高中物理必备知识点 波粒二象性

高中物理必备知识点 波粒二象性
高中物理必备知识点 波粒二象性

第十六章波粒二象性

一、光电效应

1.定义:在光的照射下从物体发射出电子的现象(发射出的电子称为光电子).

2.产生条件:入射光的频率大于极限频率.

3.光电效应规律

(1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应.

(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大.

(3)光电效应的发生几乎是瞬时的,一般不超过10-9 s.

(4)当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比.

二、光电效应方程

1.基本物理量

(1)光子的能量:ε=hν其中h=6.63×10-34 J·s(称为普朗克常量).

(2)逸出功:使电子脱离某种金属所做功的最小值.

(3)最大初动能

发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有动能的最大值.

2.光电效应方程

爱因斯坦光电效应方程是根据能量守恒定律推导出来的.描述的是光电子的最大初动能

E k跟入射光子的能量hν和逸出功W之间的关系:E k=hν-W

三、波粒二象性、物质波

1.光的波粒二象性

(1)光电效应说明光具有粒子性,同时光还具有波动性,即光具有波粒二象性.

(2)大量光子运动的规律表现出光的波动性,单个光子的运动表现出光的粒子性.

(3)光的波长越长,波动性越明显,越容易看到光的干涉和衍射现象.光波的频率越高,粒子性越明显,穿透本领越强.

2.物质波

任何一个运动的物体,小到微观粒子,大到宏观物体,都有一种波与它相对应,

其波长等于

h

mv,也称为德布罗意波、物质波。

特别提示:物质波既不是机械波,也不是电磁波,物质波乃是一种概率波.

四、正确理解光电效应规律中的两个关系

1.光电子的最大初动能与入射光频率的关系

光电子的最大初动能E k,随入射光频率ν的增大而增大;由爱因斯坦光电效应方程知:E k=h

ν-W.

对于某一金属而言,逸出功W是一定值,普朗克常量h是一常数,故从上式可以看出,最大初动能E k与入射光频率ν成一次函数关系,但不是成正比的,函数图象如图15-1-1.

当光照射到金属表面上时,能量为E的光子被电子所

吸收,电子把这个能量的一部分用来克服金属表面对它的

吸引,剩余部分就是电子离开金属表面时的初动能.

(1)由爱因斯坦的光电效应方程可知,只有当光子的能量h

ν≥W时才会有光电效应

讲解:极限频率~~

金属的逸出功不同,因此不同金属对应的极限频率也不

图15-1-1

同.

(2)电子吸收光子后能量立即增大hν,不需要能量的积累过程.因此光电效应的发射几乎是瞬时的.

(3)电子每次只吸收一个光子,从能量守恒可知,光电子的最大初动能E k=hν-W,且E k随频率的增大而增大,与光的强度无关.

2.光电流的大小跟入射光强度成正比

光电流的大小是由单位时间内从金属表面逸出的光电子数目决定的,而从金属表面逸出的光电子数目由入射光子的数目决定,而与光子的频率无关.

[例题1].对光电效应的解释正确的是( )

A.金属钠的每个电子可以吸收一个或一个以上的光子,当它积累的动能足够大时,就能逸出金属

B.如果入射光子的能量小于金属表面的电子克服原子核的引力而逸出时所需做的最小功,便不能发生光电效应

C.发生光电效应时,入射光越强,光子的能量就越大,光电子的最大初动能就越大

D.由于不同金属的逸出功是不相同的,因此使不同金属产生光电效应入射光的最低频率也不同

解析:选BD.按照爱因斯坦的光子说,光的能量是由光的频率决定的,与光强无关,入射光的频率越大,发生光电效应时产生的光电子的最大初动能越大.但要使电子离开金属须使电子具有足够的动能,而电子增加的动能只能来源于照射光的光子能量,但电子只能吸收一个光子,不能吸收多个光子.电子从金属逸出时只有从金属表面向外逃出的电子克服原子核的引力所做的功最小.

五、波动性与粒子性的比较(略)

[例题2].关于物质的波粒二象性,下列说法中不正确的是( )

A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性

B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道

C.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的D.实物的运动有特定的轨道,所以实物不具有波粒二象性

解析:选D.光具有波粒二象性是微观世界具有的特殊规律,大量光子运动的规律表现出光的波动性,而单个光子的运动表现出光的粒子性.光的波长越长,波动性越明显,光的频率越高,粒子性越明显.而宏观物体的德布罗意波的波长太小,实际很难观察到波动性,但不是不具有波粒二象性.D项合题意.

六、感知高考

(2008年高考江苏卷)下列实验中,深入地揭示了光的粒子性一面的有________.

A.X射线被石墨散射后部分波长增大

B.锌板被紫外线照射时有电子逸出但被可见光照射时没有电子逸出

C.轰击金箔的α粒子中有少数运动方向发生较大偏转

D.氢原子发射的光经三棱镜分光后,呈现线状光谱

【解析】X射线被石墨散射后部分波长增大(康普顿效应),说明光子具有粒子性,故选项A 对;对于任何一种金属都存在一个“极限频率”,入射光的频率必须大于这个频率,才能产生光电效应,故选项B对;选项C说明原子的核式结构;选项D说明氢原子的能量是不连续的.

【答案】AB

[例题3]如图15-1-2所示,当电键S断开时,用光子能量为2.5 eV的一束光照射阴极P,发现电流表读数不为零.合上电键,调节滑动变阻器,发现当电压表读数小于0.60 V时,电流表读数仍不为零;当电压表读数大于或等于0.60 V时,电流表读数为零.

(1)求此时光电子的最大初动能的大小;

(2)求该阴极材料的逸出功.

【解析】设用光子能量为2.5 eV的光照射时,光电子的最大初动能为E k,阴极材料逸出功为W0,

当反向电压达到U=0.60 V以后,具有最大初动能的光电子也达不到阳极,因此eU=E k

由光电效应方程有:E k=hν-W0

由以上二式代入数据解得:E k=0.6 eV,W0=1.9 eV.

所以此时最大初动能为0.6 eV,该材料的逸出功为1.9 eV.

【答案】(1)0.6 eV (2)1.9 eV

课时训练

1.人类对光的本性认识经历了曲折的过程.下列关于光的本性的陈述正确的是( ) A.牛顿的“微粒说”与爱因斯坦的“光子说”本质上都是一样的

B.任何一个运动着的物体,都具有波动性

C.麦克斯韦预言了光是一种电磁波

D.光波是概率波

答案:BCD

2.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开一个角度,如图15-1-5所示,这时( )

A.锌板带正电,指针带负电

B.锌板带正电,指针带正电

C.锌板带负电,指针带正电

D.锌板带负电,指针带负电

解析:选B.

验电器的指针张开一个角度说明锌板带电,锌板在弧光灯照射下发生光电效应失去电子而带正电,验电器也带正电.

3.某单色光照射某金属时不能产生光电效应,则下述措施中可能使金属产生光电效应的是( )

A.延长光照时间B.增大光的强度

C.换用波长较短的光照射 D.换用频率较低的光照射

解析:选C.

对某种金属能否发生光电效应取决于入射光的频率,与入射光的强度和照射时间无关,所以选项A、B错误.没有发生光电效应,说明入射光的频率小于极限频率,所以要使金属发生光电效应,应增大入射光的频率,减小波长,所以选项C正确,D错误.

4. 物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减弱光流的强度,使光子只能一个一个地通过狭缝,实验结果表明,如果曝光时间不太长,底片上只出现一些不规则的点子;如果曝光时间足够长,底片上就会出现规则的干涉条纹,对这个实验结果有下列认识,正确的是( )

A .曝光时间不长时,出现不规则的点子,表现出光的波动性

B .单个光子通过双缝后的落点无法预测

C .干涉条纹中明亮的部分是光子到达机会较多的地方

D .只有大量光子的行为才能表现出光的粒子性

解析:选BC.

由于光波是一种概率波,故B 、C 正确.A 中的现象说明了光的粒子性;个别光子的行为才通常表现出粒子性,故A 、D 错误.

5. 光电效应的实验结论是:对于某种金属( )

A .无论光强多强,只要光的频率小于极限频率就不能产生光电效应

B .无论光的频率多低,只要光照时间足够长就能产生光电效应

C .超过极限频率的入射光强度越弱,所产生的光电子的最大初动能就越小

D .超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大

解析:选AD.

根据光电效应规律可知A 正确,B 、C 错误.根据光电效应方程2

1mv m 2=h ν-W ,频率ν越高,初动能就越大,D 正确.

6.A 和B 两种单色光均垂直照射到同一条直光纤的端面上,A 光穿过光纤的时间比B 光穿过的时间长,现用A 和B 两种光照射同种金属,都能发生光电效应,则下列说法正确的是

( )

A .光纤对

B 光的折射率大

B .A 光打出的光电子的最大初动能一定比B 光的大

C .A 光在单位时间内打出的电子数一定比B 光的多

D .B 光的波动性一定比A 光显著

解析:选BD.

穿过光纤的时间长的速度小,其折射率较大,频率也较大,波动性弱,粒子性强.所以B 、D 正确.

7.已知一束可见光a 是由m 、n 、p 三种单色光组成的.检测发现三种单色光中,n 、p 两种色光的频率都大于m 色光;n 色光能使某金属发生光电效应,而p 色光不能使该金属发生光电效应.那么,光束a 通过三棱镜的情况是下图中的( )

图15-1-6

解析:选A.

n 色光能使某金属发生光电效应,而p 色光不能使该金属发生光电效应,这说明n 色光的频率大于该金属的极限频率,p 色光频率小于该金属的极限频率,即n 色光的频率大于p 色光频率.三种色光的频率按m 、p 、n 的顺序逐渐增大.同一种介质对频率越大的单色光的折射率也越大,所以经棱镜后偏折角度也越大,选A.

8.如图15-1-7所示是某金属在光的照射下产生的光电子的最大初动能E k 与入射光频率ν的关系图象.由图象可知( )

A .该金属的逸出功等于E

B .该金属的逸出功等于h ν0

C .入射光的频率为2ν0时,产生的光电子的最大初动能为E

D .入射光的频率为ν0/2时,产生的光电子的最大初动能为

E /2

答案:ABC

9.分别用波长为λ和3λ/4的单色光照射同一金属板,发出光电子的最大初动能之比为1∶2,以h 表示普朗克常量,c 表示真空中的光速,则此金属板的逸出功为( )

解析:选B.

由E k1=h ν1-W ①

E k2=h ν2-W ②

10.波长为λ=0.17 μm 的紫外线照射至金属筒上能使其发射光电子,光电子在磁感应

强度为B 的匀强磁场中,做最大半径为r 的匀速圆周运动,已知r ·B =5.6×10-6 T·m,光

电子质量m =9.1×10-31 kg ,电荷量e =1.6×10-19 C ,求:

(1)光电子的最大动能;

(2)金属筒的逸出功.

解析:光电子做半径最大的匀速圆周运动时,它的动能即是最大动能.

代入数据得2

1mv 2≈4.41×10-19 J. (2)由爱因斯坦光电效应方程得

W =h ν-21mv 2=h c/λ-2

1mv 2代入数据得W ≈7.3×10-19 J. 答案:(1)4.41×10-19 J (2)7.3×10-19 J

11. 如图15-1-8所示,一伦琴射线管,K 为阴极可产生电子,

阴极K 与对阴极A 外加电压U AK =30 kV.设电子离开K 极时速度为零,

通过电压加速后而以极大的速度撞到对阴极A 上而产生X 射线,假定

电子的全部动能转为X 射线的能量.求:

(1)电子到达A 极时的速度是多大?

(2)从A 极发出的X 射线的最短波长是多少?

(3)若电路中的毫安表的示数为10 mA ,则每秒从A 极最多能辐射出多少个X 光子?

(已知电子的质量m e =9.1×10-31 kg ,电子的电荷量e =1.6×10-19 C ,普朗克常量h =

6.6×10-34 J·s)

解析:电子在电场力作用下的末速度可以由动能定理求出.电子的动能若全部转变成X 射线光子的能量,可根据光子说E =h ν,求出X 光子的频率和波长.每个光子的能量都是由

冲向A 极的电子来提供的,即可根据电流值求出每秒到达A 板的电子数,可推知每秒由A 极发射的X 射线的光子数.

(1)设电子被加速后的动能为E k ,由动能定理知,E k =eU AK =30000 eV =4.8×10-15 J.

由于E k =2

1m e v 2,所以

答案:(1)1.0×108 m/s (2)4.1×10

-11 m (3)6.25×1016个

波粒二象性知识点教学教材

波粒二象性知识点总结 一:黑体与黑体辐射 1.热辐射 (1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。 (2)特点:热辐射强度按波长的分布情况随物体的温度而有所不同。 2.黑体 (1)定义:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波。如果一些物体能够完全吸收投射到其表面的各种波长的电磁波而不发生反射,这种物 体就是绝对黑体,简称黑体。 (2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑 体的温度有关。 注意:一般物体的热辐射除与温度有关外,还与材料的种类及 表面状况有关。 二:黑体辐射的实验规律 如图所示,随着温度的升高,一方面,各种波长的辐射强度都 有增加;另—方面,辐射强度的极大值向波长较短的方向移动。 三:能量子 1.能量子:带电微粒辐射或吸收能量时,只能是辐射或吸收某 个最小能量值的整数倍,这个不可再分的最小能量值E叫做能量子。 2.大小:E=hν。 其中ν是电磁波的频率,h称为普朗克常量,h=6.626x10—34J·s(—般h=6.63x10—34J·s)。四:拓展: 1、对热辐射的理解 (1).在任何温度下,任何物体都会发射电磁波,并且其辐射强度按波长的分布情况随物体的温度而有所不同,这是热辐射的一种特性。 在室温下,大多数物体辐射不可见的红外光;但当物体被加热到5000C左右时,开始发出暗红色的可见光。随着温度的不断上升,辉光逐渐亮起来,而且波长较短的辐射越来越 多,大约在1 5000C时变成明亮的白炽光。这说明同一物体在一定温度下所辐射的能量在不同光谱区域的分布是不均匀的,而且温度越高光谱中与能量最大的辐射相对应的频率也越高。(2).在一定温度下,不同物体所辐射的光谱成分有显著的不同。例如,将钢加热到约800℃时,就可观察到明亮的红色光,但在同一温度下,熔化的水晶却不辐射可见光。 (3)热辐射不需要高温,任何温度下物体都会发出一定的热辐射,只是温度低时辐射弱,温度高时辐射强。2、2.什么样的物体可以看做黑体 (1).黑体是一个理想化的物理模型。 (2).如图所示,如果在一个空腔壁上开—个很小的孔,那么射人 小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔 射出。这个空腔近似看成一个绝对黑体。 注意:黑体看上去不一定是黑色的,有些可看做黑体的物体由于 自身有较强的辐射,看起来还会很明亮。如炼钢炉口上的小孔。 3、普朗克能量量子化假说 (1).如图所示,假设与实验结果“令人满意地相符”, 图中小圆点表示实验值,曲线是根据普朗克公式作出的。 (2).能量子假说的意义 普朗克的能量子假说,使人类对微观世界的本质有了全 新的认识,对现代物理学的发展产生了革命性的影响。普朗 克常量h是自然界最基本的常量之一,它体现了微观世界的

高考物理电磁场和电磁波知识点

高考物理电磁场和电磁波知识点 人类自古以来就生活在磁场、电场、电磁波之中。地球有磁场、大气层中有雷电、太阳和其它一些星球也有磁场,有的星球还发出电磁波。这些天然的电磁场、电磁波对人体危害不大,人们早就习以为常,甚至还产生了某些依存性。以下是小编为大家精心准备的:高考物理电磁场和电磁波知识点总结,欢迎参考阅读! 高考物理电磁场和电磁波知识点如下: 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。 (2)随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。 (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。 2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。(2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长和频率f的乘积,即v=f,任何频率的电磁波在真空中的传播速度都等于真空中

的光速c=3。00108m/s。 高考物理第二轮备考磁场重点知识点: 1.磁场 (1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。永磁体和电流都能在空间产生磁场。变化的电场也能产生磁场。 (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。 (3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用。 (4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。 (5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向。 2.磁感线 (1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。 (2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交。 (3)几种典型磁场的磁感线的分布: ①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。 ②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀

高中物理《机械波》知识梳理

《机械波》知识梳理 【波动形成和传播】 机械波:机械振动在介质中的传播过程叫机械波,机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。 横波和纵波: 质点的振动方向与波的传播方向垂直的叫横波。质点的振动方向与波的传播方向在同一直线上的叫纵波。气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波。 【波的图像】 横波的图象 用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质点偏离平衡位置的位移。 简谐波的图象是正弦曲线,也叫正弦波 简谐波的波形曲线与质点的振动图象都是正弦曲线,但他们的意义是不同的。波形曲线表示介质中的“各个质点”在“某一时刻”的位移,振动图象则表示介质中“某个质点”在“各个时刻”的位移。 【波长频率与波速】 波长:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。 频率f:波的频率由波源决定,在任何介质中频率保持不变。 波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。 【波的反射和折射】 惠更斯原理:介质中任一波面上的各点,都可以看作发射子波的波源,而后任意时刻,这些子波在波前进方向的包络面便是新的波面。 波的反射:波遇到障碍物会返回来继续传播 反射规律:入射线、法线、反射线在同一平面内,入射线与反射线分居法线两侧,反射角等于入射角。 波的折射:波从一种介质进入另一种介质时,波的传播方向发生了改变的现象叫做波的折射. 折射规律:折射定律:入射线、法线、折射线在同一平面内,入射线与折射线分居法线两侧.入射角的正弦跟折射角的正弦之比等于波在第一种介质中的速度跟波在第二种介质中的速度之比: 【波的衍射】 波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。 【波的干涉】 干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。 【多普勒效应】 多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。他是奥地利物理学家多普勒在1842年发现的。 多普勒效应的应用: ①现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。 ②根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。 1

高考物理最新近代物理知识点之波粒二象性真题汇编附答案解析(3)

高考物理最新近代物理知识点之波粒二象性真题汇编附答案解析(3) 一、选择题 1.氢原子能级关系如图,下列是有关氢原子跃迁的说法,正确的是 A.大量处于n=3能级的氢原子,跃迁时能辐射出2种频率的光子 B.用n=2能级跃迁到n=1能级辐射出的光子照射逸出功为4.54eV的金属钨能发生光电效应 C.用能量为10.3eV的光子照射,可使处于基态的氢原子跃迁到n=2能级 D.氢原子从n=3能级向基态跃迁时,辐射出的光子能量为1.51eV 2.如图所示为光电管的示意图,光照时两极间可产生的最大电压为0.5V。若光的波长约为6×10-7m,普朗克常量为h,光在真空中的传播速度为c,取hc=2×10-25J·m,电子的电荷量为1.6×10-19C,则下列判断正确的是 A.该光电管K极的逸出功大约为2.53×10-19J B.当光照强度增大时,极板间的电压会增大 C.当光照强度增大时,光电管的逸出功会减小 D.若改用频率更大、强度很弱的光照射时,两极板间的最大电压可能会减小 3.下表是按照密立根的方法进行光电效应实验时得到的某金属的遏止电压U c和入射光的频率ν的几组数据. U c/V0.5410.6370.7140.809 0.878 ν/1014Hz 5.644 5.888 6.098 6.303 6.501 由以上数据应用Execl描点连线,可得直线方程,如图所示.

则这种金属的截止频率约为 A .3.5× 1014Hz B .4.3× 1014Hz C .5.5× 1014Hz D .6.0× 1014Hz 4.如图为氢原子能级图,氢原子中的电子从n=5能级跃迁到n=2能级可产生a 光,从n=4能级跃迁到n=2能级可产生b 光,a 、b 光照射到逸出功为2. 29eV 的金属钠表面均可产生光电效应,则( ) A .a 光的频率小于b 光的频率 B .a 光的波长大于b 光的波长 C .a 光照射所产生的光电子最大初动能0.57k E eV = D .b 光照射所产生的光电子最大初动能0.34k E eV = 5.用一定频率的入射光照射锌板来研究光电效应,如图,则 A .任意光照射锌板都有光电子逸出

高中物理选修3-4知识点汇总(填空版)

高中物理选修3-4基础知识回顾(填空) 班级 姓名 第十一章 机械振动 一、简谐运动 1.概念:如果质点的位移与时间的关系遵从________函数的规律,即它的振动图象(x -t 图象)是一条________曲线,这样的振动叫简谐运动. 2.动力学表达式F =________. 运动学表达式x =A sin (ωt +φ). 3.描述简谐运动的物理量 (1)位移x :由____________指向______________________的有向线段表示振动位移,是矢量. (2)振幅A :振动物体离开平衡位置的____________,是标量,表示振动的强弱. (3)周期T 和频率f :做简谐运动的物体完成____________所需要的时间叫周期,而频率则等于单位时间内完成________________;它们是表示振动快慢的物理量.二者互为倒数关系. , 4.简谐运动的图象 (1)物理意义:表示振动物体的位移随时间变化的规律. (2)从平衡位置开始计时,函数表达式为x =A sin ωt ,图象如图2所示. 从最大位移处开始计时,函数表达式为x =A cos ωt ,图象如图3所示. 图2 图3 5.简谐运动的能量:简谐运动过程中动能和势能相互转化,机械能守恒,振动能量与________有关,________越大,能量越大. 二、单摆 如右下图所示,平衡位置在最低点. (1)定义:在细线的一端拴一个小球,另一端固定在悬点上,如果线的________和________都不计,球的直径比________短得多,这样的装置叫做单摆. [ (2)视为简谐运动的条件:________________. (3)回复力:小球所受重力沿________方向的分力,即:F =G 2=G sin θ=mg l x ,F 的方向与位移x 的方向相反. (4)周期公式:T = (5)单摆的等时性:单摆的振动周期取决于摆长l 和重力加速度g ,与振幅和振子(小球)质量无关. 注意 单摆振动时,线的张力与重力沿摆线方向的分力的合力提供单摆做圆周运动的向心力.重力沿速度方向的 分力提供回复力,最大回复力大小为mg l A ,在平衡位置时回复力为零,但合外力等于向心力,不等于零. 三、受迫振动和共振 1.受迫振动:系统在________________作用下的振动.做受迫振动的物体,它的周期(或频率)等于

高中物理机械振动和机械波知识点.doc

高中物理机械振动和机械波知识点 "机械振动和机械波是高中物理教学中的难点,有哪些知识点需要学生学习呢?下面我给大家带来高中物理课本中机械振动和机械波知识点,希望对你有帮助。 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即 T=1/f. (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.

②特点:简谐运动的图像是正弦(或余弦)曲线. ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T. 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型. (1)单摆的振动可看作简谐运动的条件是:最大摆角<5. (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力. (3)作简谐运动的单摆的周期公式为: ①在振幅很小的条件下,单摆的振动周期跟振幅无关. ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关. ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g等于摆球静止在平衡位置时摆线的张力与摆球质量的比值). 4.受迫振动 (1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.

人教版高中物理选修3-5第17章《光的波粒二象性》知识点总结

第十七章:波粒二象性 一、黑体辐射规律 1、黑体:只吸收外来电磁波而不反射的理想物体 2、黑体辐射的特点 黑体的辐射强度按波长分布只与温度有关,与物体的材料和表面形 状无关(一般物体的辐射强度按波长分布除与温度有关外,还与物 体的材料、表面形状有关); 3、黑体辐射规律: ① 随着温度的升高,任意波长的辐射强度都加强 ② 随着温度的升高,辐射强度的极大值向着波长减小的方向进行; 4、普朗克的量子说: 透过黑体辐射规律,普朗克认为:电磁皮的辐射和吸收,是不连续的,而是一份一份地进行的,每份叫一个能量子,能量为γεh =。爱因斯坦受其启发,提出了光子说:光的传播和吸收也是一份一份地进行的,每一份叫一个光子,其能量为νεh = 二、光电效应:说明了光具有粒子性,同时说明了光子具有能量 1、光电效应现象 紫外光照射锌板,锌板的电子获得足够的光子能量,挣脱金 属正离子引力,脱离锌板成为光电子;锌板因失去电子而带上 正电,于是与锌板相连的验电器也带上正电,金属箔张开。 2、实验原理电路图

3、规律: ① 存在饱和电流 饱和电流:在光电管两端加正向电压时,单位时间到达阳极A 的光 电子数增多,光电流越大;但当逸出的光电子全部到达阳极后,再 增加正向电压,光电流就达到最大饱和值,称为饱和电流。 ② 存在遏止电压 在光电管两端加反向电压时,单位时间内到达阳极A 的光电子数减少,光电流减小;当反射电压达到某一值U C 时,光电流减小为零,U C 就叫“遏止电压”。 ③ 存在截止频率 a 、 截止频率的定义:任何一种金属都有一个极限频率ν0,入射光的频率低于 “极限频率”ν0时,无论入射光多强,都不能发生光电效应,这个极限频率称为 截止频率。 b 、“逸出功”定义:电子从金属表面脱离金属所需克服金属正离子的引力所做的最小功。 要发生光电效应,入射光的能量(h ν)要大于 “逸出功(W )” 即: 00W hv = ④ 光电效应的“瞬时性”——因光电效应发生的时间,即为一个光子与一个电子能量交换 的时间,所以不管光强度如何,发生光电效应的时间极短,不超过10-9 s 。 4、爱因斯坦的光电效应方程: 光电子的最大初动能等于入射光光子的能量减逸出功 即:W h E K -=ν 可见“光电子的最大初动能”与入射光的强度无关,只与入射光频率有关,图象如下图

高中物理电磁场知识点

高中物理电磁场和电磁波知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场. 2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×10 8 m/s. 下面为大家介绍的是20XX年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源. (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流. 2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义 式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和. 3. 楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便. (2)对楞次定律的理解 ①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量. ②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少. (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感). 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt . ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt . 5.自感现象

高中物理知识点总结:机械波.doc

高中物理知识点总结:机械波 知识网络: 内容详解: 一、波的形成和传播: ●机械波:机械振动在介质中的传播过程叫机械波。 ●机械波产生的条件有两个: ①要有做机械振动的物体作为波源。 ②是要有能够传播机械振动的介质。 ●横波和纵波: ①质点的振动方向与波的传播方向垂直的叫横波。 ②质点的振动方向与波的传播方向在同一直线上的叫纵波。 气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波,声波的频率从20到2万赫兹。 ●机械波的特点: ①每一质点都以它的平衡位置为中心做简振振动,后一质点的振动总是落后于带动它的前一质点的振动。 ②波只是传播运动形式和振动能量,介质并不随波迁移。 振动和波动的比较: 两者的联系:

振动和波动都是物体的周期性运动,在运动过程中使物体回到原来平衡位置的力,一 般来说都是弹性力,就整个物体来看,所呈现的现象是波动。而对构成物体的单个质点来 看,所呈现的现象是振动,因此可以说振动是波动的起因,波动是振动在时空上的延伸, 没有振动一定没有波动,有振动也不一定有波动,但有波动一定有振动。 二者的区别: 从运动现象来看:振动是一个质点或一个物体通过某一中心,平衡位置的往复运动, 而波动是由振动引起的,是介质中大量质点依次发生振动而形成的集体运动。 从运动原因来看:振动是由于质点离开平衡位置后受到回复力的作用,而波动是由于 弹性介质中某一部分受到扰动后发生形变,产生了弹力而带动与它相邻部分质点也随同它 做同样的运动,这样由近及远地向外传开,在波动中各介质质点也受到回复力的作用。 从能量变化来看:振动系统的动能与势能相互转换,对于简谐运动,动能最大时势能 为零,势能最大时动能为零,总的机械能守恒,波在传播过程中,由振源带动它相邻的质 点运动,即振源将机械能传递给相邻的质点,这个质点再将能量传递给下一个质点,因此 说波的传播过程是一个传播能量的过程,每个质点都不停地吸收能量,同时向外传递能 量,当波源停止振动,不再向外传递能量时,各个质点的振动也会相继停下来。 二、波的图像: ●用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质 点偏离平衡位置的位移。 简谐波的图像是正弦曲线,也叫正弦波。 ●简谐波的波形曲线与质点的振动图像都是正弦曲线,但他们的意义是不同的。波形 曲线表示介质中的“各个质点”在“某一时刻”的位移,振动图像则表示介质中“某个质 点”在“各个时刻”的位移。 由某时刻的波形图画出另一时刻的波形图: 平移法:先算出经时间Δt波传播的距离Δx=vΔt,再把波形沿波的传播方向平移Δx 即可。因为波动图像的重复性,若已知波长,则波形平移,则波形平移,时波形不变。当 Δx=nλ+x时,可采取去整nλ留零x的方法,只需平移x即可。 特殊点法:在波形上找两个特殊点,如过平衡位置的点和与相邻的波峰、波谷点,先 确定这两点的振动方向,再看Δt=nT+t由于经nT波形不变,所以也采取去整nT留零t的方法,分别做出两个特殊点经t后的位置,然后按正弦规律画出新波形。 三、波长、波速和频率(周期)的关系: ●描述机械波的物理量 ①波长:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波 长。振动在一个周期内在介质中传播的距离等于波长。 ②频率f:波的频率由波源决定,在任何介质中频率保持不变。

高中物理电磁波知识点总结

高中物理电磁波知识点总结 麦克斯韦电磁场理论知识点的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场.麦克斯韦进一 步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系.这个电磁场理论体系的核心就是麦克斯韦方程组, 麦克斯韦方程组是由四个微分方程构成,: (1)描述了电场的性质.在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线 是闭合的,对封闭曲面的通量无贡献, (2)描述了磁场的性质.磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献. (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律, 麦克斯韦方程都是用微积分表述的,具体推导的话要用到微积分,高中没学很难理解,我给你把涉及到的方程写出来,并做个解释,你要是还不明白的话也不用着急,等上了大学学了微积分就都能看懂了: 1、安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和. 2、法拉第电磁感应定律,即电磁场互相转化,电场强度的弦度等于磁感应强度对时间的负偏导. 3、磁通连续性定理,即磁力线永远是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零. 4、高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量.麦克斯韦:电位移的散度等于电荷密度,

1.振荡电流和振荡电路 大小和方向都做周期性变化的电流叫振荡电流,能产生振荡电流的电路叫振荡电路,LC电路是最简单的振荡电路。 2.电磁振荡及周期、频率 (1)电磁振荡的产生 (2)振荡原理:利用电容器的充放电和线圈的自感作用产生振荡 电流,形成电场能与磁场能的相互转化。 (3)振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零,电路中电流和磁场均增大,直到最大值。 给电容器反向充电时,情况相反,电容器正反方向充放电一次,便完成一次振荡的全过程。 (4)振荡周期和频率:电磁振荡完成一次周期性变化所用时间叫 电磁振荡的周期,一秒内完成电磁振荡的次数叫电磁振荡的频率。 对于LC振荡电路, (5)电磁场:变化的电场在周围空间产生磁场,变化磁场在周围 空间产生电场,变化的电场和磁场成为一个完整的整体,就是电磁场。 3.电磁波 (1)电磁波:电磁场由近及远的传播形成电磁波 (2)电磁波在空间传播不需要介质,电磁波是横波,电磁波传递 电磁场的能量。 (3)电磁波的波速、波长和频率的关系, 4.电磁波的发射,传播和接收 (1)发射

高中物理知识点机械波详解和练习

机械波 一、知识网络 二、画龙点睛 概念 1、机械波 (1)机械波:机械振动在介质中的传播,形成机械波。 (2) 机械波的产生条件: ①波源:引起介质振动的质点或物体 ②介质:传播机械振动的物质

(3)机械波形成的原因:是介质内部各质点间存在着相互作用的弹力,各质点依次被带动。 (4)机械波的特点和实质 ①机械波的传播特点 a.前面的质点领先,后面的质点紧跟; b.介质中各质点只在各自平衡位置附近做机械振动,并不沿波的方向发生迁移; c.波中各质点振动的频率都相同; d.振动是波动的形成原因,波动是振动的传播; e.在均匀介质中波是匀速传播的。 ②机械波的实质 a.传播振动的一种形式; b.传递能量的一种方式。 (5)机械波的基本类型:横波和纵波 ①横波:质点的振动方向跟波的传播方向垂直的波,叫做横波。 表现形式:其中凸起部分的最高点叫波峰,凹下部分的最低 点叫波谷。横波表现为凹凸相间的波形。 实例:沿绳传播的波、迎风飘扬的红旗等为横波。 ②纵波:质点的振动方向跟波的传播方向在同一直线上的波,叫做纵波。 表现形式其中质点分布较稀的部分叫疏部,质点分布较密的 部分叫密部。纵波表现为疏密相间的波形。

实例:沿弹簧传播的波、声波等为纵波。 2、波的图象 (1)波的图象的建立 ①横坐标轴和纵坐标轴的含意义 横坐标x表示在波的传播方向上各个质点的平衡位置;纵坐标y 表示某一时刻各个质点偏离平衡位置的位移。 从形式上区分振动图象和波动图象,就看横坐标。 ②图象的建立:在xOy坐标平面上,画出各个质点的平衡位置x 与各个质点偏离平衡位置的位移y的各个点(x,y),并把这些点连成曲线,就得到某一时刻的波的图象。 (2)波的图象的特点 ①横波的图象特点 横波的图象的形状和波在传播过程中介质中各质点某时刻的分布形状相似。波形中的波峰也就是图象中的位移正向最大值,波谷即为图象中位移负向最大值。波形中通过平衡位置的质点在图象中也恰处于平衡位置。 在横波的情况下,振动质点在某一时刻所在的位置连成的一条曲线,就是波的图象,能直观地表示出波形。波的图象有时也称波形图或波形曲线。 ②纵波的图象特点 在纵波中,如果规定位移的方向与波的传播方向一致时取正值,位移的方向与波的传播方向相反时取负值,同样可以作出纵波的图

人教版高中物理选修3-5章总结复习素材:第17章 波粒二象性知识点

选修3-5知识点 第十七章波粒二象性 17.1能量量子化 一、黑体与黑体辐射 1、热辐射:一切物体都 在辐射电磁波,这种辐 射与物体的温度有关。 物体在室温时,热辐射的主要成分是波长较长的电磁波,不能引起人的視觉。当温度升高时,热辐射中较短波长的成分越来越强。 2、热辐射的特性:辐射强度按波长的分布情况随物体的温度而有所不同。 3、黑体:物体表面能够完全吸收入射的各种波长的电磁波而不发生反射。 除了热辐射之外,物体表面还会吸收和反射外界射来的电磁波。常温下我们看到的物体的颜色就是反射光所致。一些物体在光线照射下看起来比较黑,那是因为它吸收电磁波的能力较强,而反射电磁波的能力较弱。 4、黑体辐射:辐射电磁波的强度按波长的分布只与黑体的温度有关。 二、黑体辐射的实验规律

1、从中可以看出,随着温度的升高,一方面,各种波长的强度有所增加,另一方面,辐射强度的极大值向波长较短的方向移动。 2、维恩公式在短波区与实验非常接近,在长波区则与实验偏离很大。 3、瑞利公式在长波区与实実验基本一致,但 在短波区与实验严重不符,不但不符,而且 当趋于0时,辐射强度竟变成无穷大,这显 然是荒谬。 三、能量子 1、ε叫能量子,简称量子,能量是量子化的,只能一份一份地按不连续方式辐射或吸收能量。 2、普朗克常量:对于频率为ν的能量子最小能量: ε=hν h=6.62610-34J/s。——普朗克常量 17.2光的粒子性 光是电磁波:光的干涉、衍射现象说明光是波。 一、光电效应的实验规律 1、光电效应:即照射到金属表面的光,能使金属中的电子从表面逸出,发射出来的电子叫光电子。

2、研究光电效应的电路图:①K在受到光照时能够发射光电子汗,②光电子在UAK电场作用下形成光电流,③阳极A吸收阴极K发出的光电子。 3、存在着饱和电流:入射光越强,单位时间内发射的光电子数越多。 4、存在着遏止电压和截止频率 ①使光电流减少到0的反向电压称为遏止电压。遏止电压的存在意味着光电子具有一定的初速度。 ②入射光的频率低于截止频率时不发生光电效应。 ③入射光强度决定着:单位时间内发射出来的电子数(光电子)。 ④入射光的频率(颜色)决定着能否发生光电效应和发生光电效应时光电子的最大初动能。 ⑤光电子的能量只与入射光的频率有关,而与入射光的强弱无关。 5、光电效应具有瞬时性。 二、光电效应解释中的疑难 1、逸出功W0:使电子脱离某种金属所做功的最小值。 ①金属表面层内存在一种力,阻碍电子的逃逸。 2、光越强,逸出的电子数越多,光电流也就越大。 3、经典理论无法解释光电效应的实验结果 三、爱因斯坦的光电效应方程 1、爱因斯坦的光量子假设:在空间传播的光也不是连续的,光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子

第十七章 波粒二象性 复习教案

第十七章 波粒二象性 复习教案 17.1 能量量子化 知识与技能 (1)了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。 (2)了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。 (3)了解能量子的概念。 教学重点:能量子的概念 教学难点:黑体辐射的实验规律 教学过程: 1、黑体与黑体辐射 (1)热辐射现象 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。 (2)黑体 概念:能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。 2、黑体辐射的实验规律 黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。 提出1:怎样解释黑体辐射的实验规律呢? 在新的理论诞生之前,人们很自然地要依据热力学和电磁学规律来解释。德国物理学家维恩和英国物理学家瑞利分别提出了辐射强度按波长分布的理论公式。结果导致理论与实验规律不符,甚至得出了非常荒谬的结论,当时被称为“紫外灾难”。(瑞利--金斯线,) 3、能量子: 1900年,德国物理学家普朗克提出能量量子化假说:辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1ε,2ε,3ε,... n ε,n 为正整数,称为量子数。对于频率为ν的谐振子最小能量为: 0 1 2 3 4 6 (μ e 实验结果

高中物理选修-电磁波知识点总结

高中物理选修3-4电磁波知识点总结 第二章第一节机械波的形成和传播 1.机械波的形成和传播(以绳波为例) (1)绳上的各小段可以看做质点. (2)由于绳中各部分之间都有相互作用的弹力联系着,先运动的质点带动后一个质点的运动,依次传递,使振动状态在绳上传播. 2.介质能够传播振动的物质. 3.机械波 (1)定义:机械振动在介质中的传播. (2)产生的条件①要有引起初始振动的装置,即波源. ②要有传播振动的_介质_. (3)机械波的特点 ①前面质点带动后面质点的振动,后面质点重复前面质点的振动,并且离波源越远,质点的振动越_滞后_. ②各质点振动周期都与波源振动_相同_. ③介质中每个质点的起振方向都和波源的起振方向相同_. ④波传播的是振动这种形式,而介质的每个质点只在自己的平衡位置附近振动,并不随波迁移. ⑤波在传播“振动”这种运动形式的同时,也在传递能量,而且可以传递信息__. 1.波的分类 按介质中质点的振动方向和波的传播方向的关系不同,常将波分为横波和纵波 . 2.横波 (1)定义:介质中质点的振动方向和波的传播方向垂直的波. (2)标识性物理量 ①波峰:凸起来的最高处. (质点振动位移正向最大处) ②波谷:凹下去的最低处. (质点振动位移负向最大处) 3.纵波 (1)定义:介质中质点的振动方向和波的传播方向平行的波. (2)标识性物理量①密部:介质中质点分布密集的部分. ②疏部:介质中质点分布稀疏的部分. 4.简谐波如果传播的振动是简谐运动,这种波叫做简谐波. 波动过程中介质中各质点的运动规律 (1)质点的“守位性”:机械波向外传播的只是振动的形式和能量,质点只在各自的平衡位置附近震动,并不随波迁移。 (2)“相同性”:介质中各质点均做受迫振动,各质点振动的周期和频率与波源振动的周期和频率相同,而且各质点开始振动的方向也相同,即各质点的起振方向相同。 (3)“滞后性”:离波源近的质点带动离波源远的质点依次振动,即离波源近的质点振动开始越早,离波源越远的质点振动开始越晚。 波动过程中介质中各质点的振动周期都与波源的振动周期相同,其运动特点可用三句话来描述: (1)先振动的质点带动后振动的质点; (2)后振动的质点重复前面质点的振动; (3)后振动的质点的振动状态落后于先振动的质点. 概括起来就是“带动、重复、落后”. 已知波的传播方向,可以判断各质点的振动方向,反之亦然. 判断方法一:带动法

高中物理机械运动机械波部分知识点及习题修订版

高中物理机械运动机械波部分知识点及习题修 订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

机械运动与机械波 Ⅰ.基础巩固 一、机械振动 1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动. 振动的特点:①存在某一中心位置;②往复运动,这是判断物体运动是否是机械振动的条件. 产生振动的条件:①振动物体受到回复力作用;②阻尼足够小; 2、回复力:振动物体所受到的总是指向平衡位置的合外力. ①回复力时刻指向平衡位置;②回复力是按效果命名的, 可由任意性质的力提供.可以是 几个力的合力也可以是一个力的分力; ③合外力:指振动方向上的合外力,而不一定是 物体受到的合外力.④在平衡位置处:回复力为零,而物体所受合外力不一定为零.如 单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零. 3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位 置;平衡位置通常在振动轨迹的中点。“平衡位置”不等于“平衡状态”。平衡位置是 指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点 时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平 衡状态) 二、简谐振动及其描述物理量 1、振动描述的物理量

(1)位移:由平衡位置指向振动质点所在位置的有向线段. ①是矢量,其最大值等于振幅; ②始点是平衡位置,所以跟回复力方向永远相反; ③位移随时间的变化图线就是振动图象. (2)振幅:离开平衡位置的最大距离. ①是标量;②表示振动的强弱; (3)周期和频率:完成一次全变化所用的时间为周期T,每秒钟完成全变化的次数为频率f. ①二者都表示振动的快慢; ②二者互为倒数;T=1/f; ③当T和f由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关. 2、简谐振动:物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动. ①受力特征:回复力F=—KX。 ②运动特征:加速度a=一kx/m,方向与位移方向相反,总指向平衡位置。简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

高考物理近代物理知识点之波粒二象性难题汇编附解析(4)

高考物理近代物理知识点之波粒二象性难题汇编附解析(4) 一、选择题 1.关于近代物理,下列说法正确的是() A.射线是高速运动的氦原子 B.核聚变反应方程,表示质子 C.从金属表面逸出的光电子的最大初动能与照射光的频率成正比 D.玻尔将量子观念引入原子领域,其理论能够解释氦原子光谱的特征 2.已知钙和钾的截止频率分别为7.73×1014Hz和5.44×1014Hz,在某种单色光的照射下两种金属均发生光电效应,下列说法正确的是() A.钾的逸出功大于钙的逸出功 B.钙逸出的电子的最大初动能大于钾逸出的电子的最大初动能 C.比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的波长D.比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的动量 3.在光电效应实验中,用同一光电管在不同实验条件下得到了甲、乙、丙三条光电流与电压之间的关系曲线.下列判断正确的是() A.甲光的频率大于乙光的频率 B.乙光的波长小于丙光的波长 C.乙光的强度低于甲光的强度 D.甲光对应的光电子最大初动能大于丙光的光电子最大初动能 4.用大量处于n=4能级的氢原子向低能级跃迁释放的光子,照射某种金属,结果有两种频率的光子能使该金属发生光电效应。已知氢原子处在n=1、2、3、4能级时的能量分别为E1、E2、E3、E4,能级图如图所示。普朗克常量为h,则下列判断正确的是() A.这些氢原子共发出8种不同频率的光子 B.氢原子从n=4能级跃迁到n=1能级释放光子,氢原子核外电子的动能减小 C.能使金属发生光电效应的两种光子的能量分别为E4﹣E3、E4﹣E2 D.金属的逸出功W0一定满足关系:E2﹣E1<W0<E3﹣E1 5.下列说法正确的是()

(完整版)波粒二象性知识点和练习

波粒二象性知识点和练习 一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率................,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最大初动能与入射光的强度无关..................,只随着入射光频率的增大..而增大.. 。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③入射光照到金属上时,光电子的发射几乎是瞬时的............ ,一般不超过10-9 s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的 光电流随着反向电压的增加而减小,当反向电压U 0满足:02 max 2 1eU mv =,光电流将会减小到零, 所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv 的整数倍,hv 称为一个能量量子。即能量是一份一份的。其中v 辐射频率,h 是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv =ε,其中:h 是普朗克常量,v 是光的频率。 三、光电效应方程 1、逸出功W 0: 电子脱离金属离子束缚,逸出金属表面克服离子引力做的功。 2、光电效应方程:如果入射光子的能量hv 大于逸出功W 0,那么有些光电子在脱离金属表面后还有剩余的动能——根据能量守恒定律,入射光子的能量hv 等于出射光子的最大初动能与逸出功之和,即 02 max 21W mv hv += 其中2max 2 1mv 是指出射光子的最大初动能。 3、 光电效应的解释:

相关文档
最新文档