摆线齿轮齿廓展成的CAD研究

摆线齿轮齿廓展成的CAD研究
摆线齿轮齿廓展成的CAD研究

齿轮齿形画法

齿轮齿形画法 一、总述 我们在齿轮加工进行齿形的检验时,常会用到齿形模板,以前每遇到这种情况都需要技术人员照手册按坐标点一点一点的画出,十分麻烦,且每用到模数不同的齿轮,都要重新画,工作量可想而知。现在计算机普及了,我们依据淅开线的形成原理和齿轮的切削原理并结合实际经验研究出了一种利用计算机来进行齿形图绘制的方法,绘制一些不同齿数(模数是1)的齿轮齿形图作为样板,对于不同的模数,只要进行相应倍数的放大即可得出相应的齿形图,这样绘出的齿形图不仅比手工画出的精确,且能做到一劳永逸,方便了很多。 二、直齿轮齿形图的详细画法 下面我们以齿数为18的齿轮为例,详细介绍一下这种齿形图的绘制方法.我们将齿形图的绘制据齿形的组成不同分为渐开线齿形部分的绘制与基圆和齿根圆部分齿形的绘制. 1.取齿轮齿数为18,模数为1,则分度圆半径为8.457mm.首先画出基圆,然后在基圆上取一角度为3的圆弧,测其值为0.44mm.(如图一) 2.画一长度为0.44mm的水平轴线垂线与基圆相切,然后绕基圆圆心阵列该直线和与其垂直的水平线,角度取3度(如图二) 3.将阵列所得的基圆切线延长:3°处的切线保持不变,6°处的切线延长一倍,9°处

的切线延长2倍,12°处的切线延长3倍……依此类推,45°处的切线延长15倍.将各切线延长线的端点依次连接起来得一圆滑曲线.(如图三) 4.画出齿轮的分度圆(半径为9mm)和齿顶圆(半径为10mm),过分度圆与渐开线 交点与圆心连线,将该连线旋转成水平(第三步得到的曲线随其一同旋转),其它辅助线清除,然后过圆心画一角度为5度的射线即为该齿轮一个齿的对称线,将所得曲线关天该对称线镜相,齿顶圆与基圆中间的曲线部分即为该齿轮一个轮 齿的渐开线部分.(如图四) 5.将得出的一个轮齿的渐开线部分阵列,得出模数为1,齿数为18的齿轮的渐开线齿廓部分,并将齿轮转至如图五位置。 以上五步为齿轮轮齿渐开线部分的绘制。从第六步开始为基圆与齿根圆部分齿形图的绘制。 6.先画出模数是1的齿条图形,比标准齿条齿顶高高出0.25mm(如图六) 7.如图七所示将齿条与齿轮啮合. 8.在齿轮的实际加工过程中,齿轮每转动1°,齿条水平移动0.157mm。据此原理,

RV减速器摆线轮零件加工工艺设计探讨

龙源期刊网 https://www.360docs.net/doc/4118621525.html, RV减速器摆线轮零件加工工艺设计探讨 作者:郑红 来源:《价值工程》2015年第23期 摘要: RV减速器产品的关键零件是摆线轮,摆线轮零件加工一直是企业生产制造的难题,本文探讨了摆线轮零件加工工艺设计,通过此工艺来保证摆线轮零件的表面质量和加工精度要求。 Abstract: The key part of the RV reducer is cycloid, and cycloid parts processing is the manufacturing difficulty for enterprises. This paper discusses the processing design of cycloid part,to ensure the surface quality of cycloid parts and machining accuracy through this process. 关键词:摆线轮;加工工艺;RV减速器 Key words: cycloid;processing;RV reducer 中图分类号:TH132.41 文献标识码:A 文章编号:1006-4311(2015)23-0062-03 0 引言 近年来制造业转型升级、国家推出“机器换人”工程,把机器人、高端数控设备的应用推向了高潮,但基于机器人的RV减速器一直是个技术难题,直接影响到机器人的工作性能指标。RV减速器是一款刚度最高、振动最低的机器人用减速器,能够提高机器人工作时的动态特性,减小传动回差,而且还具有体积小重量轻、结构紧凑、传动比范围大、承载能力大、运动精度高、传动效率高等优点。RV减速传动装置不仅在机器人中使用,在数控机床行业也广泛应用,例如:数控车床(NC)主轴分度驱动;加工中心(MC)坐标轴的驱动;工厂自动化(FA)领域、柔性制造单元;精密伺服机构等。 当下中国正处于从制造大国向制造强国转型发展中,工厂自动化生产线日益增多,机器人、数控机床的使用在企业日益普及,随着我国制造业的科技进步,对驱动机器人、数控设备的RV减速器工业化市场前景广阔,社会经济效益可观。 RV减速器产品在结构上由一级渐开线齿轮传动和一级摆线针轮行星传动串联构成,渐开线齿轮传动构成第一级传动,摆线齿轮行星传动构成第二级传动。第二级针摆传动中摆线轮与针齿壳的啮合传动,在结构上采用无针齿摆线内齿廓结构,即内齿廓不采用针齿滚动,而是直接使用摆线齿廓,这种结构对于摆线轮和针齿壳的零件加工精度、表面质量、硬度、强度、动平衡要求更高。为了提高RV减速器的承载能力并使机器工作时内部受力平衡,动力由齿轮轴输入后,由两个从动齿轮分别带动两根曲轴同步驱动摆线轮工作。RV减速器第二级传动就是由曲轴驱动摆线轮作行星运动,为了载荷平衡,一般用两个摆线轮,呈180度倒置安装,摆线轮与针齿壳相啮合产生减速运动,减速运动经曲轴拨动输出盘输出。

齿轮齿廓设计

1 齿廓啮合基本定律 图示为一对作平面啮合的齿轮,两轮的齿廓曲线分别为G1和G2。设轮1绕轴O1以角速度ω1转动,轮2绕轴O2以角速度ω2转动,图中点K为两齿廓的接触点,过点K作两齿廓的公法线nn,公法线nn与连心线O1O2交于点C。由三心定理可知,点C是两轮的相对速度瞬心,故有:,由此可得: 在齿轮啮合原理中,将点C称为啮合节点,简称节点。i12称为传动比。 由以上分析可知:一对齿廓在任一位置啮合时,过接触点作齿廓公法线,必通过节点P,它们的传动比与连心线O1O2被节点C所分成两个线段成反比。这一规律称为齿廓啮合基本定律。 作固定传动比传动齿廓必须满足的条件 通常齿轮传动要求两轮作定传动比传动,则由式 可得节点C为固定点。由此得到两轮作定传动比传动时,其齿廓必须满足的条件:无论两齿廓在何处接触,过接触点作两齿廓的公法线必须通过固定节点C。节点C在两轮运动平面上的轨迹是两个圆,称为齿轮的节圆。因为两轮在节点C处的相对速度等于零,所以一对齿轮的啮合传动可以视为其节圆的纯滚动。

设两轮节圆半径分别为r1'和r2',则 共轭齿廓: 凡是满足齿廓啮合基本定律的一对齿廓称为共轭齿廓,共轭齿廓的齿廓曲线称为共轭曲线。理论上可以作为共轭齿廓的曲线有很多种,但是考虑到设计、制造、测量、安装及使用等问题,目前常用的齿廓曲线有渐开线、摆线和圆弧等。因渐开线齿廓能较全面地满足上述要求,因此现代的齿轮绝大多数都是采用渐开线齿廓。 2 渐开线齿廓 渐开线的形成 如图示,当直线n-n沿圆周作纯滚动时,直线上任意一点K的轨迹AK称为该圆的渐开线。 这个圆称为基圆,其半径用rb表示; 直线n-n称为渐开线的发生线, θk(=∠AOK)称为渐开线AK段的展角。 渐开线的性质

齿廓啮合基本定律与齿轮的齿廓曲线

7.2 齿廓啮合基本定律与齿轮的齿廓曲线 7.2.1 平均传动比和瞬时传动比的概念 一对齿轮的啮合传动是通过主动齿轮1的齿面依次推动从动齿轮2的齿面而实现的,在一段时间内两轮转过的周数1n 、2n 之比称为平均传动比,用i 或12i 表示,若两轮的齿数分别为1z 、2z ,则 121221 n z i n z == (7-1) 由此可见,两齿轮的平均传动比与其齿数成反比,当一对齿轮的齿数确定后,其平均传动比是一个常数。但这并不能保证在一对齿廓的啮合过程中,其任一瞬时的传动比(即瞬时传动比)也是常数,因为,这取决于齿面的齿廓形状。 7.2.2 齿廓啮合基本定律 如图7-2所示,设主动轮1和从动轮2分别绕O 1、 O 2轴转动,角速度分别为ω1、ω2,方向相反,两齿廓在K 点接触。 为保证二齿廓既不分离又不相互嵌入地连续转动,要 求沿齿廓接触点K 的公法线n -n 方向上,齿廓间不能有相 对运动,即二齿廓接触点公法线方向上的分速度要相等, 12n n n v v v == 显然,在切线方向上二齿廓接触点的速度不相等,即 齿廓沿切线方向存在相对滑动。 根据三心定理,两齿轮的相对速度瞬心在过接触点的公法线n -n 与连心线O 1O 2的交点C 上,其速度为: 11 22c v OC O C ωω== 由此可得齿轮机构的瞬时传动比: 1221O C i O C ωω== (7-2) 从上面的分析可看出,相互啮合传动的一对齿轮,在任一位置时的传动比都与其连心线被齿廓接触点处公法线所分隔的两线段长度成反比。这一规律称为齿廓啮合基本定律。该定律表明齿轮的瞬时传动比与齿廓曲线之间的关系。 齿廓啮合基本定律既适用于定传动比齿轮机构,也适用于变传动比齿轮机构。对于定传动比机构,齿廓啮合基本定律可表达为:两齿廓在任一位置啮合时,过啮合点所作两齿廓的公法线与两轮的连心线相交于一定点。 图7-2 齿廓啮合过程

直齿渐开线齿轮画法

齿轮传动是最重要的机械传动之一。齿轮零件具有传动效率高、传动比稳定、结构紧凑等优点。因而齿轮零件应用广泛,同时齿轮零件的结构形式也多种多样。根据齿廓的发生线不同,齿轮可以分为渐开线齿轮和圆弧齿轮。根据齿轮的结构形式的不同,齿轮又可以分为直齿轮、斜齿轮和锥齿轮等。本章将详细介绍用Pro/E创建标准直齿轮、斜齿轮、圆锥齿轮、圆弧齿轮以及蜗轮蜗杆的设计过程。 3.1直齿轮的创建 3.1.1渐开线的几何分析 图3-1 渐开线的几何分析

渐开线是由一条线段绕齿轮基圆旋转形成的曲线。渐开线的几何分析如图3-1所示。线段s绕圆弧旋转,其一端点A划过的一条轨迹即为渐开线。图中点(x1,y1)的坐标为:x1=r*cos(ang),y1=r*sin(ang) 。(其中r为圆半径,ang为图示角度) 对于Pro/E关系式,系统存在一个变量t,t的变化X围是0~1。从而可以通过(x1,y1)建立(x,y)的坐标,即为渐开线的方程。 ang=t* 90 s=(PI* r*t)/2 x1=r*c os(ang) y1=r*s in(ang) x=x1+(s*sin( ang)) y=y1-( s*cos(ang)) z=0

以上为定义在xy平面上的渐开线方程,可通过修改x,y,z的坐标关系来定义在其它面上的方程,在此不再重复。 3.1.2直齿轮的建模分析 本小节将介绍参数化创建直齿圆柱齿轮的方法,参数化创建齿轮的过程相对复杂,其中要用到许多与齿轮有关的参数以及关系式。 直齿轮的建模分析(如图3-2所示): (1)创建齿轮的基本圆 这一步用草绘曲线的方法,创建齿轮的基本圆,包括齿顶圆、基圆、分度圆、齿根圆。并且用事先设置好的参数来控制圆的大小。 (2)创建渐开线 用从方程来生成渐开线的方法,创建渐开线,本章的第一小节分析了渐开线方程的相关知识。 (3)镜像渐开线 首先创建一个用于镜像的平面,然后通过该平面,镜像第2步创建的渐开线,并且用关系式来控制镜像平面的角度。 (4)拉伸形成实体 拉伸创建实体,包括齿轮的齿根圆实体和齿轮的一个齿形实体。这一步是创建齿轮的关键步骤。

Solidworks中渐开线齿廓曲线的精确绘制

第27卷 第1期 2006年3月大连铁道学院学报JOURNAL OF DALIAN RAILWAY INSTITUTE VOi.27 NO.1Mar. 2006 文章编号:1000-1670(2006)01-0083-02!研究简报! Solidworks 中渐开线齿廓曲线的精确绘制 朱 静,谢 军 (大连交通大学机械工程学院,辽宁大连116028) !关键词:SOiidwOrks ;齿廓曲线;绘图 中图分类号:TP317.4 文献标识码:A 与UG 、PrO /E 等流行的三维建模软件相比,SOiidWOrks 是一种真正基于WindOws 的软件.该软件具有全面的零件实体建模功能,灵活的装配设计和约束检验,能快速生成工程图,同时还具有强大的数据转换接口,因此它已广泛应用于电子、机械、模具、汽车等行业.但SOiidWOrks 软件在参数绘图方面的功能模块还不完善,如SOiidwOrks 中只能用近似圆弧代替渐开线曲线绘制齿轮,而齿轮的齿廓曲线比较复杂,其中渐开线齿轮能保证齿轮特定传动比、受力方向不变等优点,在许多行业得到应用.所以在齿轮的实体造型中有必要对渐开线齿廓曲线进行精确绘制,以满足轮齿造型的准确性. 本文针对渐开线直齿圆柱齿轮,通过采用笛卡尔坐标方程得到渐开线上一系列型值点,在SOiid-wOrksk 中准确的绘制出渐开线齿廓曲线,从而实现SOiidwOrks 的齿轮三维造型.渐开线齿轮造型比较复杂,一直是三维CAD 设计的难点.本论文解决了如何在SOiidWOrksk 精确绘制渐开线齿轮的问题,对SOiidWOrks 后续的齿轮机构造型设计,以及动态仿真、干涉检验、有限元分析等都有作用. (1)在SOiidwOrks 中建立圆柱齿轮的参数方程式,建立关系渐开线直齿齿轮的基本参数主要有:模 数m 、齿数z 1、 压力角alpha .在SOiidwOrksk 中,实现齿轮的造型,首先草绘出分度圆、齿顶圆、齿根圆、基圆草图,并根据SOiidWOrks 中的建立方程方法,按下列各式建立分度圆、齿顶圆、齿根圆、基圆直径关系. 分度圆直径d =m ?z 1. 齿顶圆直径d a =m ? (z 1+2)齿根圆直径d f =m ?(z 1-2.5) 基圆直径d b =m ?z 1?cOs (alpha ?!/180).(2)渐开线的绘制 图1 渐开线极坐标法当一条直线沿着一个直径为d b (基圆)的圆周上作纯滚动时,直线上任一点K 的轨迹为渐开线,如图1所示. 渐开线的极坐标方程为: r k =r b cOs "k #=inv "k =tg "k -"{k 其中r b =r ?cOs "=1/2m ?z 1?cOs "=d b /2 首先根据齿廓极坐标方程,经整理变换成为笛卡尔坐标系中的渐开线齿 廓参数方程(设参数t =0~1时,"=0~45 ) theta =t ?45?!/180 x =r b ?cOs (theta )+r b ?sin (theta )?theta !收稿日期:2005-09-15 作者简介:朱 静(1972-),女,讲师,硕士 .

proe齿轮画法大全

第3章齿轮零件 齿轮传动是最重要的机械传动之一。齿轮零件具有传动效率高、传动比稳定、结构紧凑等优点。因而齿轮零件应用广泛,同时齿轮零件的结构形式也多种多样。根据齿廓的发生线不同,齿轮可以分为渐开线齿轮和圆弧齿轮。根据齿轮的结构形式的不同,齿轮又可以分为直齿轮、斜齿轮和锥齿轮等。本章将详细介绍用Pro/E创建标准直齿轮、斜齿轮、圆锥齿轮、圆弧齿轮以及蜗轮蜗杆的设计过程。 3.1直齿轮的创建 3.1.1渐开线的几何分析 图3-1 渐开线的几何分析 渐开线是由一条线段绕齿轮基圆旋转形成的曲线。渐开线的几何分析如图3-1所示。线段s绕圆弧旋转,其一端点A划过的一条轨迹即为渐开线。图中点(x1,y1)的坐标为:x1=r*cos(ang),y1=r*sin(ang) 。(其中r为圆半径,ang为图示角度) 对于Pro/E关系式,系统存在一个变量t,t的变化范围是0~1。从而可以通过(x1,y1)建立(x,y)的坐标,即为渐开线的方程。 ang=t*90 s=(PI*r*t)/2 x1=r*cos(ang) y1=r*sin(ang) x=x1+(s*sin(ang)) y=y1-(s*cos(ang)) z=0

以上为定义在xy平面上的渐开线方程,可通过修改x,y,z的坐标关系来定义在其它面上的方程,在此不再重复。 3.1.2直齿轮的建模分析 本小节将介绍参数化创建直齿圆柱齿轮的方法,参数化创建齿轮的过程相对复杂,其中要用到许多与齿轮有关的参数以及关系式。 直齿轮的建模分析(如图3-2所示): (1)创建齿轮的基本圆 这一步用草绘曲线的方法,创建齿轮的基本圆,包括齿顶圆、基圆、分度圆、齿根圆。并且用事先设置好的参数来控制圆的大小。 (2)创建渐开线 用从方程来生成渐开线的方法,创建渐开线,本章的第一小节分析了渐开线方程的相关知识。 (3)镜像渐开线 首先创建一个用于镜像的平面,然后通过该平面,镜像第2步创建的渐开线,并且用关系式来控制镜像平面的角度。 (4)拉伸形成实体 拉伸创建实体,包括齿轮的齿根圆实体和齿轮的一个齿形实体。这一步是创建齿轮的关键步骤。 (5)阵列轮齿 将上一步创建的轮齿进行阵列,完成齿轮的基本外形。这一步同样需要加入关系式来控制齿轮的生成。 (6)创建其它特征 创建齿轮的中间孔、键槽、小孔等特征,并且用参数和关系式来控制相关的尺寸。

摆线齿轮泵外转子加工工艺及主要工装DOC 49页.doc

摘要 本文就摆线的基本概念作了介绍,并阐述摆线齿轮泵中,外转子的加工工艺过程、工装设备以及成形拉刀的设计计算。摆线齿轮泵中以内转子为主动轮,外转子为从动轮,在设计中要求外转子精度高,同时考虑到经济成本,在设计加工工艺时,尽量采用既高精度又经济的方式。而且还介绍了在单件生产纲领下,进行摆线齿轮泵外转子曲面磨削的方法。确定了磨削参数及工艺装备。本加工方法具有传动链短,砂轮修磨简单,可稳定的保持加工精度。 关键词:摆线齿轮外转子;工艺;结构设计;工装设备;成形拉刀。

Abstract This article introduced the basic concept of cycloid and cycloid gear pump described, the outer rotor of the machining process, tooling equipment and design calculation of forming broach. Within the rotor cycloidal gear pump for the driving wheel, outer rotor to the driven wheel, the rotor in the design requirements of high precision, taking into account economic costs, in the design process, try to use the high-precision and economical way. But also introduced the program in the single production under the cycloid gear pump outer rotor surface grinding method. Determine the parameters and processes of grinding equipment. This processing method has a short transmission chain, grinding wheel simple, steady and precision Keywords: cycloidal gear outer rotor; process; structural design; tooling equipment; forming broach

摆线齿轮传动

传动:摆线针轮传动 摆线针轮传动 由外齿轮齿廓为变态摆线﹑内齿轮轮齿为圆销的一对内嚙合齿轮和输出机构所组成的行星齿轮传动。除齿轮的齿廓外﹐其他结构与少齿差行星齿轮传动相同。摆线针轮行星减速器的传动比约为6~87﹐效率一般为0.9~0.94。图轮齿曲线的形成为轮齿曲线的形成原理。发生圆在基圆上滚动﹐若大於r1﹐M'点画出的是长幅外摆线﹔若小於r1﹐M''点画出的是短幅外摆线﹔用这些摆线中一根曲线上的任意点作为圆心﹐以针齿半径rz为半径画一系列圆﹐而后作一根与这一系列圆相切的曲线﹐得到的就是相应的长幅外摆线齿廓或短幅外摆线齿廓﹐其中短幅外摆线齿廓应用最广。用整条短幅外摆线作齿廓时﹐针轮和摆线轮的齿数差仅为1﹐而且理论上针轮有一半的齿数都与摆线轮齿同时嚙合传动。但如果用部分曲线为齿廓就可得到两齿差和三齿差的摆线针轮传动。用长幅外摆线的一部分作轮齿曲线时﹐其齿廓与圆近似﹐并与针齿半径相差不大﹐因此可用它的密切圆弧代替。摆线针轮传动的优点是传动比大﹑结构紧凑﹑效率高﹑运转平稳和寿命长。

摆线齿轮传动 cycloidal gearing 由一对摆线齿轮组成的齿轮传动。摆线齿轮的齿廓由内摆线或外摆线组成 (图中a摆线齿轮的齿廓)。滚圆S 在节圆外面滚动形成齿顶曲线 bc,在节圆内面滚动形成齿根曲线;同样,滚圆Q 在内面滚动形 成齿根曲线,在外面滚动形成齿顶曲线。这样的轮齿接触传动相当 于一对大小为和的摩擦轮互相滚动。摆线齿轮传动大多用于钟表和某 些仪器,与一般齿轮传动相比,它的特点是:①传动时一对齿廓中凹的内摆线与凸的外摆线啮合,因而接触应力小,磨损均匀;②齿廓的重合度较大,有利于弯曲强度的改善;③无根切现象,最少齿数不受限制,故结构紧凑,也可得到较大的传动比;④对啮合齿轮的中心距要求较高,若不能保证轮齿正确啮合,会影响定传动比传动;⑤这种传动的啮合线是圆弧的一部分,啮合角是变化的,故轮齿承受的是交变作用力,影响传动平稳性;⑥摆线齿轮的制造精度要求较高。 摆线齿轮传动分内外啮合和齿条啮合两种。齿条的齿顶和齿根都是滚圆在直线上滚成的摆线。这种传动还有一些变形齿廓 (图中b[摆线齿轮

UG_渐开线齿轮画法

一、渐开线直齿轮创建 首先通过已知条件确定齿轮的z,m,a,b的大小,例如有一齿轮的基本参数为:齿数z=22,模数m=2.5,压力角alpha=20°,齿宽b=36。 UG环境下齿轮的参数化三维建模 1、UG环境下渐开线直齿圆柱齿轮的三维造型原理 表1 行星轮参数列表 渐开线直齿圆柱齿轮建模前的参数如表1所示 在UG环境下的齿轮建模方法有很多种,这里根据齿轮的有关参数生成齿轮的毛胚和齿槽轮廓,再将齿槽轮廓自由拉生成三维实体相当于生成了一把加工齿轮的刀具,再用齿坯减去该实体从而生成齿形。UG环境下渐开线斜齿轮建模的具体步骤如下: (1) 根据齿轮参数和渐开线方程构造齿轮的端面渐开线齿槽轮廓。 (2) 按照齿顶圆直径和齿轮厚度建立齿坯实体。 (3) 将端面齿廓轴向拉伸出齿槽实体,即相当于生成了一把加工齿轮的刀具。 (4) 使用布尔差操作从齿坯实体中切去齿槽,即可得到该渐开线直齿轮的齿槽轮廓。 (5) 将生成的齿轮实体以齿坯轴线为中心按齿数进行圆周阵列,即得到该渐开线直齿轮的三维模型。 2、渐开线直齿圆柱齿轮轮齿三维成型方法 渐开线直齿轮轮齿成型的基本的思路是: (1)构造端面渐开线曲线,并通过镜像等操作构造端面齿槽轮廓; (2)使用UG[拉伸]命令并运用布尔差操作得到齿轮实体。 3、端面渐开线的绘制 根据渐开线的形成原理可知渐开线的极坐标方程为:

???? ? ??? ? -===k k k k k inv α ααθαtan cos r r b k (3-1) 式中:k α——渐开线上任一点K 压力角; inv k α——以k α为自变量的渐开线函数; k r ——渐开线上任一点的向径,mm b r ——基圆半径,mm k θ——展角或极角,rad 。 为了便于计算转化,需要将式3-1转化为直角坐标方程,建立直角坐标系如式3-2 则渐开线上任一点k 的直角坐标方程可以转化为: ?????-=+=u u r u r y u u r u r x b b k b b k cos sin sin cos (3-2) 式中:()k k b k k b k r r ON AN ON NK u θαθαα+=+=== =tan ; (3-3) k θ——渐开线上任一点k 的滚动角。 端面渐开线曲线的具体绘制步骤如下: (1)选择[工具]—[表达式]命令,弹出“表达式”对话框,输入表达式如下: t=0 //UG 定义的变量 m=2.5 //齿轮模数 z=22 //齿轮齿数 alpha=20 //齿顶圆压力角 qita=90*t //滚动角角度值 b=36 //齿宽 da=(z+2)*m //da 齿顶圆直径 db=m*z*cos(alpha) //db 基圆直径 df=(z-2.5)*m //df 齿根圆直径

圆柱齿轮设计齿廓的综述

圆柱齿轮设计齿廓的综述 摘要:本文结合我国最新齿轮标准,就GB/T10095.1-2001渐开线圆柱齿轮精度第一部分,对圆柱齿轮K形齿的(注:本文将设计齿廓简称为K形齿)设计,检测与误差进行分析,并对当前的齿轮检测现状和今后的发展提出自己的看法。 一.K形齿的发展: 初期K形齿的设计大多采用中凸或4拐点式,并且K形齿的齿廓图仅仅是一张框图,如图一所示4拐点的K形齿廓图。 图一 随着对设计齿廓的进一步的研究,渐渐大家有了一个共识,那就是设计齿廓不能仅用一个K形齿廓图来要求,它同样也应该有齿廓的倾斜偏差f Hα和齿廓的形状误差f fα要求。所以现在的ISO标准,我国的最新齿轮标准GB/T10095.1,以及近两年来我厂新接收到美国伊顿公司的齿轮设计图中均已增加了齿廓倾斜偏差f Hα这个项目。如图二所示五拐点K齿形框图,

图二 由上面二图可以看出,图一只有一个K形框图,也就是测量的齿廓曲线必须落在K形框图内才算合格。由于没有齿轮的齿廓倾斜偏差要求,对被测齿轮压力角误差要求过严,剃齿刀的修磨难度增加,也影响了齿轮的加工生产。图二所示K形图,对齿廓要求则更进一步细化(多了一个拐点),而且更加合理了(增加了齿廓倾斜偏差)。更利于剃齿刀的修磨和齿轮的加工生产。 二.K形齿的设计 K形齿是以渐开线为基础,考虑到齿轮加工误差和材料因载荷引起的弹性变形等产生的噪声,对齿廓进行修正的齿形。实际上K齿形就是修正的渐开线,也包括修缘齿形,凸齿形等。关于K齿形的设计步骤,作者早在1998年就有过论述。下面结合我国的最新齿轮标准GB/T10095.1,就K齿形的基本设计步骤简述如下: 第一步.首先计算出齿轮的端面重叠系数(重合度)。 在苏联ГОСТ3058-54标准中推荐:对于直齿轮当ε<1.089,斜齿轮εS<1时不进行修正。高速齿轮修正,低速齿轮不修正。我国齿轮手册中也有论述,对

SolidWorks渐开线齿轮的绘制方法

现在中国使用SolidWorks软件的用户越来越多,对于一些初学者,在齿轮的绘制过程中会遇到很多问题。本文笔者就是针对这一主题而写,希望对那些还处于齿轮建模迷惑中的读者有一些抛砖引玉的作用,提高设计者的软件使用水平,开拓一条新的设计思路。阅读本文前,读者朋友应当先完成SolidWorks基本模块的学习,或者是有一定的软件使用经历和基础。 一、明确设计目的 齿轮在机械传动设计中是重要的传动零件,它有很多其他传动机构无法比拟的优点,如传动效率高(一般在0.9以上),传动平稳(斜齿轮尤为突出),传动力矩大,准确的瞬时传动比,寿命长,而且可以改变传动方向等,这些优点决定了齿轮在动力传动和运动传动中占有不可动摇的地位。一般齿轮的齿廓都是渐开线,那么如何在SolidWorks中绘制渐开线呢?在开篇之前先请读者思考一个问题:为什么要绘制精确的“渐开线”齿轮呢?是为了做运动模拟?出2D 的工程图?到C N C里进行加工?还是作为CAE的分析模型呢? 当然,如果我们的目的不同,那么我们的齿轮就有不同的绘制方法。请看下面的详细讲解。 二、简化齿轮的绘制 1.利用SolidWorks自带插件 “Toolbox”生成齿轮 对于出图和用于运动模拟的用户,可以用简化的“渐开线”齿轮代替,这样不但可以大大简化建模的时间,而且可以充分利用现有的计算机资源。在SolidWorks的Toolbox插件中就有齿轮模块,下面就具体介绍一下这种方法。 (1)首先在插件中打开Toolbox插件,如图1所示。点击“确定”就可以在右边的“任务窗格”设计库中找到“Toolbox”了,如图2所示。

(2 )目前虽然在“GB”中还没有齿轮,但是可以用其他标准中的齿轮代替。下面就以“AnsiMetric”标准为例,介绍Toolbox中调用齿轮的方法。 在Toolbox的目录中通过“AnsiMetric”→“动力传动”→“齿轮”,在这里系统已经给出了常用的齿轮形式,我们需要哪种形式的齿轮就可以生成哪种,如圆柱直齿轮,这里翻译成了“正齿轮”。具体参数设置,如图3所示。 (3)通过一系列的设置,我们就可以得到想要的齿轮了,如果还达不到自己的要求,就可以在现有的齿轮基础上进行修改。如要孔板形式的齿轮,就可以用一个“旋转切除”命令和一个“拉伸切除”命令完成。具体操作如图4所示。接着再添加几个孔,如图5所示。

在Solid Edge中精确生成齿廓曲线

学习范例:在Solid Edge中精确生成齿廓曲线(Clubs整理) 在Solid Edge中精确生成齿廓曲线的研究 发布曰期:2005-9-23 23:20:12 作者:张志佳雒兴刚焦明海于得仁 出处: UG中国 前言 齿轮的齿廓曲线比较复杂,当用齿条刀具加工齿轮时,齿廓曲线由三段组成,如图1所示:Ⅰ、Ⅲ两段为延伸渐开线的等距曲线,Ⅱ段为齿轮的齿根圆圆弧,其余为渐开线。过渡曲线不参与齿轮的啮合运动,但是它对于齿轮的弯曲强度具有重要意义。所以在齿轮的实体造型中有必要对包括过渡曲线在内的齿廓曲线进行精确绘制,以满足轮齿造型的准确性,更可靠的满足强度计算和实际生产的需要。本文以实际生产中最常用的齿条刀具加工出的直齿圆柱齿轮为例,描述了一种准确的计算轮齿的齿廓截面曲线的算法,并将之应用于基于SolidEdge的齿轮三维造型系统。 一渐开线方程 1. 渐开线参数方程 以下为渐开线在图2示坐标系下以αi 为参数的参数方程: x=cos[π(1/2+2/z)-+2(invαi -invα)] y=sin[π(1/2+2/z)-+2(invαi -invα)] 其中si 表示轮齿任意半径ri圆周上的齿厚。αi 、θi 分别为ri圆上的压力角和渐开线展开角, s、r、α、θ分别为分度圆上的齿厚、半径、压力角和渐开线展开角。z表示齿轮的齿数。 2. 渐开线齿廓起始点的确定 “**** 隐藏信息跟贴后才能显示*****” 以下内容跟帖回复才能看到 ============================== 如图3 所示:用F 表示齿条齿廓上直线段的起点,F点将在啮合线(两齿廓接触点在固定平面上的轨

Solidworks齿轮画法

SolidWorks渐开线齿轮的绘制方法 SolidWorks, 渐开线齿轮, 绘制SolidWorks, 渐开线齿轮, 绘制 一、明确设计目的 齿轮在机械传动设计中是重要的传动零件,它有很多其他传动机构无法比拟的优点,如传动效率高(一般在0.9以上),传动平稳(斜齿轮尤为突出),传动力矩大,准确的瞬时传动比,寿命长,而且可以改变传动方向等,这些优点决定了齿轮在动力传动和运动传动中占有不可动摇的地位。一般齿轮的齿廓都是渐开线,那么如何在SolidWorks中绘制渐开线呢?在开篇之前先请读者思考一个问题:为什么要绘制精确的“渐开线”齿轮呢?是为了做运动模拟?出2D 的工程图?到C N C里进行加工?还是作为CAE的分析模型呢? 当然,如果我们的目的不同,那么我们的齿轮就有不同的绘制方法。请看下面的详细讲 解。 二、简化齿轮的绘制 1.利用SolidWorks自带插件 “Toolbox”生成齿轮 对于出图和用于运动模拟的用户,可以用简化的“渐开线”齿轮代替,这样不但可以大大简化建模的时间,而且可以充分利用现有的计算机资源。在SolidWorks的Toolbox插件中就有齿轮模块,下面就具体介绍一下这种方法。 (1)首先在插件中打开Toolbox插件,如图1所示。点击“确定”就可以在右边的“任务窗 格”设计库中找到“Toolbox”了,如图2所示。

(2)目前虽然在“GB”中还没有齿轮,但是可以用其他标准中的齿轮代替。下面就以 “AnsiMetric”标准为例,介绍Toolbox中调用齿轮的方法。 在Toolbox的目录中通过“AnsiMetric”→“动力传动”→“齿轮”,在这里系统已经给出了常用的齿轮形式,我们需要哪种形式的齿轮就可以生成哪种,如圆柱直齿轮,这里翻译成了“正齿轮”。具体参数设置,如图3所示。

决定齿轮齿廓形状的参数有哪些

决定齿轮齿廓形状的参数有哪些? 主要是基圆(直径大小)决定的。另外,齿根圆、齿顶圆直径的大小,决定了两圆之间所“夹”渐开线的“位置、区间”的形状。 具体到齿轮参数,与之有关的是,齿数、模数、压力角、齿顶圆直径、齿根圆直径。 而齿顶圆直径、齿根圆直径,又会受到变位系数的影响。 齿轮基本参数: 1、齿数Z 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。 为使齿轮免于根切,对于α=20o的标准支持圆柱齿轮,应取z1≥17。Z2=u·z1。 2、压力角α rb=rcosα=1/2mzcosα 在两齿轮节圆相切点P处,两齿廓曲线的公法线(即齿廓的受力方向)与两节圆的公切线(即P点处的瞬时运动方向)所夹的锐角称为压力角,也称啮合角。对单个齿轮即为齿形角。标准齿轮的压力角一般为20”。在某些场合也有采用α=14.5°、15°、22.50°及25°等情况。 3、模数m=p/ π 齿轮的分度圆是设计、计算齿轮各部分尺寸的基准,而齿轮分度圆的周长=πd =z p 模数m是决定齿轮尺寸的一个基本参数。齿数相同的齿轮模数大,则其尺寸也大。 4、齿顶高系数和顶隙系数—h*a 、C* 两齿轮啮合时,总是一个齿轮的齿顶进入另一个齿轮的齿根,为了防止热膨胀顶死和具有储成润滑油的空间,要求齿根高大于齿顶高。为次引入了齿顶高系数和顶隙系数。 正常齿:h*a =1;C*=0.25 短齿:h*a =0.8;C*=0.3

SolidWorks-画渐开线直齿轮的三种画法

SolidWorks 2014画渐开线直齿轮的三种画法 摘要:本文详细介绍了SOLIDWORKS 画渐开线直齿轮的三种画法,分别是方程式驱动的参数法、TOOLBOX 标准库取样法以及GEAR TRAX 插件法,个人觉得GEAR TRAX 插件做出来的齿轮最精确,但是因为要下载插件比较繁琐,TOOLBOX 方法比较简单,但模型不够精确,方程式法需要对齿轮相关的参数有一定的了解,非常值得学习。 0 前言 本文针对的是初级学习者,所以对于SOILDWORKS 的大神一笑而过就好,勿喷。这三种方法百度上都有,但不够集中,初学者学起来很费劲,所以我就将三种方法集中起来供大家参考。 本文齿轮参数设模数为m=2,齿数为z=50,压力角ο20=α,齿宽B=20,则根据相关的公式得到: 分度圆直径:d=mz=100mm 齿顶圆直径:da=(z+2)m=104mm 齿根圆直径:df=(z -2.5)m=95mm 基圆直径:db=mzcos α=93.969mm 分度圆齿厚:s=0.5m π=π 齿轮齿根圆角:r=0.38m 注:当压力角为20度时,齿轮齿数在41及以下,基圆直径大于齿根圆直径,齿数在42及以上,基圆直径小于齿根圆直径,本例为第二种情况。 1、对于直齿圆柱齿轮,当基圆大于齿根圆时,整个齿形就会分为:工作部分和非工作部分,工作部分为渐开线,非工作部分为过渡曲线,它们可用计算法、查表法、和代圆弧法来确定。 2、当基圆小于齿根圆时,由于过渡曲线部分不参与啮合,因此可以做成任意曲线,只要不妨碍共轭齿条(或齿轮)齿顶的运转即可,通常用直线、圆弧与铣刀齿形的渐开线部分连接。 我们这里统一将齿根圆与基圆的过度设成圆角,大小为0.38m 。 渐开线方程式:???sin cos b b r r x += ???cos sin b b r r y -= 这里rb=db/2,是基圆半径,?为渐开线走过的角度,这里取0~π/4就好。 1 方程式法 打开SOLIDWORKS ,新建一个文件,打开方程式,方程式在工具选项卡里面

渐开线画法

渐开线绘制方法 现在基本上每个点都能够达到弧长和直线长相等,但是如果将小数点的位数加长,就会发现几乎没有一个点是一样的。这是因为在SolidWorks中的放样线条都是用一段一段的短线逼近的,如果需要精度较高的渐开线就不能简单地应用上面的方法。在下期的文章中将给大家介绍一个可以实现更精确的渐开线形成方法。 本文介绍了SolidWorks绘制渐开线齿轮的相关内容。 现在中国使用SolidWorks软件的用户越来越多,对于一些初学者,在齿轮的绘制过程中会遇到很多问题。本文笔者就是针对这一主题而写,希望对那些还处于齿轮建模迷惑中的读者有一些抛砖引玉的作用,提高设计者的软件使用水平,开拓一条新的设计思路。阅读本文前,读者朋友应当先完成SolidWorks 基本模块的学习,或者是有一定的软件使用经历和基础。 一、明确设计目的 齿轮在机械传动设计中是重要的传动零件,它有很多其他传动机构无法比拟的优点,如传动效率高(一般在0.9以上),传动平稳(斜齿轮尤为突出),传动力矩大,准确的瞬时传动比,寿命长,而且可以改变传动方向等,这些优点决定了齿轮在动力传动和运动传动中占有不可动摇的地位。一般齿轮的齿廓都是渐开线,那么如何在SolidWorks中绘制渐开线呢?在开篇之前先请读者思考一个问题:为什么要绘制精确的“渐开线”齿轮呢?是为了做运动模拟?出2D 的工程图?到C N C里进行加工?还是作为CAE的分析模型呢? 当然,如果我们的目的不同,那么我们的齿轮就有不同的绘制方法。请看下面的详细讲解。 二、简化齿轮的绘制 1.利用SolidWorks自带插件 “Toolbox”生成齿轮 对于出图和用于运动模拟的用户,可以用简化的“渐开线”齿轮代替,这样不但可以大大简化建模的时间,而且可以充分利用现有的计算机资源。在SolidWo rks的Toolbox插件中就有齿轮模块,下面就具体介绍一下这种方法。 (1)首先在插件中打开Toolbox插件,如图1所示。点击“确定”就可以在右边的“任务窗格”设计库中找到“Toolbox”了,如图2所示。

CATIA渐开线齿轮画法

实验七:综合应用(一)渐开线齿轮 一、实验要求 1、掌握各种曲线的生成方法; 2、掌握各种曲面的生成及编辑方法。 3、综合应用草图设计模块、零件设计模块、曲面设计模块等,根据给定的渐开线齿轮的重 要参数设计渐开线齿轮 二、实验内容 本实验通过渐开线来生成齿轮 图6-1 1、建立齿轮的几个重要参数: 齿数Z 模数m 压力角a 齿顶圆半径 rk = r+m 分度圆半径 r = m*z/2 基圆半径 rb = r*cosa 齿根圆半径 rf = r-1.25*m 在part design模块中,选择formula(f(x)图样)按钮,弹出formula:parameters 对话框,在该对话框中设置如图6-2所示的参数。

图6-2 具体方法是:点击new parameters of type按钮,选择相应的type如:real、length 等,填入相应的value;有formula的选择add formula,填入公式; 2、建立好参数之后,该用fog建立一对变量为t的x、y坐标的参数方程: x=rb*sin(t*PI*1rad)-rb*t*PI*cos(t*PI*1rad) y=(rb*cos(t*PI*1rad))+((rb*t*PI)*sin(t*PI*1rad)) 将这2个fog的名称分别改为:x,y,如图6-3所示; 目录树中出现了relations节点,节点下生成了fogx,fogy分支

图6-3 3、进入generative shape design模块,用前面定义的parameter,画出齿顶圆,分 度圆,基圆和齿根圆,作为下一步的参考,如图6-4所示;

渐开线标准直齿圆柱齿轮的主要参数及几何尺寸计算

渐开线标准直齿圆柱齿轮的主要参数及几何尺寸计算 12.3.1 齿轮各部分名称及符号 此主题相关图片如下: 此主题相关图片如下: 此主题相关图片如下: 此主题相关图片如下:554554.jpg

12.3.2 渐开线标准直齿圆柱齿轮的基本参数及几何尺寸计算 1 模数 齿轮圆周上轮齿的数目称为齿数,用z表示。根据齿距的定义知 此主题相关图片如下: 2 压力角 此主题相关图片如下:

此主题相关图片如下: 3 齿数 4 齿顶高系数 h a =h a *m (h a *=1) 5 顶隙系数 c=c*m (c*=0.25) h f =(h a *+c*)m 全齿高 h=h a +h f =(2h a *+c*)m

标准齿轮是指模数、压力角、齿顶高系数和顶隙系数均为标准值,且分度圆上的齿厚等于齿槽宽的齿轮。 表12-2 标准直齿圆柱齿轮的几何尺寸计算公式 此主题相关图片如下:

4. 内齿轮与齿条 图示为一内齿圆柱齿轮,内齿轮的轮齿是分布在空心圆柱体的内表面上。与外齿轮相比有下列几个不同点: 1)内齿轮的齿厚相当于外齿轮的齿槽宽,内齿轮的齿槽宽相当于外齿轮的齿厚。 2)内齿轮的齿顶圆在它的分度圆之内,齿根圆在它的分度圆以外。

图示为一齿条,它可以看作齿轮的一种特殊型式。与齿轮相比有下列两个主要特点: 1)由于齿条的齿廓是直线,所以齿廓上各点的法线是平行的;传动时齿条是直线移动的,故各点的速度大小和方向均相同;齿条齿廓上各点的压力角也都相同,等于齿廓的倾斜角。 2)与分度线相平行的各直线上的齿距都相等。 此主题相关图片如下: 渐开线直齿圆柱齿轮的任意圆周上齿厚的计算

渐开线齿轮齿廓曲线的参数化设计与计算

文章编号:1006-2777(2003)04-0011-04 渐开线齿轮齿廓曲线的参数化设计与计算 赵丽红 (江西德兴铜矿,江西德兴334224) 摘要:用Autoli sp语言,开发了绘制渐开线齿轮齿廓曲线的参数化设计程序,提高了渐开线齿轮设计效率和质量。 关键词:渐开线;齿廓曲线;参数化设计 中图分类号:TH122;TH1321413文献标识码:A Parameterized Design and Calculation of Teeth Profile of Involute Gear Z HAO L-i hong (Jiangxi Dexin Copper M ine,Jiangxi Dexin334224,China) Abstract:By use of Autolisp language,parameterized design program of teeth profile of involute gear is developed,which raises the desi gn efficiency and quali ty of involu te gear. Key Words:involute;teeth profile;parameterized design 渐开线齿轮齿廓曲线的设计,涉及齿轮的基本 参数,几何尺寸等,AutoCAD直接绘图计算步骤繁琐 复杂。因此,结合渐开线齿轮的设计特点,采用AU- TOLISP语言编程方法,进行齿轮齿廓曲线的参数化 设计程序的设计,可以输入齿轮参数值,快捷准确地 绘制渐开线齿轮齿廓曲线。 1参数化绘制渐开线齿廓曲线 齿廓曲线的渐开线函数为: x=db 2 c os(t)+ db 2 t sin(t) y=db 2 sin(t)- db 2 t cos(t) 式中:db)))渐开线基圆直径,db=d cos(a); a)))分度圆压力角; d)))分度圆直径; t)))渐开线滚动角。 编制Autolisp程序gear1lsp: (DE FUN C:GE AR(/tt deltatt d PT1P T2XP T2 YPT2)) (SE TQ m(getdist/\nm/=00)) (SE TQ z(getdist/\nz/=00)) (SE TQ x(getdist/\nx/=00)) (SE TQ alpha(/(*20PI)180)) (SE TQ d(*m z)) (SE TQ r(/d2)) (SE TQ db(*m z(COS alpha))) (SE TQ rb(/db2)) (SE TQ tanalpha(/(SIN alpha)(C OS alpha))) (SE TQ s(+(/(*PI m)2)(*2m x tana-l pha))) 第23卷第4期2003年8月江西冶金 JIANGXI ME TALLURGY Vol.23,No.4 August2003 X收稿日期:2003-03-31 作者简介:赵丽红(1973-),女,江西宜春人,助理工程师,从事矿山设备设计与技术开发。

相关文档
最新文档