解析几何中参数范围问题的求解策略

解析几何中参数范围问题的求解策略
解析几何中参数范围问题的求解策略

解析几何中参数范围问题的求解策略

解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。很多同学在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,下面我通过一些实例介绍这类问题形成的几个背景及相应的解法,希望同学们能有所收获。

背景之一:题目所给的条件

利用题设条件能沟通所求参数与曲线上点的坐标或曲线的特征参数之间的联系,建立不等式或不等式组求解。这是求范围问题最显然的一个背景。

例1、椭圆),0(1

22

22为半焦距c b c a b

y a x >>>=+的焦点为F 1、F 2,点

P (x , y )为其上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是___。

例2、已知梯形ABCD 中,AB =2CD ,点E 分有向线段AC 所成的比为λ,

双曲线过点C 、D 、E 三点,且以A 、B 为焦点。当4

3

32≤≤λ时,求双曲线离心

率e 的取值范围。

背景之二:曲线自身的范围

圆、椭圆、双曲线及抛物线都有自身的范围,如椭圆a b

y a x (122

22=+>b >0)

中,x ,10],,[],,[<<-∈-∈e b b y a a ,利用这些范围是确定参数范围的途

径之一。

例3、设点P 到点M (-1,0)、N (1,0)距离之差为2m ,到x 轴、y 轴距离之比为2,求m 的取值范围。

例4、设椭圆

11

22

=++y m x 的两个焦点是F 1(-c , 0)与F 2(c , 0) (c > 0),且椭圆上存在一点P ,使得直线PF 1与PF 2垂直。

(1)求实数m 的取值范围;

(2)设l 相应于焦点F 2的准线,直线PF 2与l 相交于Q ,若

32|

|2-=PF QF ,

求直线PF 2的方程。

背景之三:二次方程有解的条件

直线和圆锥曲线的关系,是解析几何中最常见的关系,它们联立消元后所得的判别式非负是直线和圆锥曲线有公共点的充要条件;若有限制条件,则还应考虑根的分布情况等,这是确定参数取值范围的一个常见背景。

例5、给定双曲线x 2

-2

2

y = 1,过点B (1,1)能否作直线l ,使l 与所给双曲

线交于P 1及P 2,且点B 是线段P 1P 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由。

例6、已知直线1:+=kx y l 与双曲线12:2

2=-y x C 的右支交于不同的两点A 、B 。

(1)求实数k 的取值范围;

(2)是否存在实数k ,使得以线段AB 为直径的圆经过曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由。

背景之四:已知变量的范围

利用题中给出的某个已知变量的范围,或由已知条件求出某个变量的范围,然后找出这个变量与欲求的参变量之间的关系,进而求解。

1、双参数中知道其中一个参数的范围;

例7、已知双曲线的中心在原点,右顶点为A (1, 0),点P 、Q 在双曲线的右支上,点M (m , 0)到直线AP 的距离为1。

(1)若直线AP 的斜率为k ,且]3,3

3

[||∈k ,求实数m 的取值范围; (2)当12+=

m 时,APQ ?的内心恰好是点M ,求此双曲线的方程。

例8、给定抛物线x y C 4:2=,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。

(1)设l 的斜率为1,求与的夹角的大小;

(2)设]9,4[,∈=λλ若,求l 在y 轴上截距m 的变化范围。

2、双参数中的范围均未知 例9、设双曲线)0(1:

2

22

>=-a y a

x C 与直线1:=+y x l 相交于不同的两点A 、B 。

(1)求双曲线C 的离心率e 的取值范围;

(2)设直线l 与y 轴的交点为P ,且12

5

=,求a 的值。

例10、直线1+=kx y 与双曲线122=-y x 的左支交于A 、B 两点,直线l 经过点)0,2(-和AB 的中点,求直线l 在y 轴上的截距b 的取值范围。

背景之五:点在圆锥曲线内部或外部的充要条件

如果我们规定圆锥曲线包含焦点的区域称为圆锥曲线的内部,同时坐标平面被圆锥曲线所划分的另一部分称为圆锥曲线的外部,则不难写出点在内(外)部的充要条件同,以这些充要条件为背景的范围问题利用上述不等式即可获解。

例11、已知椭圆13

4:2

2=+y x C ,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点P ,Q 关于该直线对称。

背景之六:三角形两边之和大于第三边

椭圆或双曲线上一点与它们的两个焦点的构成一个三角形,具有这一背景的问题往往可以利用三角形两边之和大于第三边产生的不等式来确定参数的范围。

例12、已知双曲线),(12222+

∈=-R b a b

y a x 的左、右两个焦点分别为F 1、

F 2,左准线为l ,在双曲线的左支上存在点P ,使|PF 1|是P 到l 的距离d 与|PF 2|

的等比中项,求离心率e 的取值范围。

背景之七:参数的几何意义

解析几何是一门数与形相结合的学科,其中许多的变量都有十分明显的几何意义,以此为背景的范围问题只要抓住了参数的几何意义都可以达到目的。

例13、椭圆C 的上准线是抛物线y x 42-=的准线,且C 经过这条抛物线的焦点,椭圆的离心率2

1

=e ,求椭圆的长半轴a 的范围。

背景之八:平均值不等式

解析几何的本质是用代数方法研究图形的几何性质。利用代数基本不等式是求范围的又一方法。

例14、已知直线l 过定点A (3, 0),倾斜角为α,试求α的范围,使得曲线

2:x y C =的所有弦都不能被直线l 垂直平分。

背景之九:目标函数的值域

要确定变量k 的范围,可先建立以k 为函数的目标函数)(t f k =,从而使这种具有函数背景的范围问题迎刃而解。

例15、),(y x P 是椭圆)0(122

22>>=+b a b

y a x 上任一点,F 1、F 2是两个焦

点,求|PF 1|·|PF 2|的取值范围。

例16、如图,P 是抛物线2

2

1:x y C =

上一点,直线l 过点P 且与抛物线C 交于另一点Q 。

(1)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;

(2)若直线l 不过原点且x 轴交于点S ,与y 轴交于点T ,试求|

||

|||||SQ ST SP ST +的取值范围。

微专题26解析几何中的最值与范围问题(教学案)

微专题26 解析几何中的最值与范围问题 1. 利用数形结合或三角换元等方法解决直线与圆中的部分范围问题. 2. 构造函数模型研究长度及面积相关的范围与最值问题. 3. 根据条件或几何特征构造不等关系解决与离心率相关的范围问题. 4. 熟悉线段的定比分点、弦长、面积等问题的处理手段,深刻体会数形结合、等价转化的数学思想方法的运用. 考题导航 利用数形结合或三角换元等方法解决直线与圆 2. 已知实数x 、y 满足方程x 2+y 2-4x +1=0.则y x 的最大值为________;y -x 的最小 值为________;x 2+y 2的最小值为________. 1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 1. 已知A 、B 分别是椭圆x 36+y 20=1长轴的左、右端点,F 是椭圆的右焦点,点P 在 椭圆上,且位于x 轴的上方,PA ⊥PF.设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于MB ,则椭圆上的点到点M 的距离d 的最小值为________. 1. 已知双曲线为C :x 24-y 2 =1,P 为双曲线C 上的任意一点.设点A 的坐标为(3,0), 则PA 的最小值为________.

1. 如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是________. 1. 椭圆M :x 2 a 2+y 2 b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上的任意一点, 且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2 ,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是_______. 1. 如图,在平面直角坐标系xOy 中,椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别 为F 1、F 2,P 为椭圆C 上的一点(在x 轴上方),连结PF 1并延长交椭圆C 于另一点Q ,设PF 1→ =λF 1Q → .若PF 2垂直于x 轴,且椭圆C 的离心率e ∈??? ?12,22,求实数λ的取值范围.

含参不等式恒成立问题中求参数取值范围一般方法(教师版)

恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m ax a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()m in a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ??? 当2x =时,()max 2f x = 所以2a > 例2、已知(],1x ∈-∞时,不等式() 21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x t =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:22 1t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()2 1t f t t +=在(]0,2t ∈上的最小值即可。 ()22211111124t f t t t t t +????==+=+- ? ? ???? 11,2t ??∈+∞???? ()()min 324f t f ∴== 234a a ∴-< 1322 a ∴-<< 二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例3、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73 a ∴≤又4a >所以a 不存在;

解析几何中求参数取值范围的5种常用方法

解析几何中求参数取值范围的5种常用方法 解析几何中求参数取值范围的5种常用方法及经典例题详细解析: 一、利用曲线方程中变量的范围构造不等式 曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法. 例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0) 求证:-a2-b2a ≤ x0 ≤ a2-b2a 分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解. (x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 解: 设A,B坐标分别为(x1,y1),(x2,y2), =-b2a2 ?x2+x1 y2+y1 又∵线段AB的垂直平分线方程为 y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得 x0=x1+x22 ?a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 ∴-a≤x1≤a,-a≤x2≤a,x1≠x2 以及-a≤x1+x22 ≤a ∴ -a2-b2a ≤ x0 ≤ a2-b2a

例2 如图,已知△OFQ的面积为S,且OF?FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围. 分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题. 解: 依题意有 ∴tanθ=2S ∵12 < S <2 ∴1< tanθ<4 又∵0≤θ≤π ∴π4 <θ< p> 例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是() A a<0 B a≤2 C 0≤a≤2 D 0<2< p> 分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解. 解: 设Q( y024 ,y0)由|PQ| ≥a 得y02+( y024 -a)2≥a2 即y02(y02+16-8a)≥0 ∵y02≥0 ∴(y02+16-8a)≥0即a≤2+ y028 恒成立 又∵ y02≥0 而 2+ y028 最小值为2 ∴a≤2 选( B ) 二、利用判别式构造不等式

解析几何中的定点和定值问题精编版

解析几何中的定点定值问题 考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。 一、 定点问题 解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 例1、已知A 、B 是抛物线y 2 =2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β= 4 π 时,证明直线AB 恒过定点,并求出该定点的坐标。 解析: 设A ( 121 ,2y p y ),B (222 ,2y p y ),则 2 1 2tan , 2tan y p y p ==βα,代入1)tan(=+βα 得2 21214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则 022222 =+-????=+=pb py ky px y b kx y ∴k p y y k pb y y 2,22121= += ,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p 说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。 例2.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的 圆与直线0x y -相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.

参数取值问题的题型与方法教材

参数取值问题的题型与方法 (Ⅰ)参数取值问题的探讨 一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。 例1.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。 分析:在不等式中含有两个变量a 及x ,其中x 的范围已知(x ∈R ),另一变量a 的范围即为所求,故可考虑将a 及x 分离。 解:原不等式即:4sinx+cos2x<45-a -a+5 要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。 f(x)= 4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+3≤3, ∴45-a -a+5>3即45-a >a+2 上式等价于?? ? ??->-≥-≥-2)2(450450 2a a a a 或???≥-<-0 4502a a ,解得≤54a<8. 说明:注意到题目中出现了sinx 及cos2x ,而cos2x=1-2sin 2x,故若把sinx 换元成t,则 可把原不等式转化成关于t 的二次函数类型。 另解:a+cos2x<5-4sinx+45-a 即 a+1-2sin 2x<5-4sinx+45-a ,令sinx=t,则t ∈[-1,1], 整理得2t 2-4t+4-a+45-a >0,( t ∈[-1,1])恒成立。 设f(t)= 2t 2-4t+4-a+45-a 则二次函数的对称轴为t=1, ∴ f(x)在[-1,1]内单调递减。 ∴ 只需f(1)>0,即45-a >a -2.(下同) 例2.已知函数f(x)在定义域(-∞,1]上是减函数,问是否存在实数k ,使不等式f(k -sinx)≥f(k 2-sin 2x)对一切实数x 恒成立?并说明理由。 分析:由单调性与定义域,原不等式等价于k -sinx ≤k 2-sin 2x ≤1对于任意x ∈R 恒成立,这又等价于 ?? ? ??----≥+-----+≤) 2()21(sin 41)1(sin 12 222x k k x k 对于任意x ∈R 恒成立。 不等式(1)对任意x ∈R 恒成立的充要条件是k 2≤(1+sin 2x)min =1,即-1≤k ≤1----------(3) 不等式(2)对任意x ∈R 恒成立的充要条件是k 2-k+ 41≥[(sinx -21)2]max =4 9 , 即k ≤-1或k ≥2,-----------(4) 由(3)、(4)求交集,得k=-1,故存在k=-1适合题设条件。 说明:抽象函数与不等式的综合题常需要利用单调性脱掉函数记号。 例3.设直线l 过点P (0,3),和椭圆x y 22941+=顺次交于A 、B 两点,试求AP PB 的取值范围. 分析:本题中,绝大多数同学不难得到:AP PB =B A x x -,但从此后却一筹莫展, 问题的

2019-2020年高考数学二轮复习难点2.9解析几何中的面积,共线,向量结合的问题教学案文

2019-2020年高考数学二轮复习难点2.9解析几何中的面积,共线,向量结合的 问题教学案文 圆锥曲线是解析几何部分的核心内容,以计算量大、方法灵活、技巧性强著称,既是中学数学的重点、难点,也是历年高考的热点,常以压轴题的形式出现.而直线与圆锥曲线的位置关系,集中交汇了解析几何中直线与圆锥曲线的内容, 特别是解析几何中的面积,共线,向量结合的问题是圆锥曲线综合题,解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.综合题中常常离不开直线与圆锥曲线的位置,因此,要树立将直线与圆锥曲线方程联立,应用判别式、韦达定理的意识.解析几何应用问题的解题关键是建立适当的坐标系,合理建立曲线模型,然后转化为相应的代数问题作出定量或定性的分析与判断.常用的方法:数形结合法,以形助数,用数定形. 在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份――对称性、利用到角公式)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等. 1解析几何中的面积问题 解析几何中某些问题,可以通过三角形面积的等量关系去解.研究方法:先选定一个易于计算面积的几何图形,再用不同方法计算同一图形面积,得到一个面积等式;或是用一图形面积等于其它图形面积的和或差.在教学时,适当讲解此法,是开拓学生思路,提高数学教学质量的有效手段之一. 例1【西南名校联盟高三2018年元月考试】已知抛物线2 :8C y x =上的两个动点()11,A x y , ()22,B x y 的横坐标12x x ≠,线段AB 的中点坐标为()2,M m ,直线:6l y x =-与线段AB 的垂直平分线相交于点Q . (1)求点Q 的坐标; (2)求AQB ?的面积的最大值. 思路分析:(1)根据题设条件可求出线段AB 的斜率,进而求出线段AB 的垂直平分线方程,联立直线 :6l y x =-与线段AB 的垂直平分线方程,即可求出点Q 的坐标; (2)联立直线AB 与抛物线C 的方程,结合韦达定理及弦长公式求出线段AB 的长,再求出点Q 到直线AB 的距离,即可求出AQB S 的表达式,再构造新函数,即可求出最大值.

参数方程与齐次化方法在解析几何问题中的应用探究

参数方程与齐次化方法在解析几何问题中的应用探究 复旦实验中学 袁青 2013年高考上海理科试卷第22题为解析几何问题,研究讨论直线与曲线位置关系问题,很多学生看着感觉能做,一做却又做错.其实该题并不用于高三阶段一般的解析几何训练题,简单地将问题转化为联立直线与曲线方程,对方程的根进行讨论,与一般直线与圆锥曲线的关系练习题中联立方程之后直接利用根与系数关系研究弦长、面积、定点等问题有是有很大区别的.尤其在(3)中,如果没有办法利用图像先得知1k >,则会很难寻找到与1k ≤的这样一对矛盾关系,而这体现了学生对“解析几何问题毕竟是个几何问题”这一实质的理解.本文对此题解法做进一步探究,研究一下在把握住“解析几何问题毕竟是个几何问题”这一大原则的基础上,参数方程和齐次化方法可能给解题带来的方便. 考题再现:(2013年理科第22题,文科第23题) 如图,已知双曲线1C :2 212 x y -=,曲线2C :1y x =+.P 是平面内一点,若存在过点P 的直线与1C 、 2C 都有公共点,则称P 为“12C C -型点”. (1)在正确证明1C 的左焦点是“12C C -型点”时,要使 用一条过该焦点的直线,试写出一条这样的直线的方程 (不要求验证); (2)设直线y kx =与2C 有公共点,求证:1k >,进而证 明原点不是“12C C -型点”; (3)求证:圆2212 x y +=内的点都不是“12C C -型点”. 标准答案所给解法:(1)1C 的左焦点为(),写出的直线方程可以是以下形式: x = (y k x = ,其中k ≥ (2)因为直线y kx =与2C 有公共点,所以方程组1y kx y x =??=+?有实数解,因此1kx x =+,得11x k x +=>. 若原点是“12C C -型点”,则存在过原点的直线与1C 、2C 都有公共点. 考虑过原点与2C 有公共点的直线0x =或y kx =(1k >). 显然直线0x =与1C 无公共点. 如果直线为y kx =(1k >),则由方程组2212 y kx x y =???-=??得222012x k =<-,矛盾. 所以,直线y kx =(1k >)与1C 也无公共点. 因此,原点不是“12C C -型点”.

浙江高考数学复习专题四解析几何第3讲圆锥曲线中的定点、定值、最值与范围问题学案

第3讲 圆锥曲线中的定点、定值、最值与范围问题 高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求. 真 题 感 悟 (2018·北京卷)已知抛物线C :y 2 =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围; (2)设O 为原点,QM →=λQO →,QN →=μQO → ,求证:1λ+1μ 为定值. 解 (1)因为抛物线y 2 =2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2 =4x . 由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0). 由? ????y 2 =4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2 ×1>0, 解得k <0或0

解析几何三角形面积问题答案

解析几何三角形面积问题答案 1、解: (Ⅰ)由题意知,曲线C 是以12,F F 为焦点的椭圆. ∴2,1,a c ==2 3b ∴= 故曲线C 的方程为: 2 2 14 3 x y + =. 3分 (Ⅱ)设直线l 与椭圆 2 2 14 3 x y + =交点1122(,),(,)A x y B x y , 联立方程22 3412 y x b x y =-+??+=?得22 784120x bx b -+-= 4分 因为2 48(7)0b ?=->,解得2 7b <,且2 12128412 ,7 7 b b x x x x -+= = 5分 点O 到直线l 的距离d = 6分 AB = = 9分 ∴12 AO B S ?=? = 10分 ≤ 当且仅当227b b =-即2 772 b = <时取到最大值. ∴A O B ? . 12分 2、解:(1)依题意可得???? ?-= -+= +, 12,12c a c a 解得.1,2==c a 从而.1,22 2 2 2 =-==c a b a 所求椭圆方程为 .12 2 2 =+x y …………………4分 (2)直线l 的方程为.1+=kx y 由?????=++=,12 , 12 2x y kx y 可得() .01222 2=-++kx x k 该方程的判别式△=()2 2 2 88244k k k +=++>0恒成立. 设()(),,,,2211y x Q y x P 则.2 1,222 212 21+- =+-=+k x x k k x x ………………5分 可得().2 4 22 2121+= ++=+k x x k y y 设线段PQ 中点为N ,则点N 的坐标为.22 , 22 2?? ? ??++-k k k ………………6分

解析几何最值问题

解析几何最值问题的赏析 丹阳市珥陵高级中学数学组:李维春 教学目标:1.掌握解析几何中图形的处理方法和解析几何中变量的选择; 2.掌握利用基本不等式和函数的思想处理最值问题. 重点难点:图形的处理和变量的选择及最值的处理. 问题提出: 已知椭圆方程:14 32 2=+y x ,A ,B 分别为椭圆的上顶点和右顶点。过原点作一直线与线段AB 交于点G ,并和椭圆交于E 、F 两点,求四边形AEBF 面积的最大值。 问题分析: 1、 图形的处理: 不规则图形转化为规则图形(割补法) ABF ABE AENF S S S ??+= BEF AEF AENF S S S ??+= 2、 变量的选择: (1) 设点:设点),(00y x E 则),(00y x F --,可得到二元表达式; (2) 设动直线的斜率k (可设AF,BF,EF,AE,BE 中任意一条直线的斜率),可得 一元表达式。 3,最值的处理方法: (1) 一元表达式可用基本不等式或函数法处理; (2) 二元表达式可用基本不等式或消元转化为一元表达式。 X

问题解决: 解法一: 由基本不等式得62 24)34(2322 02000==+≤+=y x y x S 时取“=” 当且仅当0032 y x = 解法二: 00000 0(,),(,),(0,0)x y F x y x y -->>设E ,四边形的面积为S (0,2),A B 因为,12 y += 20x +-=即1d =点E 到直线的距离:00( ,)x y 因为E 在直线AB 的上方,0020x ->所以1d =所以2d =点F 到直线的距离:00(,)x y --因为F 在直线的下方2d =所以)(21)(212121d d AB d AB d AB S +=+=002S x =+所以AB =因为00(,)F x y 又因为22134 x y +=在椭圆上22004312x y +=所以max S =所以

求参数取值范围一般方法

求参数取值范围一般方法 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 例2、已知(],1x ∈-∞时,不等式()21240x x a a ++-?>恒成立,求a 的取值范围。 1.若不等式x 2+ax+1≥0,对于一切x ∈[0, 2 1]都成立,则a 的最小值是__ 2.设124()lg ,3 x x a f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。 3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例1、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 例2:若不等式02)1()1(2 >+-+-x m x m 的解集是R ,求m 的范围。 例3.关于x 的不等式0622<+++m m mx x 在[]20,上恒成立,求实数m 的取值范围. 变式:若函数m m mx x y 622+++=在[]20,上有最小值16,求实数m 的值. 1.已知752+->x x x a a 0(>a 且)1≠a ,求x 的取值范围. 2.求函数)(log 2x x y a -=的单调区间.

解析几何中求参数取值范围的方法_答题技巧

解析几何中求参数取值范围的方法_答题技巧 近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。那么,如何构造不等式呢?本文介绍几种常见的方法: 一、利用曲线方程中变量的范围构造不等式 曲线上的点的坐标往往有一定的变化范围,如椭圆x2a2 + y2b2 = 1上的点P(x,y)满足-aa,-bb,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法. 例1 已知椭圆x2a2 + y2b2 = 1 (a0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0) 求证:-a2-b2a a2-b2a 分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解. 解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 x2+x1 y2+y1 又∵线段AB的垂直平分线方程为 y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得x0=x1+x22 a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 -aa, -aa, x1x2 以及-ax1+x22 a -a2-b2a a2-b2a 例2 如图,已知∵OFQ的面积为S,且OFFQ=1,若12 2 ,求向量OF与FQ的夹角的取值范围. 分析:须通过题中条件建立夹角与变量S的关系,利用S的范围解题.

解析几何中参数范围问题的求解策略

解析几何中参数范围问题的求解策略 解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。很多同学在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,下面我通过一些实例介绍这类问题形成的几个背景及相应的解法,希望同学们能有所收获。 背景之一:题目所给的条件 利用题设条件能沟通所求参数与曲线上点的坐标或曲线的特征参数之间的联系,建立不等式或不等式组求解。这是求范围问题最显然的一个背景。 例1、椭圆),0(1 22 22为半焦距c b c a b y a x >>>=+的焦点为F 1、F 2,点 P (x , y )为其上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是___。 例2、已知梯形ABCD 中,AB =2CD ,点E 分有向线段AC 所成的比为λ, 双曲线过点C 、D 、E 三点,且以A 、B 为焦点。当4 3 32≤≤λ时,求双曲线离心 率e 的取值范围。 背景之二:曲线自身的范围 圆、椭圆、双曲线及抛物线都有自身的范围,如椭圆a b y a x (122 22=+>b >0) 中,x ,10],,[],,[<<-∈-∈e b b y a a ,利用这些范围是确定参数范围的途 径之一。 例3、设点P 到点M (-1,0)、N (1,0)距离之差为2m ,到x 轴、y 轴距离之比为2,求m 的取值范围。 例4、设椭圆 11 22 =++y m x 的两个焦点是F 1(-c , 0)与F 2(c , 0) (c > 0),且椭圆上存在一点P ,使得直线PF 1与PF 2垂直。 (1)求实数m 的取值范围; (2)设l 相应于焦点F 2的准线,直线PF 2与l 相交于Q ,若 32| |2-=PF QF , 求直线PF 2的方程。 背景之三:二次方程有解的条件 直线和圆锥曲线的关系,是解析几何中最常见的关系,它们联立消元后所得的判别式非负是直线和圆锥曲线有公共点的充要条件;若有限制条件,则还应考虑根的分布情况等,这是确定参数取值范围的一个常见背景。 例5、给定双曲线x 2 -2 2 y = 1,过点B (1,1)能否作直线l ,使l 与所给双曲 线交于P 1及P 2,且点B 是线段P 1P 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由。 例6、已知直线1:+=kx y l 与双曲线12:2 2=-y x C 的右支交于不同的两点A 、B 。 (1)求实数k 的取值范围; (2)是否存在实数k ,使得以线段AB 为直径的圆经过曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由。 背景之四:已知变量的范围 利用题中给出的某个已知变量的范围,或由已知条件求出某个变量的范围,然后找出这个变量与欲求的参变量之间的关系,进而求解。 1、双参数中知道其中一个参数的范围; 例7、已知双曲线的中心在原点,右顶点为A (1, 0),点P 、Q 在双曲线的右支上,点M (m , 0)到直线AP 的距离为1。 (1)若直线AP 的斜率为k ,且]3,3 3 [||∈k ,求实数m 的取值范围; (2)当12+= m 时,APQ ?的内心恰好是点M ,求此双曲线的方程。

解析几何范围最值问题(教师)解答

第十一讲 解析几何范围最值问题 解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、 范围,因此这类问题的难点,就是如何建立目标函数和不等关系?建立目标函数或不等关系的关键是选用一个合适 变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据 问题的实际情况灵活处理? 一、几何法求最值 【例1】 抛物线的顶点 0在坐标原点,焦点在 y 轴负半轴上,过点 M(0, - 2)作直线I 与抛物线相交于 A, B 两点,且满足+= (-4,- 12) ? (1)求直线I 和抛物线的方程; (2)当抛物线上一动点 P 从点A 运动到点B 时,求△ ABP 面积的最大值. [满分解答](1)根据题意可设直线I 的方程为y= kx-2,抛物线方程为x 2 = — 2py(p> 0). y = kx-2, 2 由 2 得 x + 2pkx — 4p= 0 x =- 2py, 设点 A(X 1, y”, B(x 2, y 2),贝U X 1 + X 2= — 2pk,力 + y 2= k(x j + X 2) — 4 =- 2pk 2 -4. —2pk=- 4, 所以匕(-4 ,-12) ,所以-2pk 2-4 =- 12, ⑵设P(x o , y o ),依题意,知当抛物线过点 P 的切线与I 平行时,△ ABP 的面积最大. 对 y = — *2 求导,得 y'= - x ,所以一X o = 2, 即 卩 x o =- 2, y o =- -x o = - 2, 即 卩 P( — 2,- 2). 此时点p 到直线I 的距离d = 寺7 =聶=呼 得 X 2 + 4x — 4 = o ,贝U X 1 + X 2 =— 4, X 1X 2=— 4, |AB|= . 1 + k 2 - . X 1 + X 2 2-4X 1X 2= 1 + 22 - - 4 2 -4 - - 4 = 4 1o. 于是,△ ABP 面积的最大值为4 _1o X 4 5 5 = 8 , 2. 、函数法求最值 点Q(o,2)的距离的最大值为 3. (1)求椭圆C 的方程; 解得 P = 1, k= 2. 故直线I 的方程为y = 2x- 2,抛物线方程为x 2 =- 2y. 由辽2X — 2 , x =- 2y, 【示例】在平面直角坐标系 xOy 中,已知椭圆 2 2 C :字+器=1(a>b>o)的离心率 e= *危,且椭圆C 上的点到 ⑵在椭圆C 上,是否存在点 M(m, n),使得直线I: mx+ ny= 1与圆O: x 2 + y 2 = 1相交于不同的两点 A 、B, OAB 的面积最大?若存在,求出点 M 的坐标及对应的厶 OAB 的面积;若不存在,请说明理由. 2 2 C : 3?+菇1 即 &3y 2=3b 2 , ⑴由e=a= a= 3b,椭圆

线性规划题型三线性规划中的求参数取值或取值范围问题

线性规划题型三线性规划中的求参数取值或取 值范围问题 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

线性规划题型三 线性规划中的求参数取值或取值范围问题 一.已知含参数约束条件,求约束条件中参数的取值范围。 例1、已知|2x -y +m|<3表示的平面区域包含 点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3) 例2.已知:不等式9)2(2<+-m y x 表示的平面区域包含点(0,0)和点(-1,1)则m 的取值范围是() A(-3,6)B.(0,6)C(0,3)D(-3,3) 二.已知含参约束条件及目标函数的最优解,求约束条件中的参数取值问题 2.12,则实数k 的值为. 二.值或范围.

例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? 使z=x+ay(a>0)则a 的值( ) A 、-3 B 、3 C 、-1 D 、1 变式、已知x 、y 满足以下约束条件5503x y x y x +≥??-+≥??≤?使z=x+ay(a>0)则a 的值( ) A 、-3 B 、3 C 、-1 D 、1 若使z=x+ay(a<0)若使z=x+ay 取得最小值的最优解有无数个,则例2.已知:x 、y 满足约束条件?? ? ??≤-≤+-≥+-0 1033032y y x y x (-3,0)处取得最大值,求实数a 的取值范围.直线ax+by+c=0(a>0) b>0直线的斜率小于零,直线由左至右呈上升趋势 b<0直线的斜率大于零,直线由左至右呈下降趋势 若直线ax+by+c=0(a>0)则在ax+by+c=0(a>0)使ax 0+by 0+c>0,左侧的点P(x 0,y 0),使ax 0+by 0+c<0 若直线ax+by+c=0(a<0)则在ax+by+c=0(a>0)使ax 0+by 0+c<0,左侧的点P(x 0,y 0),使ax 0+by 0+c>0

高中数学教学论文在解析几何中求参数范围的种方法

从高考解几题谈求参数取值范围的九个背景 解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。由于不少考生在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,本文通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对考生的备考有所帮助。 背景之一:题目所给的条件 利用题设条件能沟通所求参数与曲线上点的坐标或曲线的特征参数之间的联系,建立不等式或不等式组求解。这是求范围问题最显然的一个背景。 例1:椭圆),0(1 22 22为半焦距c b c a b y a x >>>=+的焦点为F 1、F 2,点P(x , y )为其 上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是___。 解:设P(x 1, y ),∠F 1PF 2是钝角?cos∠F 1PF 2 =||||2||||||2 12 212221PF PF F F PF PF ?-+ 222212221)(||||||0y c x F F PF PF ++?<+?<2)(c x -+2 2224y x c y +?<+22 22222222 2 )(x a b a c x a a b x c -?<-+?<)(2 222222b c c a x b c -

含参数不等式恒成立问题的求解策略

含参数不等式恒成立问题的求解策略 恒成立问题,解决这类问题的关键是将恒成立问题进行等价转化,使之转化为函数的最值问题。近年来,含参数的不等式恒成立问题越来越受高考命题者的青睐,本节将高考数学中常见的恒成立问题进行归类和探讨。 一、 分离参数法 如果含参数的不等式恒成立问题,其中的参数比较容易从变量中分离出来,可以把它放到不等式的一边,而另一边是变量,通过研究变量对应的函数最值,利用极端原理得到参数范围的方法叫做分离参数法。 例1 .已知函数2()3f x x x =-.当(0,)x ∈+∞时,不等式()1f x ax >-恒成立,求实数a 的取值范围. 【能力提升】()x f a ≥恒成立等价于()()x f a x f a ≤≥;m ax 恒成立等价于()m in x f a ≤。利用分离参数法求解不等式恒成立问题,前提条件是参数较易从变量中分离出来, 二、根的分布法 当恒成立的问题只是对部分区间恒成立时,研究这类不等式的恒成立,就需要研究它所对应的方程的根与其函数值,通过根的位置和函数值的符号,建立一个满足条件的不等式组,这种求解参数范围的方法叫做根的分布法。 例3 已知函数()222+-=ax x x f ,当[)+∞-∈,1x 时,()a x f ≥恒成立,求a 的取值范围。

【能力提升】利用根的分布法求参数的取值范围,要注意判别所对应函数的形式,常见命题中的函数有一次函数和二次函数两类,对应的题型是:(1)())0(0≠≥+=a b ax x f 对[]n m x ,∈恒成立,则()()???≥≥; 0,0n f m f (2) ()=x f 2ax +bx +c 0≥)0(>a 对[]n m x ,∈恒成立,则分三种情形:①△=;042≤-ac b ②m a b x <-=2时,();0≥m f ③n a b x >-=2时,();0≥n f (3) ()02≤++=c bx ax x f )0(>a 对[]n m x ,∈恒成立,则()()???≤≤. 0,0n f m f 三、 主参换位法 对于给出了参数范围的恒成立问题,常常把参数视为主元,把主元视为已知数,即把原题视为参数的函数,从函数的角度来进行解答,这种方法叫做主参换位法。 例2、对于实数m ∈[2 1,3],不等式x m mx x 4242+>++恒成立,求x 的取值范围。 【能力提升】某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使 能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度。即把变元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果。

解析几何中的与三角形面积相关的问题

解析几何中的与三角形面积相关的问题 类型 对应典例 椭圆中有关三角形的面积最值 典例1 抛物线中有关三角形的面积最值 典例2 椭圆中有关三角形的面积的取值范围 典例3 抛物线中有关三角形的面积的取值范围 典例4 椭圆中由三角形面积问题求参数值或范围 典例5 抛物线中由三角形面积问题求参数值或范围 典例6 椭圆中由三角形面积问题求直线方程 典例7 抛物线中由三角形面积问题求直线方程 典例8 【典例1】已知椭圆C :()222210x y a b a b +=>>的离心率为2 2 ,且与抛物线x y =2交于M ,N 两点,OMN ?(O 为坐标原点)的面积为22 (1)求椭圆C 的方程; (2)如图,点A 为椭圆上一动点(非长轴端点)1F ,2F 为左、右焦点,2AF 的延长线与椭圆交于B 点,AO 的延长线与椭圆交于C 点,求ABC ?面积的最大值. 【解析】(1)椭圆22 22:1(0)x y C a b a b +=>>与抛物线x y =2交于M ,N 两点, 可设(M x x ,(,)N x x -, ∵OMN ?的面积为22 ∴22x x =2x =,∴2)M ,(2,2)N , 由已知得222222 242 1c a a b a b c ?=? ??+=??=+??? ,解得22a =2b =,2c =,

∴椭圆C 的方程为22 184 x y +=. (2)①当直线AB 的斜率不存在时,不妨取A ,(2,B ,(2,C -,故 1 42 ABC ?=?=; ②当直线AB 的斜率存在时,设直线AB 的方程为(2)y k x =-,()11,A x y ,()22,B x y , 联立方程22(2)18 4y k x x y =-???+=??,化简得()2222 218880k x k x k +-+-=, 则()()()2222 64421883210k k k k ?=-+-=+>, 2122821k x x k +=+,212288 21 k x x k -?=+, ||AB = = 22121k k +=+, 点O 到直线02=-- k y kx 的距离d = = , 因为O 是线段AC 的中点,所以点C 到直线AB 的距离为2d = , ∴1 ||22ABC S AB d ?= ?2211221k k ??+=? ?+?? = ∵ () () ()()22222 2 2 2211211k k k k k k k ++= ?? +++??() () 222211 4 41k k k k += +,又221 k k ≠+ ,所以等号不成立. ∴ ABC S ?=< 综上,ABC ?面积的最大值为 【典例2】已知抛物线()02:2>=p py x C ,其焦点到准线的距离为2,直线l 与抛物线C 交于A ,

相关文档
最新文档