matlab隔离型直直变换器(正激,反激)仿真

matlab隔离型直直变换器(正激,反激)仿真
matlab隔离型直直变换器(正激,反激)仿真

第三次作业

1.f orward 变换器

2.原理图

参数设置为变压器变比为9:1

C1=0.0017f L=0.0004876h

仿真结果图为电感电流与负载电压

电流局部图为

结构原理图为

参数设置变压器变比为9:1 C1=170e-6f L1=18.5e-2h

仿真结果图

3

3 pushpull

结构原理图为

参数设置为C1=470e-6f L1=5.86e-4h 仿真结果为

负载电压

电感电流

4.f ullbridge

参数设置为变压器变比10:1 C1=170e-4f L1=1e-3h

结构原理图为

仿真结果电感电流负载电压

电感电流局部图

结构原理图

仿真结果图没有付加进来

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

(完整版)50W反激变换器的设计

50W反激变换器的设计(CCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.45 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则主功率管开通时间为: Ton=T*D=10uS*0.45=4.5uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Toff ( 设定整流管压降为1V ) 变压器的匝比n: n = 13.67 设定电源工作在连续模式Ip2 = 0.4 * Ip1 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η ( 设定电源的效率η为0.8 ) Ip1 = 1.98 A Ip2 = 0.79 A 变压器的感量 L = ( Vin * Ton ) / ( Ip1 – Ip2 ) = 379 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 27 T 变压器的次级匝数Ns = Np / n = 2 T 变压器的实际初次级匝数可以取 Np = 27 T Ns = 2 T 重新核算变压器的设计 最大占空比:Vin * D = n * ( V o + Vf ) * ( 1 – D ) D = 0.447 最大磁通密度:Bmax = ( Vin * Ton ) / ( Np * Ae ) Bmax = 0.195 T 初级电流Ip1 和Ip2: 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η Ip2 + ( Vin * Ton ) / L = Ip1 Ip1 = 1.99 A Ip2 = 0.8 A Ip_rms = 0.93A 次级电流Is1和Is2 Is1 =Ip1*n=26.87A Is2=Ip2*n =10.8A Is_rms = 12.56A 次级电压折射到初级的电压 V or = n * ( V o + Vf ) = 81V 初级功率管Mosfet 的选择 Vmin = (√2 * 264 + V or +50 ) / 0.8 = 630 V Ip_rms = Ip_rms / 0.8 = 1.16 A ( 设定应力降额系数为0.8 ) 可以选择Infineon 的IPP60R450E6 次级整流管Diode 的选择 Vmin = (√2 * 264 / n + 5 +15 ) / 0.8 = 60 V Is_rms = Is_rms / 0.8 = 15.7 A ( 设定应力降额系数为0.8,噪音为15V ) 可以选择IR 的30CTQ060PBF 输出电容的选择 设定输出电压的纹波为50mv 输出电流的交流电流: Isac_rms = 0.5 * ( Is1 + Is2 ) * √D * ( 1- D ) Isac_rms = 9.36A Resr = Vripple / Isac_rms = 5.34 mohm 选择Nichicon 电容HD 系列6.3V/3900uF 四个并联使用50W反激变换器的设计(DCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.3 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则功率管开通时间:Ton=T*D=10uS*0.3=3uS 假设关断时间:Toff=7uS,Tr=4uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Tr ( 设定整流管压降为1V ) 变压器的匝比n: n = 12.53 设定电源工3作在续模式Io = Tr/T * Ip2 Ip2=Io*T/Tr=25A Ip1 = Ip2/n=1.99 A 变压器的感量 L = ( Vin * Ton ) / Ip1 = 151 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 18 T 变压器的次级匝数 Ns = Np / n = 1.4 T=2T 变压器的实际初次级匝数可以取 Ns = 2 T Np=Ns * n=25.1T=26T 开关电源一次滤波大电解电容 开关电源决定一次侧滤波电容,主要影响电源的性能参数为输出低频交流纹波与保持时间. 滤波电容越大,电容器上的Vin(min)越高,可以输出较大功率的电源,但相对价格也提高了。 输入电解电容计算方法(举例说明): 1.因输出电压12V 输出电流2A, 故输出功率:Pout=V o*Io=1 2.0V*2A=24W。 2.设定变压器的转换效率约为80%,则输出功率为24W的 电源其输入功率:Pin=Pout/效率=W W 30 % 80 24 =. 3.因输入最小交流电压为90V AC,则其直流输出电压为:Vin=90*1.2=108Vdc 故负载直流电流为:I= Vin Pin =A Vac W 28 .0 108 30 = 4.设计允许的直流纹波电压V ?/V o=20%,并且电容要维持电压的时间为1/4周期t(即半周期的工频率交流电压在约 是4ms,T= f 1 = 60 1 =0.0167S=16.7 ms)则: C=uF V t I 9. 51 6. 21 10 * 4 * 28 .0 *3 = = ? - 故实际选择电容量47uF. 5.因最大输入交流电压为264Vac,则最高直流电压为:V=264*2=373VDC. 实际选用通用型耐压400Vdc的电解电容,此电压等级,电容有95%的裕度. 6.电容器的承受的纹波电流值决定电容器的温升,进而决定电容器的寿命.(电容器的最大纹波电流值与其体积,材质有关.体积越大散热越好耐受纹波电流值越高)故在选用电容器要考虑实际纹波电流值<电容器的最大纹波电流值. 7.开关源元器件温升一般较高,通常选用105℃电容器,在特殊情况无法克服温升时可选用125℃电容器. 故选用47uF,400v, 105℃电解电容器可以满足要求(在实际使用时还考虑安装机构尺寸,体种大小,散热环境好坏等)

单端反激变换器的建模及应用仿真

单端反激变换器的建模及应用仿真 摘要:本课程设计的目的是对直—直变换电路中常用的带隔离的Flyback电路(反激电路)进行电路分析、建模并利用Matlab/Simulink软件进行仿真。首先是理解分析电路原理,以元件初值为起点,用simulink软件画出电路的模型、并且对电路进行仿真,得出仿真波形。在仿真过程中逐步修正参数值,使得仿真波形合乎要求,并进行电流连续、断续模式与电路带载特性的分析。 关键词:单端反激变换器Matlab/Simulink 建模与仿真 二、反激变换器的基本工作原理 1.基本工作原理 (1)当开关管导通时,变压器原边电感电流开始上升,此时由于次级同名端的关系,输出二极管VD截止,变压器储存能量,负载由输出电容C提供能量,拓扑电路如下图。 图2-1开关管导通时原理图 为防止负载电流较大时磁心饱和,反激变换器的变压器磁心要加气隙,降低了磁心

的导磁率,这种变压器的设计是比较复杂的。 (2)当开关管截止时,变压器原边电感感应电压反向,此时输出二极管导通,变压器中的能量经由输出二极管向负载供电,同时对电容充电,补充刚刚损失的能量,原理图如下图。 图2-2开关管截止时原理图 在开关管关断时,反激变换器的变压器储能向负载释放,磁心自然复位,因此反激变换器无需另加磁复位措施。磁心自然复位的条件是:开关导通和关断时间期间,变压器一次绕组所承受电压的伏秒乘积相等。 2、DCM(discontinuous current mode)&CCM(continuous current mode) 根据次级电流是否有降到零,反激可以分为DCM(副边电流断续模式)和CCM(副边电力连续模式)两种工作模式。两种模式有其各自的特点。下面两种工作模式时的波形。

反激变换器课程设计报告

电力电子课程实习报告 班级:电气10-3班 学号: 10053303 姓名:李乐

目录 一、课程设计的目的 二、课程设计的要求 三、课程设计的原理 四、课程设计的思路及参数计算 五、电路的布局与布线 六、调试过程遇到的问题与解决办法 七、课程设计总结

一、课程设计的目的 (1)熟悉Power MosFET的使用; (2)熟悉磁性材料、磁性元件及其在电力电子电路中的应用; (3)增强设计、制作和调试电力电子电路的能力。 二、课程设计的要求 本课程设计要求根据所提供的元器件设计并制作一个小功率的反击式开关电源。 电源输入电压:220V 电源输出电压电流:12V/1.5A 电路板:万用板手焊。 三、课程设计原理 1、引言 电力电子技术有三大应用领域:电力传动、电力系统和电源。在各种用电设备中,电源是核心部件之一,其性能影响着整台设备的性能。电源可以分为线性电源和开关电源两大类。 线性电源是把直流电压变换为低于输入的直流电压,其工作原理是在输入与输出之间串联一个可变电阻(功率晶体管),让功率晶体管工作在线性模式,用线性器件控制其“阻值”的大小,实现稳定的输出,电路简单,但效率低。通常用于低于10W的电路中。通常使用的7805、7815等就属于线性电源。 开关电源是让功率晶体管工作在导通和关断状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小),所以开关电源具有能耗小、效率高、稳压范围宽、体积小、重量轻等突出优点,在通讯设备、仪器仪表、数码影音、家用电器等电子产品中得到了广泛的应用。反激式功率变换器是开关电源中的一种,是一种应用非常广泛的开关电源。 2、基本反激变换器工作原理 基本反激变换器如图1所示。假设变压器和其他元件均为理想元器件,稳态工作下。

反激电路建模

基于TOPSwitChⅡ的单端反激开关电源的建模及动 态分析 O 引言 开关电源以其小型、轻量和高效率的特点,而被广泛地应用于以电子汁算机为主导的各种终端设备、通信设备中,是当今电子信息产业飞速发展不可缺少的一环,而开关电源性能的优劣也将直接关系到整个系统的安全性与可靠性。开关稳压电源有多种类型,其中单端反激式开关电源,由于线路简单,所需要的元器件少,而受到重视。为使开关电源具有更好的动态稳定性,本文首先将开关电源从功能和结构上分成3个部分,求出各部分的内部参数,及相互之间的关系,然后运用动态小信号平均模型的基本原理求得各部份的传递函数,最后对3个部分传递函数组成的一个整体闭环系统进行分析,以求达到最佳的控制效果。 1 系统模型的建立 图1为单端反激式开关电源控制系统的结构图,由3个重要部分组成,即调节器、开关器件和高额变压器。其中凋节器为TL431,由美国德州仪器公司(TI)和摩托罗拉公司生产;开关器件为TOP227,由Power Integrations(简称PI)公司于1994年推出的TOPswitchⅡ系列芯片。电路的工作原理是:输出电压的取样(取样系数为α)反馈给调节器的一个输入端与另一输入端的给定信号Ug(TL431内部的电源提供,其大小为2.5V)进行比较,输出为电流Ic;Ic控制开关器件的占空比;高频变压器和输出整流滤波组成的一个整体,把原边的能量转换到副边输出。各种因素的变化最终导致电源的输出量发生变化,通过调节器使得输出趋于稳定。

要对系统进行动态分析必须对每个环节建立明确的数学描述,即给出它们具体的传递函数。在建模的过程中,运用动态小信号平均模型的基本原理,分别对3部分模型进行推导。 1.1 调节器部分 调节器部分是以TL43l为主要器件构成的电路,在模型推导的过程中,结合电路的基本原理和元器件在实际模型中的功能将电路简化,最后对最简化的电路图进行建模。 图2为TL431及外围元器件构成的电路图(虚线框内为TL431的内部结构图),可以简化为图3。具体的简化步骤及原理如下:TI431内部电路中三极管的作用是使误差放大器的输出反相,所以图3中采用反向运放,等效替代TL431内部特性。二极管VO是为了防此K-A间电源极性接反而损坏芯片,起保护作用,建模时可忽略,而f-g导线本质上给芯片提供工作电压,建模时也可以忽略。由R1、R2和电源Ui组成的网络,由戴维南等效电路可汁算出Req和Ui′的值。

单管反激式直流变换器研究开题报告

华侨大学厦门工学院毕业设计(论文)开题报告 系:电气系专业班级:11级电气1班姓名 曾俊杰 学号 1102101042 指导 教师 王国玲 职称 学历 副教授 课题名称 单管反激式直流变换器研究 毕业设计(论文)类型(划√) 工程设计 应用研究 开发研究 基础研究 其他

√ 本课题的研究目的和意义: 目的:高效反激式开关电源以其电路抗干扰、高效、稳定性好、成本低廉等许多优点,特别适合小功率的电源以及各种电源适配器,具有较高的实用性。随着电力电子技术的发展,工作在高频的开关电源己经广泛应用于电气和电子设备的各个领域。开关电源设计的目的是通过能量处理将输入能量变化为所需要的能量输出,通常的形式是产生一个符合要求的输出电压,这个输出电压的值不能受输入电压或者负载电流的影响。 意义:在开关电源设计初期,采用的都是分立元件,集成度很低,大部分电路只能在PCB 版上实现,极大的限制了小型化实现的可能。而且大量器件暴露在外,也影响了系统的稳定性。近年来,为了实现更高的效率和更小的体积,开关电源的工作频率有了很大的提高。高工作频率能够减小外围电感和电容的大小,从而减少系统的体积。 文献综述(国内外研究情况及其发展): 随着电力电子技术的发展,开关电源的应用越来越广泛。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点。开关电源是通过开关管关断和导通实现电压和电流变换的装置,亦称无工频变压器的电源,利用体积很小的高频变压器来实现电压变化及电网隔离。开关电源具有体积小、重量轻、效率高、发热量低、性能稳定等优点,代表着当今稳压电源的发展方向,已成为稳压电源的主导产品。 随着集成电路的发展,开关电源逐渐向集成化方向发展,趋于小型化和模块化。反激变压器的设计是一个难点,其往往导致电源设计周期延长。随着PI公司生产的以TOPSwitch为代表的新一代单片开关电源的问世,以上诸多问题都得到了很好的解决。应用TOPSwitch-HX 设计开关电源,不仅器件更少,结构更简单,发热量更少,工作更可靠,采用该系列芯片已成为一种高效的反激式开关电源设计方案。1977年国外首先研制成脉宽调制(PWM)控制器集成电路,美国Motorola公司、Silicon General公司、Unitrode公司等相继推出一系列PWM芯片。近些年来,国外研制出开关频率达1MHz的高速PWM、PFM芯片。第二个方向是实现中、小功率开关电源单片集成化。1994年,美国电源集成公司(Power Integrations)在世界上率先研制成功三端隔离式PWM型单片开关电源,其属于AC/DC电源变换器。之后相继推出TOPSwitch、TOPSwitch-II、TOPSwitch-Fx、TOPSwitch-GX、PeakSwitch、LinkSwitch等系列产品。意-法半导体公司最近也开发出VIPer100、VIPer100A、VIPer100B等中、小功率单片电源系列产品,并得到广泛应用。 本课题的主要研究内容(提纲)和成果形式: 1.复习、自学模拟电子技术、电力电子技术、自动控制理论、电路的仿真等方面有关书籍,理解掌握电路仿真软件的使用,如Pspice、Saber等。 2.重点学习Buck-Boost型功率变换器与反激式功率变换器的基本原理、功率电路与控制电路的设计方法与实现,控制电路的稳定性设计等。

反激变压器绕制详解

反激式开关电源变压器的设计(小生我的办法,见笑) 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。 算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。 第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定了 电源的占空比。可能朋友们不理解什么是原边感应电压,是这样的,这要从下面看起,慢慢的来, 这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(*80+90)=0.47 第二步,确实原边电流波形的参数. 原边电流波形有三个参数,平均电流,有效值电流,峰值电流.,首先要知道原边电流的波形,原边电流的波形如下图所示,画的不好,但不要笑啊.这是一个梯形波横向表示时间,纵向表示电流大小,这个波形有三个值,一是平均值,二是有效值,三是其峰值,平均值就是把这个波形的面积再除以其时间.如下面那一条横线所示,首先要确定这个值,这个值是这样算的,电流平均值=输出功率/效率*VS,因为输出功率乘以效率就是输入功率,然后输入功率再除以

反激变换器建模Matlab仿真

前言 本文主要论述的是如何对理想的CCM模式下的反激式变换器进行闭环补偿设计,并观察验证补偿结果。主要分两部分进行论述,一部分是利用小信号建模法建模并计算出相应的传递函数,并由反激变换器的CCM的工作条件算出一组参数。第二部分是通过matlab对其开环特性的分析,选择合适的补偿方法,并通过simulink进行仿真观察验证。 1 反击变换器的现状 反激式(Flyback)变压器,或称转换器、变换器。因其输出端在原边绕组断开电源时获得能量故而得名。 反激式变压器的优点有: 1.电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2.转换效率高,损失小. 3.变压器匝数比值较小. 4.输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现 交流输入在 85~265V间.无需切换而达到稳定输出的要求. 反激式变压器的缺点有: 1.输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限 制,通常应用于150W以下. 2.转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致 磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3.变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器 在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 由于两种模式的仿真较复杂,本文只对CCM模式下的反激变换器进行仿真和讨论。

2 CCM 模式下反激式变换器的工作原理和传递函数的计算 CCM 模式是指,反激式变换器中的变压器在一个周期结束时仍有部分的存储能量。而这也是CCM 模式下讨论其工作原理和计算传递函数的基础。 CCM 模式下,反激式变换器有两个工作状态,一个是开关Q 导通,另一个是开关Q 断开,如图2.1所示。 V(t) V g D 开关Q 断开V g D 开关Q 导通 图2.1 CCM 模式下反击变换器的两个工作状态 当开关Q 断开时有方程组: ???????+=+-=+=])(,[),()(])(,[,)()(])(,[),()(s s s T L g T c T g L t d t t t i t i t d t t R t v t i t d t t t v t v 当开关Q 导通时有方程组: ?????????++=++-=++-=],)([,0)(],)([,)()()(],)([,)()(s s g s s L c s s L T t T t d t t i T t T t d t R t v n t i t i T t T t d t n t v t v 在周期平均法的基础上,通过在变换器静态工作点附近引入低频小信号扰动,

反激变换器小信号模型Gvd(s)推导__1210

一、反激变换器小信号模型的推导 1.1 DCM 1.1.1 DCM buck-boost 小信号模型的推导 根据状态空间平均法推导DCM buck-boost 变换器小信号模型如下: +-v in (t)v o (t)一般开关网络 图1 1理想Buck-Boost 变换器开关网络 1231d d d ++= (1) 首先,定义开关网络的端口变量1122,,,v i v i ,建立开关周期平均值 1 1 2 2 ,,,s s s s T T T T v i v i 之间的关系: 11()s g T g pk s s v t v i d T d T L L <>= = (2) 根据工作模态:113()()()0s s s L T g T T v t d v t d v t d <>=<>+<>+ (3) []1 1 ()()()s s s t T t T L T L s t t s s s di L v t v d L d i t T i t T T d T τττ++<>= = =+-? ? (4) DCM 下,()()0s i t T i t +==,所以()0s L T v t <>=,结合(3)式: 11()()0s s g T T d v t d v t <>+<>= (5) 21()(t)=-(t)()s s g T T v t d d v t <><> (6) 根据工作模态:1123()()0()(()())()()s s s s T g T T g T v t d t d t v t v t d t v t <>=+<>-<>+<>(7) 消去上式的2d 和3d 得:1()()s s T g T v t v t <>=<> (8) 根据工作模态:2123()()(()())()0(()) s s s s T g T T g T v t d t v t v t d t d v t <>=<>-<>++-<>

反激式变换器(Flyback Converter)的工作原理

反激式变换器(Flyback Converter)的工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 二.反激式变换器(Flyback Converter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b).

当Q1导通,T1之初级线圈渐渐地会有初级电流流过,能量就会储存在其中.由于变压器初级与次级侧之线圈极性是相反的,因此二极管D1不会导通,输出功率则由Co来提供.此时变压器相当于一个串联电感Lp,初级线圈电流Ip可以表示为: Vdc=Lp*dip/dt 此时变压器磁芯之磁通密度会从剩磁Br增加到工作峰值Bw. 3.当Q1截止时, 其等效电路如图三(a)及在截止时次级电流波形,磁化曲线如图三(b).

当Q1截止时,变压器之安匝数(Ampere-Turns NI)不会改变,因为?B并没有相对的改变.当?B向负的方向改变时(即从Bw降低到Br),在变压器所有线圈之电压极性将会反转,并使D1导通,也就是说储存在变压器中的能量会经D1,传递到Co和负载上. 此时次级线圈两端电压为:Vs(t)=Vo+Vf (Vf为二极管D1的压降). 次级线圈电流: Lp=(Np/Ns)2*Ls (Ls为次级线圈电感量) 由于变压器能量没有完全转移,在下一次导通时,还有能量储存在变压器中,次级电流并没有降低到0值,因此称为连续电流模式或不完全能量传递模式(CCM). 三.CCM模式下反激变压器设计的步骤 1. 确定电源规格. 1. .输入电压范围Vin=85—265Vac; 2. .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; 3. .变压器的效率?=0.90

反激式变换器环路分析与建模

广州周立功单片机发展有限公司 反激式变换器环路分析与建模 安森美半导体应用系列

修订历史

目录 第1章反激式变换器环路分析与建模 (1) 1.1 概述 (1) 1.2 基础概念 (1) 1.2.1 与环路分析相关的几个概念 (1) 1.2.2 性能优良的开关电源的设计目标 (3) 1.3 传递函数的建立 (4) 1.3.1 补偿网络传函(Hs) (4) 1.3.2 功率级传函(Gs) (6) 1.4 Matlab分析 (7) 1.5 总结 (9)

第1章反激式变换器环路分析与建模 1.1 概述 在反激式开关电源的设计中,对于缺乏设计经验的工程人员,闭环回路相关参数的调试将会耗去大量的时间和精力。最让开发人员困惑的是,当自己设计的开关电源表现不佳(比如噪声过大、空载震荡、开机过冲太大等)时,不知道该调整电路中的哪些参数来得到想要的性能。 众所周知,开关电源是一个典型的闭环控制系统,而且是一个高度非线性时变系统。一般而言,涉及到非线性的系统需要通过现代控制理论的方法去研究,不过,基于矩阵变换的现代控制理论虽然模型精确但建模极为复杂,这一点令开关电源的开发人员望而却步。在实际工程应用中,非线性系统可以近似线性化处理(相关理论可参考胡寿松版《自动控制原理》第二章内容),从而在保证合理性的情况下,降低研究问题的难度。因此,采用基于传递函数经典控制理论被广泛应用于实际工程分析中,当然,本文讨论的反激式变换器的建模问题,果断地采用了这种方法。 本文尝试对应用比较广泛的反激式变换器进行建模分析,包括功率级和补偿网络两部分,并在Matlab环境下编写m文件,利用Bode图分析其开环传递函数的幅频特性曲线和相频特性曲线,以及动态响应特性。在此基础上,采用了许庆柱工程师设计的NCP1200反激式模块(工作在CCM模式)和我本人调试的NCP1015电源模块(工作在DCM模式)对建立的模型的合理性进行了验证,证明可行。 值得一提的是,利用经典控制理论建立的模型是一个理想的线性模型,不可能精确的描述开关电源系统的精确模型。然而,对开关电源的环路进行分析的目的,不是为了获得其在数学上的精准描述,而是为了研究影响环路特性的关键参数改变时,会对系统造成什么样的影响,如本文开头描述的那样,从而可以知道调整哪些参数可以得到想要的性能。调电路固然重要,但调电路的方向更重要。 1.2 基础概念 1.2.1 与环路分析相关的几个概念 在开始本文的介绍之前,有几个概念性的东西需要理解。 1. 反激式开关电源的系统框图: 在这里,以峰值电流模式电源管理芯片NCP1015应用为例(其它大同小异),将反激式变换器的功能模块进行一个划分,以方便下文的数学建模。 我们将峰值电流模式控制的反激式变换器系统分为两大块,如图1.1所示,蓝色线框部分从芯片的FB脚到变换器的输出,其中内部包含有一个电流环,这一部分称为功率级;红色线框部分从输出经TL431到光耦输出,这部分称为反馈补偿网络。 抽象出来它的数学模型,我们可以将反激式变换器的框图绘制出来,如图 1.2所示。

反激变换器报告

摘要 反激式转换器的结构较为简单。其核心部件包括开关,变压器,二极管和电容。开关由脉冲宽度调制(PWM)控制,通过闭合与导通在变压器两端产生高频方波信号。变压器将产生的方波信号以磁场感应的方式传递到次级线圈。通过二极管和电容的滤波整流作用,在输出端得到稳定的直流输出。反激式转换器的工作分为两个阶段,开关闭合和开关断开阶段。 在开关闭合阶段,变压器的初级线圈直接连接在输入电压上。初级线圈中的电流和变压器磁芯中的磁场增加,在磁芯中储存能量。在次级线圈中产生的电压是反向的,使得二极管处于反偏状态而不能导通。此时,由电容向负载提供电压和电流。在开关断开阶段,初级线圈中的电流为0。同时磁芯中的磁场开始下降,在次级线圈上感应出正向电压。此时二极管处于正偏状态,导通的电流流入电容和负载。磁芯中存储的能量转移至电容和负载中。 反激式电路具有诸多优点,比如拓扑结构简单、输入输出电气隔离、元件数量少、可靠性高等,因此在开关电源领域得到了广泛的应用。但是单纯的反激式电路由于变压器漏感的存在,在主开关关断时,漏感能量通过开关管寄生电容释放,形成LC 振荡,导致开关管两端电压VDS 出现尖峰,电压应力高,开关管损耗增加,整体的效率降低。通常的解决方案是在反激式电路中加入箝位回路,以使得变压器漏感的能量有一个释放通路。其中,有源箝位方案克服了无源箝位的缺点,漏感能量可以通过箝位支路,最终传递给负载,加以利用。同时通过控制死区时间以及合理选择元件,可以实现开关管的零电压开通,降低开关管损耗和EMI。但这种方案增加有源器件,电路的控制更加复杂。此外,也存在轻载及空载时电路循环能量大,效率较低的问题。 关键词:电源,反激式变换器,电路控制,PI控制

反激式变换器设计的文献综

反激式变换器设计的文献综述 摘要:随着社会的不断发展人们对变开关电源的要求越来越高,市场的竞争也越来越激烈。其中反激式变换器因为有效的提高了开关电源的效率,元器件相对较少,成本较低,结构简单应用范围广等特点越来越受到人们的青睐。本文主要通过对反激式变换器原理的研究,以及结合SABER软件进行反真,设计出一个符合要求的反激式变换器。 关键词:反激式变换器,电流连续工作模式,电流断续工作模式,伏秒平衡 研究背景及目的:随着社会的进步和经济的不断的发展,科学技术的不断进步,特别是在20世纪60年代电力电子学的出现,更完善了电气工程的完整性。各种电力电子装置广泛的应用于高压电流输电,静止无功补偿,电力机车牵引,交直流电力传动,电解,励磁,电加热,高性能交直流电源中。因此,世界各国,都无不看中电力电子学对电气工程的作用。在我国电气工程作为一个一级学科,它包含了两个五个二级学科,即电力系统及其自动化,电机与电器,高电压与绝缘技术,电力电子与电力传动,电工理论与新技术。在这五个学科电力电子学都处于十分特殊的地位。 反激式变换器因为是开关电源的重要组成部分,开关电源的效率直接影响各电器的工作,是衡量电器好坏的重要指标。开关电源的设计若不达标,将会浪费大量的资源,因此设计一个效率高的开关电源尤其重要。反激式转换器又称单端反激式或:‘Buck-Boost’转换器,因其输出端在原边绕组关断时获得能量故而得名。在反激变换器拓扑中,开关管导通时,变压器储存能量,负载电流由输出滤波电容提供;开关管关断时,变压器将储存的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量,其因电路简单,转换效率高损失小,变压器匝数比值小等优点【1】,极大的提高了开关电源的效率,所以反激式变换器日益成为国内外开关电源研究的热点。

反激式连续模式变换器设计

连续电流模式反激变压器的设计 DesignofFlybackTransformerwith ContinuingCurrentModel 作者:深圳市核达中远通电源技术有限公司-万必明 摘要:本文首先介绍了反激变换器(FlybackConverter)的工作原理,然后重点介绍一种连续电流模式反激变压器的设计方法以及多路输出各次级电流有效值的计算. 关键词:连续电流模式(不完全能量传递方式)、不连续电流模式(完全能量传递方式)、有效值、峰值. Keywords:ContinuingCurrentModel、DiscontinuingCurrentModel、virtualvalue、peakvalue. 一.序言 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中,反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM)反激变压器的设计.

二.反激式变换器(FlybackConverter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b). Vdc 图一 图二(a)

反激变换器设计.

研究生专业课程考试答题册 学号 2011261695 姓 名 李纪波 考试课程高级电力电子线路设计考试日期 2012-9-1 要求: 直流隔离电源变换器设计 一、目的 1.熟悉逆变电路和整流电路工作原理,探究PID 闭环调压系统设计方法。 2.熟悉专用PWM 控制芯片工作原理及探究由运放构成的PID 闭环控制电路调节规律,并分析系统稳定性。 3.探究POWER MOSFET 驱动电路的特性并进行设计和优化。 4.探究隔离电源的特点,及隔离变压器的特性。二、内容 设计基于脉冲变压器的DC-AC-DC 变换器,指标参数如下:? 输入电压:24V~36V;? 输出电压:12V ,纹波<1%;? 输出功率:50W ? 开关频率: 20kHz

?具有过流、短路保护和过压保护功能,并设计报警电路。? 具有隔离功能。 ?进行变换电路的设计、仿真(选择项)与电路调试。 第一章绪论 隔离式变换器是由标准的DC-DC 变化器拓扑衍生而来的。如广泛应用于小功率(典型值小于100W )场合的反激变换器拓扑。其实是用多绕组电感代替才常用的单绕组电感的buck-boost 电路。类似地,广泛用于中大功率场合的正激变换器,是buck 的衍生拓扑,其中用变压器代替常用电感(扼流圈)。反激变换器电感其实既起电感也起变压器的作用,它不仅能像所有电感一样存储电磁能量,而且能像变压器一样提供电网隔离(安全需要)。而在正激变换器中,能量存储功能通过扼流圈来实现,变压器提供必要的电网隔离。 注意到在正激和反激变换器中,变压器除了提供必要的电网隔离外,还起到另外一个非常重要的作用,即由变压器“匝比”决定的恒比降压转换功能。匝比由输出(二次)绕组匝数除以输入(一次)绕组匝数得到。于是问题就产生了,理论上,开关变换器可以任意地进行升压或降压变换,为什么我们觉得有必要基于变压器匝比进行降压转换?只要进行简单的计算原因就显而易见——不需要任何辅助设施,只需一个极小的不现实的占空比值,变换器就可以变成一个从极高压输入到极低压输出的降压器。注意到世界上有些地方,最高的电流电网输入可以高达270V (最坏情况下),所以这样的电流电压用传统桥式整流电路整流时, 270382V =的直流电压加在其后的开关变换器电路上,但是相应的输出电压可能却很低(5V 、3.3V 、1.8V 等)。于是对于已给定最小导通时间的各种典型变换器,特别是当开关器件工作在高频时,所需的电流转换比很难达到要求。所以,在正激和反激变换器中,我们可以直观地认识变压器就是把输入定比近似地降为一个较小的合适值,而变换器则完成其余的工作(包括调节功能)。

反激式微型逆变器建模方法

反激式微型逆变器建模方法 冯夏云1,2,吴春华1,2,3,汪 飞1,2 (1.上海大学机电工程与自动化学院,上海市200072;2.上海市电站自动化技术重点实验室,上海市200072; 3.上海岩心电子科技有限公司,上海市200072) 摘要:研究了反激式微型逆变器数学建模问题。针对现有建模方法中采用电阻等效代替电动势负 载的做法导致模型不精确,以及无法得到诺顿等效模型的问题,提出了一种基于小信号分析的改进建模方法,利用该方法建立了反激式微型逆变器系统结构框图,得到了系统准确的诺顿等效模型。最后,分别进行了理论分析和仿真验证,并设计了250W样机进行了实验验证。关键词:反激逆变器;微型逆变器;小信号分析;诺顿等效模型 收稿日期:2015‐10‐22;修回日期:2016‐02‐18。上网日期:2016‐05‐30。 国家自然科学基金资助项目(51107078)。 0 引言 随着能源和环境问题日益突出,以分布式光伏发电为代表的新能源技术应用日益广泛。并网逆变器作为光伏发电系统的关键部件受到了越来越多的关注。20世纪70年代,美国加州理工学院喷气推进实验室(Caltech’sJetPropulsionLaboratory)提 出了微型逆变器的概念[1] ,设想为每块光伏组件安装一个微型逆变器,以实现光伏组件的独立并网发电。相比传统的组串式逆变器,微型逆变器在成本上不具备优势,但可以很好地解决传统组串式逆变器并网时光伏组件参数差异或组件局部阴影导致的 功率损失等问题[1‐3] 。 在微型逆变器研究中,为实现高效率、高功率密度电能变换及大范围升压比等目标,文献[4‐5]提出了基于反激变换器的微型逆变器拓扑,即反激逆变器。反激逆变器存在3种工作模式:断续电流模式(DCM)、临界电流连续模式(BCM)和连续电流模式(CCM)。其中DCM因功率密度低和效率低而很少 被采用[5] ;BCM控制复杂,其峰值电流较大,因此对开关器件电压应力要求较高[6];CCM峰值电流较小,具有较高的效率,但是CCM存在右半平面零 点,对比例—积分(PI)控制设计提出了要求[7] 。本文选择研究CCM下的反激逆变器,深入研究其建模方法。 近年来,文献[8‐14]研究了CCM下的并网型反激逆变器补偿控制器设计,但建模时负载采用等效 电阻。该类方法主要用于设计系统的PI控制器,但是因缺乏考虑电网电动势负载而无法复现系统固有谐振点。文献[15]的反激逆变器建模,主要利用时域表达式对开关周期下变压器的原、副边电流进行平均化建模,虽然考虑了电网电动势负载,但是该种方法主要用于BCM,无法应用于CCM。文献[16]虽然研究了CCM的反激逆变器,并在建模过程中考虑了电动势负载的特殊性,提出了一种基于变压器原边电流的优化控制方法,用以改善并网电能质量,但缺乏考虑系统外特性或阻抗特性。根据电路原理,电流源并网逆变器模型应当采用诺顿等效模型表示,设计优良的电流源除了有稳定的控制输出外,其闭环输出阻抗也应越大越好。近年来,基于输出阻抗的分析方法被较多地应用于组串式光伏并网逆变器外特性研究,以及多逆变器并联与电网谐波 交互的研究上[17‐19] 。然而现有文献缺乏对反激逆变器闭环输出阻抗研究的报道,不利于进一步指导优化设计方案和分析多微型逆变器与电网谐波交互问题。总之,现有文献主要应用于确定反激逆变器的PI控制器参数,没有从整体上考虑反激逆变器的内部结构,因而无法得到系统精确的数学模型,也不利于揭示系统外特性。 基于此,本文在考虑以电网电动势为负载的前提下,利用状态平均法构建系统结构框图,得到了反激逆变器精确的诺顿等效模型,方便地确定了系统闭环输出阻抗。然后,采用MATLAB和PSIM仿真平台分别对反激逆变器进行了理论分析和仿真验证。最后,本文设计了250W样机来验证本文提出方法的正确性。 0 01第40卷 第14期 2016年7月25日 Vol.40No.14July25,2016 DOI:10.7500/AEPS20151022007

相关文档
最新文档