉力分别为F 1、F 2。若把重物右移到O '点悬挂 (B O A O '<'),绳A O '和B O '中的拉力分别为'1F 和'2F ,则力的大小关系正确的 是: ( ) A.'>11F F ,'>22F F B. '<11F F ,'<22F F C. '>11F F ,'<22F F D. '<11F F ,' >22F F 4.重力为G 的重物D 处于静止状态。如图所示,AC 和BC 两 段绳子与竖直方向的夹角分别为α和β。α+β<90°。现保持α角不变,改变β角,使β角缓慢增大到90°,在β角增大过程中,AC 的张力T 1,BC 的张力T 2的变化情况为 :( ) A .T 1逐渐增大,T 2也逐渐增大 B .T 1逐渐增大,T 2逐渐减小 C .T 1逐渐增大,T 2先增大后减小 D .T 1逐渐增大,T 2先减小后增大 5.如图所示,均匀小球放在光滑竖直墙和光滑斜木板之间,木板上端用水平细绳固定,下端可以绕O 点转动,在放长细绳使板转至水平的过程中(包括水平): ( ) B

高中物理专题汇编动量定理(一)

高中物理专题汇编动量定理(一) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.如图所示,用0.5kg 的铁睡把钉子钉进木头里去,打击时铁锤的速度v =4.0m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01s (取g =10m/s 2),那么:

最新高中物理动量定理专题训练答案

最新高中物理动量定理专题训练答案 一、高考物理精讲专题动量定理 1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211 222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上. 2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停

高中物理动态平衡问题

动态平衡专题 1、如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为N1,球对木板的压力大小为N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中( ) A.始终减小,始终增大 B.始终减小,始终减小 C.先增大后减小,始终减小 D.先增大后减小,先减小后增大 2、如图所示,把一个光滑圆球放在两块挡板AC和AB之间,AC与AB之间夹角为30°,现将AC板固定而使AB板顺时针缓慢转动90°,则() A.球对AB板的压力先减小后增大 B.球对AB板的压力逐渐减小 C.球对AC板的压力逐渐增大 D.球对AC板的压力先减小后增大 3、如图所示,用绳索将重球挂在墙上,不考虑墙的摩擦。如果把绳的长度增加一些,则球对绳的拉力F1和球对墙的压力F2的变化情况是() A.F1增大,F2减小 B.F1减小,F2增大 C.F1和F2都减小 D.F1和F2都增大 4、某欧式建筑物屋顶为半球形,一警卫人员为执行特殊任务,必须冒险在半球形屋顶上向上缓慢爬行(如图),他在向上爬过程中() A.屋顶对他的支持力变大B.屋顶对他的支持力变小 C.屋顶对他的摩擦力变大D.屋顶对他的摩擦力不变

5、在上海世博会最佳实践区,江苏城市案例馆中穹形门窗充满了浓郁的地域风情和人文特色.如图所示,在竖直放置的穹形光滑支架上,一根不可伸长的轻绳通过轻质滑轮悬挂一重物G.现将轻绳的一端固定于支架上的A点,另一端从B点沿支架缓慢地向C点靠近(C点与A点等高).则绳中拉力大小变化的情况是( ) A.先变小后变大B.先变小后不变 C.先变大后不变D.先变大后变小 6、如图所示,用细线悬挂一个均质小球靠在光滑竖直墙上.如把线的长度缩短,则球对线的拉力T、对墙的压力N的变化情况正确的是() A. T、N都不变B. T减小,N增大 C. T增大,N减小D. T、N都增大 7、如图,在静止的电梯里放一桶水,将一个用弹簧固连在桶底的软木塞浸没在水中,当电梯以加速度a(a

高中物理动态平衡问题

;. 动态平衡专题 1、如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为N,球对木板的压力1大小为N。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水2平 位置。不计摩擦,在此过程中( ) 始终增大A.始终减小,始终减小,B.始终减小先增大后减小,.C 始终减小 先增大后减小,先减小后增大D.AC,现将之间夹角为30°AB之间,AC与AB2、如图所示,把一个光滑圆球放在两块挡板AC和) ,则( 板固定而使AB板顺时针缓慢转动90° AB板的压力先减小后增大A.球对板的压力逐渐减小.球对ABB 板的压力逐渐增大.球对ACC 板的压力先减小后增大球对ACD. 、如图所示,3用绳索将重球挂在墙上,不考虑墙的摩擦。如果把绳的长度增加一些,则球对

)和球对墙的压力绳的拉力FF的变化情况是(21 F减小A.F增大,21增大.F减小,FB21和FF都减小C.21和F都增大D.F21 、某欧式建筑物屋顶为半球形,一警卫人员为执行特殊任务,必须冒险在半球形屋顶上向上4 ) 缓慢爬行(如图),他在向上爬过程中( B屋顶对他的支持力变小.A.屋顶对他的支持力变大 屋顶对他的摩擦力不变C.屋顶对他的摩擦力变大D. ;.. ;. 5、在上海世博会最佳实践区,江苏城市案例馆中穹形门窗充满了浓郁的地域风情和人文特色.如

图所示,在竖直放置的穹形光滑支架上,一根不可伸长的轻绳通过轻质滑轮悬挂一重物G.现将轻绳的一端固定于支架上的A点,另一端从B点沿支架缓慢地向C点靠近(C点与A点等高).则 绳中拉力大小变化的情况是( ) A.先变小后变大B.先变小后不变 C.先变大后不变D.先变大后变小 6、如图所示,用细线悬挂一个均质小球靠在光滑竖直墙上.如把线的长度缩短,则球对线的拉力T、对墙的压力N的变化情况正确的是() A.T、N都不变B.T减小,N增大 C.T增大,N减小D.T、N都增大 7、如图,在静止的电梯里放一桶水,将一个用弹簧固连在桶底的软木塞浸没在水中,当电梯以 加速度a(a

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

高中物理物体的动态平衡问题解题技巧

高中物理物体的动态平衡问题解题技巧题型概述: 物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。 思维模板: 常用的思维方法有两种。(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。 分时间 以课标卷高考为例,高考物理一共8个选择题,按照高考选择题总时间在35-45分钟的安排,物理选择题时间安排在15-25分钟为宜,大约占所有选择题的一半时间(由于生物选择题和化学选择题的计算量不大,很多题目可以直接进行判断,所以物理选择题所占的时间比例应稍大些).在物理的8个选择题中,时间也不能平均分配,一般情况下,选择题的难度会逐渐增加,物理选择题也不会例外,难度大的题目大约需要3分钟甚至更长一点的时间,而难度较小的选择题一般1分钟就能够解决了,8个选择题中,按照2:5:1的关系,一般有2个简单题目,5个中档题目和1个难度较大的题目(开始时难题较小)

析本质 选择题一般考查的是考生对基本知识和基本规律的理解及应用这些知识进行一些定性推理,很少有较复杂的计算.解题时一定要注意一些关键词,例如“不正确的”“可能”与“一定”的区别,要讨论多种可能性.不要挑题做,应按题号顺序做,而且开始应适当慢一点,这样刚上场的紧张心情会逐渐平静下来,做题思维会逐渐活跃,不知不觉中能全身心进入状态.一般地讲,如遇熟题,题图似曾相识,应陈题新解;如遇陌生题,题图陌生、物理情景陌生,应新题常规解,如较长时间分析仍无思路,则应暂时跳过去,先做下边的试题,待全部能做的题目做好后,再来慢慢解决(此时解题的心情已经会相对放松,状态更易发挥).确实做不出来时,千万不要放弃猜答案的机会,先用排除法排除能确认的干扰项,如果能排除两个,其余两项肯定有一个是正确答案,再随意选其中一项,即使一个干扰项也不能排除仍不要放弃,四个选项中随便选一个.尤其要注意的是,选择题做完后一定要立即涂卡. 巧应对 高考物理选择题是所有学科中选择题难度最大的,主要难点有以下几种情况:一是物理本身在各个学科中就属于比较难的学科;二是物理选择题是不定项选择,题目答案个数不确定,造成在选择的时候瞻前顾后,不得要领;三是大部分选择题综合性很高,涉及的知识点比计算题和填空题还要多,稍有不慎,就会顾此失彼;四是有些选择题本身就是小型的计算题,计算量并不比简单的计算题小.

高中物理动量定理试题经典及解析(1)

高中物理动量定理试题经典及解析(1) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.

高中物理动量定理解题技巧讲解及练习题(含答案)

高中物理动量定理解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量定理 1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122E m v m v = + 其中 121 4m m = 12m m m =+ 联立解得 1120m/s v =

230m/s v = 之后两物块做平抛运动,则 竖直方向有 212 h gt = 水平方向有 12s v t v t =+ 由以上各式联立解得 s=900m 2.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。求 (1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。 【答案】(1)20N ?s ,方向竖直向下(2 )m/s ?, 与水平方向的夹角为45° 【解析】 【详解】 (1)物体做平抛运动,则有: 212 h gt = 解得: t =2s 则物体从抛出到落到地面过程重力的冲量 I=mgt =1×10×2=20N?s 方向竖直向下。 (2)在竖直方向,根据动量定理得 I=p y -0。 可得,物体落地时竖直方向的分动量 p y =20kg?m/s 物体落地时水平方向的分动量 p x =mv 0=1×20=20kg?m/s 故落地时物体的动量 m/s p = =? 设落地时动量与水平方向的夹角为θ,则 1y x p tan p θ= = θ=45°

高中物理平衡问题练习题

平衡奥义种下希望就会收获 1. 如图所示,两个完全相同的光滑球的质量均为m,放在竖直挡板和倾角为α的固定斜面间.若缓慢转动挡板至与斜面垂直,在此过程中() A.A、B两球间的弹力逐渐增大 B.B球对挡板的压力逐渐减小 C.B球对斜面的压力逐渐增大 D.A球对斜面的压力逐渐增大 2. 如图所示,质量为2m的物体A经一轻 质弹簧与地面上的质量为3m的物体B相 连,弹簧的劲度系数为k,一条不可伸长 的轻绳绕过定滑轮,一端连物体A,另一 端连一质量为m的物体C,物体A、B、C 都处于静止状态.已知重力加速度为g, 忽略一切摩擦.(1)求物体B对地面的压 力;(2)把物体C的质量改为5m,这时C缓慢下降,经过一段时间系统达到新的平衡状态,这时B仍没离开地面,且C 只受重力和绳的拉力作用,求此过程中物体A上升的高度. 3. 如图所示,一根匀质绳质量为 M,其两端固定在天花板上的A、B 两点,在绳的中点悬挂一重物,质 量为m,悬挂重物的绳PQ质量不 计。设、β分别为绳子端点 和中点处绳子的切线方向与竖直 方向的夹角,试求的大 小。 4. 如图所示,倾角为θ的斜面 体C置于水平面上,B置于斜面 上,通过细绳跨过光滑的定滑轮 与A相连接,连接B的一段细绳 与斜面平行,A、B、C都处于静 止状态.则() A.B受到C的摩擦力一定不为零 B.C受到水平面的摩擦力一定为零 C.水平面对C的摩擦力方向一定向左 D.水平面对C的支持力与B、C的总重力大小相等 5. 如图所示半圆柱体P固定在水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P 和MN之间放有一个光滑均匀的小圆 柱体Q,整个装置处于平衡状态.现 使MN保持竖直并且缓慢地向右平 移,在Q滑落到地面之前的此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.MN对Q的弹力保持不变 C.P对Q的作用力逐渐增大D.P对Q的作用力先增后减小 6. 如图所示,质量为M、半径为R、 内壁光滑的半球形容器静止放在粗 糙水平地面上,O为球心。有一劲度 系数为k的轻弹簧一端固定在半球 底部处,另一端与质量为m的小球相连,小球静止于P 点。已知地面与半球形容器间的动摩擦因数为, OP与水平方向夹角为。则 A.小球受到轻弹簧的弹力大小为 B.小球受到容器的支持力大小为 C.半球形容器受到地面的摩擦力大小为 D.半球形容器受到地面的支持力大小为 7. 一光滑圆环固定在竖直平面内, 环上套着两个小球A和B(中央有 孔),A、B间由细绳连接着,它们处 于如图所示位置时恰好都能保持静 止状态.此情况下,B球与环中心O 处于同一水平面上,A、B间的细绳 呈伸直状态,且与水平线成30°角. 已知B球的质量为2 kg,求细绳对B 球的拉力和A球的质量. (g取10 m/s2) 8. 如图所示,两楔形物块A、B部分靠 在一起,接触面光滑,物块B放置在地 面上,物块A上端用绳子拴在天花板上, 绳子处于竖直伸直状态,A、B两物块均 保持静止。下列说法中正确的是() A;绳子的拉力可能小于A的重力 B;地面受的压力大于物块B的重力 C;物块B受到地面的摩擦力方向水平向左 D;物块B与地面间不存在摩擦力 9. 如图所示,一质量为M的楔形 木块放在水平桌面上,它的顶角 为90°,两底角为α和β;a、 b为两个位于斜面上质量均为m的小木块,已知所有接触面都是光滑的.现发现a、b沿斜面下滑,而楔形木块静止不动,这时楔形木块对水平桌面的压力等于() A.Mg+mg B.Mg+2mg C.Mg+mg(sinα+sinβ) D. Mg+mg(cosα+cosβ)

高中物理二轮复习 专项训练 物理动量定理

高中物理二轮复习 专项训练 物理动量定理 一、高考物理精讲专题动量定理 1.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2. (1)求物块与地面间的动摩擦因数μ; (2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】 试题分析:(1)对A 到墙壁过程,运用动能定理得: , 代入数据解得:μ=0.32. (2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N . 2.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。 (1)请根据上述情境,利用牛顿第二定律推导动量定理,并写出动量定理表达式中等号两边物理量的物理意义。 (2)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。请运用所学物理知识分析说明这样做的道理。 【答案】详情见解析 【解析】 【详解】 (1)根据牛顿第二定律F ma =,加速度定义0i v v a t -=解得 0=-i Ft mv mv 即动量定理, Ft 表示物体所受合力的冲量,mv t -mv 0表示物体动量的变化 (2)快递物品在运送途中难免出现磕碰现象,根据动量定理 0=-i Ft mv mv 在动量变化相等的情况下,作用时间越长,作用力越小。充满气体的塑料袋富有弹性,在

高中物理动量定理专题(问题详解)-word

动量和动量定理的应用 知识点一——冲量(I) 要点诠释: 1.定义:力F和作用时间的乘积,叫做力的冲量。 2.公式: 3.单位: 4.方向:冲量是矢量,方向是由力F的方向决定。 5.注意: ①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。 ②用公式求冲量,该力只能是恒力,无论是力的方向还是大小发生变化时,都不能用直接求出 1.推导: 设一个质量为的物体,初速度为,在合力F的作用下,经过一段时间,速度变为 则物体的加速度 由牛顿第二定律 可得, 即 (为末动量,P为初动量) 2.动量定理:物体所受合外力的冲量等于物体的动量变化。 3.公式: 或 4.注意事项: ①动量定理的表达式是矢量式,在应用时要注意规定正方向; ②式中F是指包含重力在内的合外力,可以是恒力也可以是变力。当合外力是变力时,F应该是合外力在这段时间内的平均值; ③研究对象是单个物体或者系统; ④不仅适用于宏观物体的低速运动,也适用与微观物体的高速运动。 5.应用: 在动量变化一定的条件下,力的作用时间越短,得到的作用力就越大,因此在需要增 大作用力时,可尽量缩短作用时间,如打击、碰撞等由于作用时间短,作用力都较大,如冲压工件; 在动量变化一定的条件下,力的作用时间越长,得到的作用力就越小,因此在需要减 小作用力时,可尽量延长作用时间,如利用海绵或弹簧的缓冲作用来延长作用时间,从而减小作用力,再如安全气囊等。 规律方法指导 1.动量定理和牛顿第二定律的比较 (1)动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律 (2)由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式, 即:物体所受的合外力等于物体动量的变化率。 (3)在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。 4.应用动量定理解题的步骤 ①选取研究对象; ②确定所研究的物理过程及其始末状态; ③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式; ⑤解方程,统一单位,求得结果。 经典例题透析 类型一——对基本概念的理解 1.关于冲量,下列说法中正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体合力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,A对;只要有力作用在物体上,

高中物理力与平衡、临界问题习题与答案

物体的平衡单元测试 一、选择题 1.关于静摩擦力,下列说法正确的是  .两个相对静止的物体之间一定有静摩擦力的作用 B.静摩擦力一定是阻力 受静摩擦力作用的物体一定是静止的 D.在压力一定的条件下,静摩擦力的大小是可以变化的,但有一定限度 .关于相互接触的两物体之间的弹力和摩擦力,下列说法正确的是 A.有摩擦力一定有弹力 B.摩擦力的大小与弹力成正比 C.有弹力一定有摩擦力D.弹力是动力,摩擦力是阻力 3.一个弹簧挂30N的重物时,弹簧伸长1.2cm,若改挂100N的重物时,弹簧总长为20cm,则弹簧的原长为 12cm B.14cm C.15cm D. 16cm 4.把一个力分解成两个力,并已知一个力的大小和另一个力的方向.下列说法错误的是A.可能无解 B.可能有一个解 C.可能有两个解 D.一定有两.将一个力F=10N分解为两个分力,已知一个分力的方向与F成30°角,另一个分力的大小为6N,则在分解中 A.有无数组解 B.有两解 C.有唯一解 D.无解 6.在分析物体受力时,下面的说法正确的是  .向上抛出后的物体受到向上的作用力 B.两物体相互挤压时,其弹力沿接触面垂直的方向指向施力物体 .轻绳的拉力方向指向绳子收缩的方向 D.放在斜面上的物体受到的重力可分解成下滑力和正压力 7.三个相同的支座上分别搁着三个质量和直径都相等的光滑圆球a、b、c,支点P、Q在同一水平面上,a球的重心Oa位于球心,b球和c球的重心Ob、Oc分别位于球心的正上方和球心的正下方,如图1-87所示,三球均处于平衡状态.支点P对a球的弹力为Na,对b球的弹力为Nb,对c球的弹力为Nc,则 A.Na= N b= Nc B.Nb>Na>Nc C.Nb<Na<Nc D.Na>Nb=N c 8.如图1-88所示,物体在水平力F作用下静止在斜面上,若稍增大水平力 F,而物体仍能保持静止,下列说法正确的是 .斜面对物体的静摩擦力及支持力都不一定增大 .斜面对物体的静摩擦力及支持力都一定增大

高一物理动态平衡专题习题和答案

高一物理动态平衡专题 习题和答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理动态平衡专题习题及答案 1. 如图所示,电灯悬挂于两墙之间,更换绳OA ,使连接点A 向上移,但保持O 点位置不变,则A 点向上移时,绳OA 的拉力( ) A .逐渐增大 B .逐渐减小 C .先增大后减小 D .先减小后增大 2. 如图所示,质量不计的定滑轮用轻绳悬挂在B 点,另一条轻绳一端系重物C ,绕过滑轮后,另一端固定在墙上A 点,若改变B 点位置使滑轮位置发生移动,但使A 段绳子始终保持水平,则可以判断悬点B 所受拉力F T 的大小变化情况是: ( ) A .若 B 向左移,F T 将增大 B .若B 向右移,F T 将增大 C .无论B 向左、向右移,F T 都保持不变 D .无论B 向左、向右移,F T 都减小 3.如图所示,绳子的两端分别固定在天花板上的A 、B 两点,开始在绳的中点O 挂一重物G ,绳子OA 、OB 的拉力分别为F 1、F 2。若把重物右移到O '点悬挂 (B O A O '<'),绳A O '和B O '中的拉力分别为' 1F 和' 2F ,则力的大小关系正确的是: ( ) A.'>11F F ,'>22F F B. '<11F F ,' <22F F C. '>11F F ,'<22F F D. '<11F F ,' >22F F 4.重力为G 的重物D 处于静止状态。如图所示,AC 和BC 两段绳子与竖直方向的夹角分别为α和β。α+β<90°。现保持α角不变,改变β角,使β角缓慢增大到90°,在β角增大过程中,AC 的张力T 1,BC 的张力T 2的变化情况为 :( ) A B O A B O O '

高中物理动量定理专题训练答案(1)

高中物理动量定理专题训练答案(1) 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰 撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上.

相关文档
最新文档