相似三角形证明技巧_专题

相似三角形证明技巧_专题
相似三角形证明技巧_专题

相似三角形解题方法、技巧、步骤、辅助线解析

一、相似、全等的关系

全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础.

二、相似三角形

(1)三角形相似的条件:

①;②;③. 三、两个三角形相似的六种图形:

只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.

四、三角形相似的证题思路:判定两个三角形相似思路:

1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;

2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例;

3)若无对应角相等,则只考虑三组对应边是否成比例;

找另一角两角对应相等,两三角形相似

找夹边对应成比例两边对应成比例且夹角相等,两三角形相似

找夹角相等两边对应成比例且夹角相等,两三角形相似

找第三边也对应成比例三边对应成比例,两三角形相似

找一个直角斜边、直角边对应成比例,两个直角三角形相似

找另一角两角对应相等,两三角形相似

找两边对应成比例判定定理1或判定定理4

找顶角对应相等判定定理1

找底角对应相等判定定理1

找底和腰对应成比例判定定理3

e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3

五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不

同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC中,CE⊥AB,BF⊥AC.

b)己知两边对应成比

c)己知一个直

d)有等腰关

a)已知一对等

求证: BA

AC AF AE (判断“横定”还是“竖定”? )

例2、如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的

平分线分别交BC 、CD 于点E 、F ,AC ·AE=AF ·AB 吗?

说明理由。

分析方法:

1)先将积式______________

2)______________( “横定”还是“竖定”? )

已知:如图,△ABC 中,∠ACB=900,AB 的垂直平分线交AB 于D ,交BC 延长线于F 。

求证:CD 2=DE ·DF 。

分析方法:

1)先将积式______________

2)______________( “横定”还是“竖定”? )

六、过渡法(或叫代换法)

有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明.

1、 等量过渡法(等线段代换法)

遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。

例1:如图3,△ABC 中,AD 平分∠BAC , AD 的垂直平分线FE 交BC 的延长线于E .求证:DE 2=BE·CE . 分析:

2、 等比过渡法(等比代换法)

当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。

例2:如图4,在△ABC中,∠BAC=90°,AD⊥BC,E是AC的中点,ED交AB的延长线于点F.

求证:AB DF AC AF

3、等积过渡法(等积代换法)

思考问题的基本途径是:用三点定形法确定两个三角形,然后通过三角形相似推出线段成比例;若三点定形法不能确定两个相似三角形,则考虑用等量(线段)代换,或用等比代换,然后再用三点定形法确定相似三角形,若以上三种方法行不通时,则考虑用等积代换法。

例3:如图5,在△ABC中,∠ACB=90°,CD是斜边AB上的高,G是DC延长线上一点,过B作BE⊥AG,垂足为E,交CD于点F.

求证:CD2=DF·DG.

小结:证明等积式思路口诀:“遇等积,化比例:横找竖找定相似;

不相似,不用急:等线等比来代替。”

同类练习:

1.如图,点D、E分别在边AB、AC上,且∠ADE=∠C

求证:(1)△ADE∽△ACB;

(2)AD·AB=AE·AC.

2.如图,△ABC中,点DE在边BC上,且△ADE是等边三角形,∠BAC=120°

求证:(1)△ADB∽△CEA;

(2) DE2=BD·CE;

(3) AB·AC=AD·BC.

3.如图,平行四边形ABCD中,E为BA延长线上一点,∠D=∠ECA. 求证:AD·EC=AC·EB.

(此题为陷阱题,应注意条件中唯一的角相等,考虑平行四边形对边相等,用等线替代思想解决)

4.如图,AD为△ABC中∠BAC的平分线,EF是AD的垂直平分线。求证:FD2=FC·FB。

(此题四点共线,应积极寻找条件,等线替代,转化为证三角形相似。)

5.如图,E是平行四边形的边DA延长线上一点,EC交AB于点G,交BD于点F,求证:FC2=FG·EF.

(此题再次出现四点共线,等线替代无法进行,可以考虑等比替代。)

6.如图,E是正方形ABCD边BC延长线上一点,连接AE交CD于F,过F作FM∥BE交DE于M.求证:FM=CF.

(注:等线替代和等比替代的思想不局限于证明等积式,也可应用于线段相等的证明。此题用等比替

代可以解决。)

7.如图,△ABC中,AB=AC,点D为BC边中点,CE∥AB,BE分别交AD、AC于点F、G,连接FC.

求证:(1)BF=CF.

(2)BF2=FG·FE.

8.如图,∠ABC=90°,AD=DB,DE⊥AB,求证:DC2=DE·DF.

9.如图,ABCD为直角梯形,AB∥CD,AB⊥BC,AC⊥BD。AD= BD,过E作EF∥AB交AD于F.

是说明:(1)AF=BE;(2)AF2=AE·EC.

10.△ABC中,∠BAC=90°,AD⊥BC,E为AC中点。

求证:AB:AC=DF:AF。

11.已知,CE是RT△ABC斜边AB上的高,在EC延长线上任取一点P,连接AP,作BG⊥AP,垂足为G ,交CE于点D.试证:CE2=ED·EP.

(注:此题要用到等积替代,将CE 2用射影定理替代,再化成比例式。)

七、证比例式和等积式的方法:

对线段比例式或等积式的证明:常用“三点定形法”、等线段替换法、中间比过渡法、面积法等.若比例式或等积式所涉及的线段在同一直线上时,应将线段比“转移”(必要时需添辅助线),使其分别构成两个相似三角形来证明.

可用口诀: 遇等积,改等比,横看竖看找关系; 三点定形用相似,三点共线取平截;

平行线,转比例,等线等比来代替; 两端各自找联系,可用射影和园幂.

例1 如图5在△ABC 中,AD 、BE 分别是BC 、AC 边上的高,DF ⊥AB 于F ,交AC 的延长线于H ,交BE 于G ,求证:(1)FG / F A =FB / FH (2)FD 是FG 与FH 的比例中项.

1说明:证明线段成比例或等积式,通常是借证三角形相似.找相似三角形用三点定形法(在比例式中,或横着找三点,或竖着找三点),若不能找到相似三角形,应考虑将比例式变形,找等积式代换,或直接找等比代换

例2 如图6,□ABCD 中,E 是BC 上的一点,AE 交BD 于点F ,已知BE :EC =3:1,

S?FBE =18,求:(1)BF :FD (2)S?FDA

2说明:线段BF 、FD 三点共线应用平截比定理.由平行四边形得出两线段平行且相等,再由“平截比定理”得到对应线段成比例、三角形相似;由比例合比性质转化为所求线段的比;由面积比等于相似比的平方,求出三角形的面积.

例3 如图7在△ABC 中,AD 是BC 边上的中线,M 是AD 的中点,CM 的延长线交AB 于N .求:AN :AB 的值;

图5 A

E F B D G

C H

C A

D B

E

F 图6 A

3说明:求比例式的值,可直接利用己知的比例关系或是借助己知条件中的平行线,找等比过渡.当已知条件中的比例关系不够用时,还应添作平行线,再找中间比过渡.

例4 如图8在矩形ABCD 中,E 是CD 的中点,BE ⊥AC 交AC 于F ,过F 作FG ∥AB 交AE 于G .求证:AG 2=AF ×FC

4说明:证明线段的等积式,可先转化为比例式,再用等线段替换法,然后利用“三点定形法”确定要证明的两个三角形相似.、

例5 如图在△ABC 中,D 是BC 边的中点,且AD =AC ,DE ⊥BC ,交AB 于点E ,EC 交AD 于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.

5说明:要证明两个三角形相似可由平行线推出或相似三角形的判定定理得两个三角形相似.再由相似三角形的面积比等于相似比的平方及比例的基本性质得到线段的长.

例6 如图10过△ABC 的顶点C 任作一直线与边AB 及中线AD 分别交于点F 和E .过点D 作DM ∥FC 交AB 于点M .(1)若S △AEF :S 四边形MDEF =2:3,求AE :ED ; (2)求证:AE ×FB =2AF ×ED

A B C E D G F A E B D M C F

6说明:由平行线推出两个三角形相似,再由相似三角形的面积比等于相似比的平方及比例的基本性质得到两线段的比.注意平截比定理的应用.

例7 己知如图11在正方形ABCD 的边长为1,P 是CD 边的中点,Q 在线段BC 上,当BQ 为何值时,△ADP 与△QCP 相似?

7说明:两个三角形相似,必须注意其顶点的对应关系.然后再确定顶点P 所在的位置.本题是开放性题型,有多个位置,应注意计算,严防漏解.

例8 己知如图12在梯形ABCD 中,AD ∥BC ,∠A =900,AB =7,AD =2,BC =3.试在边AB 上确定点P 的位置,使得以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似.

8说明:两个三角形相似,必须注意其顶点的对应关系.然后再确定顶点P 所在的位置.本题有多个位置,应注意计算,严防漏解.

例11.如图,已知△ABC 中,AB=AC ,AD 是BC 边上的中线,CF ∥BA ,BF 交AD 于P 点,交AC 于E 点。 求证:BP 2=PE ·PF 。

11分析:因为BP 、PE 、PF 三条线段共线,找不到两个三角形,所以必须考虑等线段代换等其他方法,因为AB=AC ,D 是BC 中点,由等腰三角形的性质知AD 是BC 的垂直平分线,如果我们连结PC ,由线段垂直平分线的性质知PB=PC ,只需证明△PEC ∽△PCF ,问题就能解决了。

P A D B Q C 图11 图12 A D B C P 1 P 2 P 3

相似三角形基本类型证明题

发现、构造相似三角形的基本图形证题 支其韶 吴复 相似三角形主要有四种基本类型。 一、平行线型 如图1,若DE ∥BC ,则△ADE ∽△ABC 。 例1. 已知,如图2所示,AD 为△ABC 的中线,任一直线CF 交AD 、AB 于E 、F 。 求证:FB AF 2ED AE = 。 例2. 已知,如图3所示,BE 、CF 分别为△ABC 的两中线,交点为G 。 求证:2 GF GC GE GB ==。 例3. 已知,如图4所示,在△ABC 中,直线MN 交AB 、AC 和BC 的延长线于X 、Y 、Z 。 求证: AY CY CZ BZ BX AX ??=1。

二、相交线型 如图5,若∠1=∠B ,则可由公共角或对顶角得△ADE ∽△ABC 。 例4. 已知,如图6所示,△ABC 中,AB=AC ,D 为AB 上的点,E 为AB 延长线上的点, 且AE AD AB 2 ?=。 求证:BC 平分∠DCE 。 例5. 已知,如图7所示,CD 为Rt △ABC 的高,E 为CD 的中点,AE 的延长线交BC 于F ,FG ⊥AB 于G 。 求证:FB FC FG 2 ?=。 三、旋转型 如图8,若∠BAD=∠CAE ,则△ADE 绕点A 旋转一定角度后与△ABC 构成平行线型的相似三角形。

如图9,直角三角形中的相似三角形,若∠ACB=?90,AB ⊥CD ,则△ACD ∽△CBD ∽△ABC 。 例6. 已知,如图10所示,D 为△ABC 内的一点,E 为△ABC 外的一点,且∠EBC=∠DBA ,∠ECB=∠DAB 。 例7. 已知,如图11所示,F 为正方形ABCD 的边AB 的中点,E 为AD 上的一点,AE=41 AD , FG ⊥CE 于G 。 求证:CG EG FG 2 ?=。 例8. 已知,如图12所示,在平行四边形ABCD 中,O 为对角线BD 上的点,过O 作直线分别交DC 、AB 于M 、N ,交AD 的延长线于E ,交CB 的延长线于F 。 求证:OE ·ON=OM ·OF 。

2019年中考几何相似三角形怎么证明

2019年中考几何相似三角形怎么证明 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 初中几何相似三角形怎么证明?很多同学一接触证明题就不会,教育网针对这个问题,给大家具体解答一下。 数学:相似三角形怎么证明 相似三角形定理 :平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似 相似三角形判定定理1:两角对应相等,两三角形相似 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 判定定理2:两边对应成比例且夹角相等,两三角形相似 判定定理3:三边对应成比例,两三角形相似

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 性质定理2:相似三角形周长的比等于相似比 性质定理3:相似三角形面积的比等于相似比的平方 证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DE F”,那么就说明这两个三角形的对应顶点写在了对应的位置上。 方法一 平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角

形相似。 方法二 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。 方法三 如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似 方法四 如果两个三角形的三组对应边成比例,那么这两个三角形相似 方法五 对应角相等,对应边成比例的两个三角形叫做相似三角形 三个基本型 Z型A型反A型 方法六 两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形 1.两个全等的三角形

初中数学经典相似三角形练习题(附)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G. (1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE. 4.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?

(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由. 5.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP. 6.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似? 7.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.

8.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似? 9.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似. 10.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.

2018年中考专题相似三角形

2018中考数学专题相似形 (共40题) 1.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点. (1)求证:BD=CE; (2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长; 2.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F. (1)如图1,若BD=BA,求证:△ABE≌△DBE; (2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF?AC. 3.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC. (1)求证:△ADE∽△ABC; (2)若AD=3,AB=5,求的值. 4.如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交CD于G. (1)求证:BG=DE; (2)若点G为CD的中点,求的值.

5.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论. 6.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC; (2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长. 7.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC 的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q. (1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE; (2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.

相似三角形证明的方法与技巧

相似三角形的判定和应用 一、判定相似三角形的基本思路: 1.找准对应关系:两个三角形的三个对应顶点、三个对应角、三条对应边不能随便写,一般说来,相等的角所对的边是对应边,对应边所对的角是对应角。 2.记住五个判定定理:判定相似三角形依据是五个定理,即预备定理、判定定理一、判定定理二、判定定理三、直角三角形相似的判定定理。 二、相似形的应用: 1.证比例式; 2.证等积式; 3.证直线平行; 4.证直线垂直; 5.证面积相等; 三、经典例题: 例1.如图,在ΔABC 中,D 是BC 的中点,E 是AC 延长线上任意一点,连接DE 与AB 交于F ,与过A 平行于BC 的直线交于G 。 求证: CE AE BF AF = . 变式1:如图,在ΔABC 中,A ∠与B ∠互余,CD ⊥AB ,DE//BC ,交AC 于点E ,求证: AD:AC=CE:BD. 例2:如图:已知梯形ABCD 中,AD//BC ,?=∠90ABC ,且BD ⊥CD 于D 。 求证:①DCB ABD ??~ ;②BC AD BD ?=2

例3.如图,在ΔABC 中,?=∠90BAC ,M 是BC 的中点,DM ⊥BC 交BA 的延长线于D ,交AC 于E 。 求证:ME MD MA ?=2 例4.已知:在ΔABC 中,AD 是BAC ∠的平分线,点E 在AD 上,点F 在AD 的延长线 上,且 AC AB DF ED = 求证:BE//FC 。 例5.如图,在正方形ABCD 中,E ,F 分别为AB 、AC 上一点,切BE=BF ,BP ⊥CE ,垂足为P 。 求证:PD ⊥PF.

全等三角形相似三角形证明(中难度题型)

全等三角形证明经典50题.doc 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 1. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 B C D F A D B C B C

已知:∠1=∠2,CD=DE,EF 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。 8.已知:AB知:AB=CD,∠A=∠D,求证:∠B=∠C A D B C B A C D F 2 1 E C D B D C B A F E A B C D A

10. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

15.(5分)如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交 AP 于D .求证:AD +BC =AB . 16.(6分)如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B 17.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若 AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立若成立请给予证明;若不成立请说明理由. P E D C B A D C B A

最新(相似三角形)证明题

1、如图,△ABC中,三条内角平分线交于D,过D作AD垂线,分别交AB、AC于M、N,请写出图中相似的三角形,并说明其中两对相似的正确性。 2、如图,AD为△ABC的高,DE⊥AB,DF⊥AC,垂足分别为E、F,试判断∠ADF与∠AEF的大小,并说明明理由, 3、如图,在△ABC中,点D、E分别在BC、AB上,且∠CAD=∠ADE=∠B,AC:BC=1:2,设△EBD、△ADC、△ABC的周长分别为m1 、m2、m3,求的值, 4、如图,已知△ABC中,D为BC中点,AD=AC,DE⊥BC,DE与AB交于E,EC与AD相交于点F,(1)△ABC与△FCD相似吗?请说明理由;(2)若S =5,BD=10,求DE的长。 5、AD是△ABC的高,E是BC的中点,EF⊥BC交AC于F,若BD=15,DC=27,AC=45. 求AF的长。 6、已知:如图,在△PAB中,∠APB=120O,M、N是AB上两点,且△PMN是等边三角形。 求证: BM·PA=PN·BP

7、已知:如图,D是△ABC的边AC上一点,且CD=2AD,AE⊥BC于E, 若BC=13, △BDC的面积是39, 求AE的长。 8、已知:如图,在△ABC中,AB=15,AC=12,AD是∠BAC的外角平分线且AD交BC的延长线于点D,DE∥AB交AC的延长线于点E。 9、已知: 如图,四边形ABCD中,CB⊥BA于B,DA⊥BA于A,BC=2AD,DE⊥CD交AB于E,连结 CE,求证:DE2=AE?CE 10、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F. (1)ΔABE与ΔADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长. 11、如图:三角形ABC是一快锐角三角形余料,边BC=120mm,高AD =80mm,要把它加工成正方形零件,是正方形的一边在BC上,其余两个顶点分别在AB 、AC上,这个正方形零件的边长是多少? N P A

9A-数学6-学生-相似三角形证明计算专题课-数学

源于名校,成就所托 教学内容:相似三角形证明计算专题课 【知识精要】 1、如何将相似三角形应用于证明线段相等或成比例或角相等。 方法:(1)证明三角形相似:遇到角相等,找另一角相等或角的两边线段是否成比例,若还证不出,观察已知条件是否能得到一组三角形相似,再利用相似后的性质进行证明;遇到线段成比例,一般先想SSS 或SAS ,或通过其它三角形相似证明。 (2)证明线段成比例或角相等:一般先想三角形相似,通过线段或角度之间的关系找到对应的三角形相似;如果图中还存在平行线,可考虑平行比例线段。 2、相似三角形中的线段、面积、角度之间的函数关系。 方法:(1)通过证明三角形全等或相似,找出线段与线段之间的关系;(2)通过平行或等底等高或相似比找到线段与面积的关系。 3、相似三角形中猜想类问题的初步 题型:由于题目中出现的图形运动(如旋转),原图形的很多量会发生相应的变换,还有部分一直保持不变,这是因为它们与图形运动没有直接关系。 方法:找特殊点,通过实际操作(如用尺子量,用量角器测)猜想出结论; 【热身练习】 1、如图,在ABC ?中,AD ⊥BC 于D ,AB=AC ,过B 点作射线BP 分别交AD 、AC 于E 、F 两点,与过点C 平行于AB 的直线交于P 点。证明:EP EF EB ?=2 。

2、如图,已知点E 是四边形ABCD 的对角线BD 上一点,且DAE BDC BAC ∠=∠=∠。(1)求证:AE CD AD BE ?=?;(2)根据图形特点,猜想DE BC 可能等于哪两条线段的比,并证明你的结论; A D B C E 【精解名题】 例1:如图,已知ABC ?中,BC AC ACB ==∠,900,点E 、F 在AB 上,0 45=∠ECF 。设ABC ?的面积为S ,求证:S BE AF 2=?。 A C B E F 例2:如图,已知ABC Rt ?中,3,5==BC AB ,P 点在AC 上(与A 、C 不重合),Q 在BC 上。设y BQ x PC ==,,(1)当?PCQ 相似于ABC ?时,写出y 与x 之间的函数关系式,并指出x 的取值范围;(2)AB PQ //时,当PQC ?的面积与四边形PABQ 的面积相等时,当PQC ?的周长与四边形PABQ 的周长相等时,分别求x 的值。(3)AB PQ //时,试问:在AB 上是否存在一点M ,使得PQM ?为等腰直角三角形,若不存在,请简要说明理由;若存在,请求出CP 的长。

初级中学相似三角形几何证明技巧窍门

初中几何证明技巧(分类) 证明两线段相等 1. 两全等三角形中对应边相等。 2. 同一三角形中等角对等边。 3. 等腰三角形顶角的平分线或底边的高平分底边。 4. 平行四边形的对边或对角线被交点分成的两段相等。 5. 直角三角形斜边的中点到三顶点距离相等。 6. 线段垂直平分线上任意一点到线段两段距离相等。 7. 角平分线上任一点到角的两边距离相等。 8. 过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 *9. 同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。*10. 圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。11. 两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 *12. 两圆的内(外)公切线的长相等。 13. 等于同一线段的两条线段相等。 证明两个角相等 1. 两全等三角形的对应角相等。 2. 同一三角形中等边对等角。 3. 等腰三角形中,底边上的中线(或高)平分顶角。 4. 两条平行线的同位角、内错角或平行四边形的对角相等。 5. 同角(或等角)的余角(或补角)相等。 *6. 同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。 *7. 圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8. 相似三角形的对应角相等。 *9. 圆的内接四边形的外角等于内对角。 10. 等于同一角的两个角相等。 证明两条直线互相垂直 1. 等腰三角形的顶角平分线或底边的中线垂直于底边。 2. 三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3. 在一个三角形中,若有两个角互余,则第三个角是直角。 4. 邻补角的平分线互相垂直。 5. 一条直线垂直于平行线中的一条,则必垂直于另一条。 6. 两条直线相交成直角则两直线垂直。 7. 利用到一线段两端的距离相等的点在线段的垂直平分线上。 8. 利用勾股定理的逆定理。 9. 利用菱形的对角线互相垂直。 *10. 在圆中平分弦(或弧)的直径垂直于弦。 *11. 利用半圆上的圆周角是直角。

相似三角形几何题

1、如图,AD 是圆O 的直径,BC 切圆O 于点D ,AB 、AC 与圆O 相交于点E 、F 。 求证:AC AF AB AE ?=?; 2为了加强视力保护意识,小明想在长为米,宽为米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、 丙位同学设计方案新颖,构思巧妙.(10分) (1)甲生的方案:如图1,将视力表挂在墙ABEF 和墙ADGF 的夹角处,被测试人站立 在对角线AC 上,问:甲生的设计方案是否可行?请说明理由. (2)乙生的方案:如图2,将视力表挂在墙CDGH 上,在墙ABEF 上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF 米处. (3)丙生的方案:如图3,根据测试距离为5m 的大视力表制作一个测试距离为3m 的小视 力表.如果大视力表中“E ”的长是,那么小视力表中相应“E ”的长是多少cm ? 3、如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E .(12分) (1)求证:AB ·AF =CB ·CD ; (2)已知AB =15 cm ,BC =9 cm ,P 是射线DE 上的动点.设DP =x cm (0x >),四边形BCDP 的面积为y cm 2 . ①求y 关于x 的函数关系式; ②当x 为何值时,△PBC 的周长最小,并求出此时y 的值. 4已知,如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1. (1)求证:△ABD ∽△CBA ; (2)作DE ∥AB 交AC 于点E ,请再写出另一个与△ABD 相似的三角形,并直接写出DE 的长. H H (图1) (图2) (图3) ㎝ A C F 3m B 5m D A B C D E F P ·

6相似三角形证明技巧.docx

相似三角形证明技巧 姓名: _____________ 一、 相似、全等的关系 全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形, 相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们Z 间的联系与区别; 相似形的讨论又是以全等形的有关定理为基础. 二、 相似三角形 (1)三角形相似的条件: ① _____________________ ;② ________________________ ;③ ______________________________ ? 三、 两个三角形相似的六种图形: 只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形, 从而使问题得以解决. 四、三角形相似的证题思路:判定两个三角形相似思路: 1) 先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2) 再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3) 若无对应角相等,则只考虑三组对应边是否成比例; J 找另一角——?两角对应相等,两三角形相似 [找夹边对应成比例——两边对应成比 例且夹角相等, 「找夹角相等一?两边对应成比例且夹角相等,两三角形相似 X 找第三边也对 应成比例 一?三边对应成比例,两三角形相似 I 找一个直角一?斜边、直角边对 应成比例,两个直角三角形相似 r 找另一角 ?两角对应相等,两三角形相似 L 找两边对应成比例 判定定理1或判定定理4 r 找顶角对应相等一?判定定理1 ⑴有等腰关系 彳找底角对应相等一 判定定理1 I 找底和腰对应成比例 ------ ?判定定理3 五、 确定证明的切入点。几何证明题的证明方法主要有三个方面。第一,从“已知”入手,通过推 理论证,得出“求证”;第二,从“求证”入手,通过分析,不断寻求“证据”的支撑,一直追溯回 到“己知”;第三,从“己知”及“求证”两方面入手,通过分析找到中间“桥梁”,使之成为清晰 的思维过程。 六、 证明题常用方法归纳: (一) 、总体思路:“等积”变“比例”,“比例”找“相似” (二) 、证比例式和等积式的方法: 对线段比例式或等积式的证明:常用“三点定形法”、等线段替换法、中间比过渡法、面积法等.若 比例式或等积式所涉及的线段在同一直线上时,应将线段比“转移"(必要时需添辅助线),使其分别构 成两个相似三角形来证明. a )已知一对等角 c )己知一个直角 c )相似形的传递性 若厶\sd A2^A3,则△lsA3 两三角形相似 b )己知两边对应成比例 斜边上的高

相似三角形推理证明复习题(含答案)

相似三角形推理证明 1.(顺义18期末19)如图,E 是□ABCD 的边BC 延长线上一点,AE 交CD 于点F ,FG ∥AD 交AB 于点G . (1)填空:图中与△CEF 相似的三角形有 ; (写出图中与△CEF 相似的所有三角形) (2)从(1)中选出一个三角形,并证明它与△CEF 相似. 19. (1)△ADF ,△EBA ,△FGA ;………………………….3分(每个一分) (2)证明:△ADF ∽△ECF ∵四边形ABCD 为平行四边形 ∴BE ∥AD …………………………………………………….4分 ∴∠1=∠E ,∠2=∠D ∴△ADF ∽△ECF …………………………………………….5分 (其它证明过程酌情给分) 2.(大兴18期末19)已知:如图,在△ABC 中,D ,E 分别为AB 、 AC 边上的点, 且AE AD 53= ,连接DE . 若AC =4,AB =5. 求证:△ADE ∽△ACB. 19.证明:∵ AC =3,AB =5,35AD AE = , ∴ AC AB AD AE =.……………………………… 3分 ∵ ∠A =∠A ,……………………………… 4分 ∴ △ADE ∽△ACB .……………………… 5分

3.(丰台18期末18)如图,△ABC 中,DE ∥BC ,如果AD = 2,DB = 3,AE = 4, 求AC 的长. 18. 解:∵DE ∥BC , ∴AD AE DB EC =.……2分 即243EC =. ∴EC =6.……4分 ∴AC =AE + EC =10. ……5分 其他证法相应给分. 4.(怀柔18期末18)如图,在△ABC 中,D 为AC 边上一点,BC =4,AC =8,CD=2. 求证:△BCD ∽△ACB . 18. 证明:∵BC =4,AC =8,CD =2.…………………………1分 ∴………………………………………3分 又∵∠C =∠C …………………………………………………………………………4分 ∴ △BCD ∽△ACB ……………………………………………………………………5分

初中数学相似三角形六大证明技巧(推荐)

相似三角形6大证明技巧 相似三角形证明方法 相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5.斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A”型与“反X”型.

“旋转相似”与“一线三等角” 反A 型与反X 型 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB O F E C B A 类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =?

通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算 【例1】 如图,平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F ,求证: DC CF AE AD =. A B C F D E 【例2】 如图,ABC △中,90BAC ∠=?,M 为BC 的中点,DM BC ⊥交CA 的延长线于 D ,交AB 于 E .求证:2AM MD ME =? C B A E D M 【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,ABC ∠的平分线BE 交AC 于E , 交AD 于F .求证: BF AB BE BC =. D B A C F E 技巧一:三点定型 比例式的证明方法

相似三角形经典证明题解析

相似三角形经典证明题 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?

2.如图,已知直线128:33 l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合. (1)求ABC △的面积; (2)求矩形DEFG 的边DE 与EF 的长; (3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.

3.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米; (2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比; (3)若在运动中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由. 4.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式; (3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ? N

经典相似三角形练习的题目(附参考答案详解)

实用标准文案 相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. 5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC与△DEC是否相似,并证明你的结论. 8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm. 某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的? (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE. (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC与△BEA的面积之比.

相似三角形六大证明技巧(提高类技巧训练)

回顾相似三角形的判定方法总结: 相似三角形6大证明技巧 相似三角形证明方法之反A型与反X型 1 . 2 . 3 . 4 . 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似三边成比例的两个三角形相似.(SSS 两边成比例且夹角相等的两个三角形相似.(SAS) 两角分别相等的两个三角形相似.(AA) 斜边和一条直角边成比例的两个直角三角形相似(HL) 5. 模型一:反A型: 如图,已知△ ABC, / ADE = / C,若连CD、BE,进而能证明△ ACD ABE(SAS) 试一试写出具体证明过程 模型二:反X型: 如图,已知角/ BAO= / CDO,若连AD, BC,进而能证明△ AOD BOC. 试一试写出具体证明过程D B 应用练习: 1.已知△ ABC 中,/ AEF= / ACB,求证:(1) AE AB AF AC (2)/ BEO= / CFO , / EBO= / FCO ( 3)/ OEF= / OBC,/ OFE= / OCB 2.已知在MBC中,/ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如 图2)于点P. ⑴当点P在线段AB上时,求证:MPQ S /△ABC ; ⑵当/△^QB为等腰三角形时,求AP的长。 模型三:射影定理 相似三角形证明方法之射影定理与类射影 如图已知^ ABC,/ ACB=90° , CH 丄AB 于H,求证:A C2AH AB , BC2 BH BA ,, 2 HC HA HB ,试一试写出具体证明过程

模型四:类射影 BD AB 如图,已知AB 2 AC AD ,求证:亍 乔,试一试写出具体证明过程 BC AC 应用练习: J 45 1.如图,在 △ ABC 中,AD 丄BC 于D ,DE 丄AB 于E ,DF 丄AC 于F 。求证:— AP AS 2.如图,在 △ ABC 中,AD BC 于 D , DE AB 于 E , DF / AEF= / C 模型五:一线三等角 如图,已知/ B=/ C= / EDF ,则△ BDECFD (AA ),试 一试写出具体证明过程 应用练习: 1.如图,△ ABC 和/ DEF 两个全等的等腰直角三角形, / BACK EDF=90, △ DEF 的顶点E 与^ABC 的斜边BC 的中点重合.将△ DEF 绕点E 旋转,旋转过程中, 线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q . (1) 如图①,当点Q 在线段AC 上,且AP=AQ 时,求证:△ BPE^ZCQE (2) (2)如图②,当点Q 在线段CA 的延长线上时,求证: 并求当BP=a CQ=9a/2时,P 、Q 两点间的距离(用含 2.^ABC 中,AB=AC , D 为BC 的中点,以 D 为顶点作/ (1) 如图(1)当射线DN 经过点A 时,DM 交AC 边于点E ,不添加辅 助线,写出图中所有与/△ADE 相似的三角形. (2) 如图(2),将/ MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交 线段AC , AB 于E ,F 点(点E 与点A 不重合),不添加辅助线,写出图 中所有的相似三角 形,并证明你的结论. (3) 在图(2 )中,若 AB=AC=10,BC=12,当 Z\DEF 的面积等于 /ABC 的面积的4时,求线段EF 的长. 3.如图,点仔在线段《上,点D 、F 在M 同侧,"=? =妙,他丄砒, AD = SC (1)求证:胆"D+CA (2 )若37, CE",点P 为线段丄&上的动点,连接DP ,作M3尸,交 直线占E 相似三角形证明方法之一线三等角 △ BP0A CEQ a 的代数式表示) AC 于F ,连EF ,求证:

相似三角形证明技巧_专题

相似三角形解题方法、技巧、步骤、辅助线解析 一、相似、全等的关系 全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础. 二、相似三角形 (1)三角形相似的条件: ①;②;③. 三、两个三角形相似的六种图形: 只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决. 四、三角形相似的证题思路:判定两个三角形相似思路: 1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角两角对应相等,两三角形相似 找夹边对应成比例两边对应成比例且夹角相等,两三角形相似 找夹角相等两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例三边对应成比例,两三角形相似 找一个直角斜边、直角边对应成比例,两个直角三角形相似 找另一角两角对应相等,两三角形相似 找两边对应成比例判定定理1或判定定理4 找顶角对应相等判定定理1 找底角对应相等判定定理1 找底和腰对应成比例判定定理3 e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3 五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不 同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。 有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。 例1、已知:如图,ΔABC中,CE⊥AB,BF⊥AC. b)己知两边对应成比 c)己知一个直 角 d)有等腰关 a)已知一对等

相似三角形六大证明技巧(提高类技巧训练)

回顾相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS ) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 模型一:反A 型: 如图,已知△ABC ,∠ADE =∠C ,若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS) 试一试写出具体证明过程 模型二:反X 型: 如图,已知角∠BAO =∠CDO ,若连AD ,BC ,进而能证明△AOD ∽△BOC . 试一试写出具体证明过程 应用练习: 1. 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB 相似三角形6大证明技巧 相似三角形证明方法之反A 型与反X 型 O F E C B A E D C B A O D C B A

2.已知在 △ABC 中 ,∠ABC =90°,AB =3,BC =4. 点 Q 是线段 AC 上的一个动点 , 过点 Q 作 AC 的垂线交线段 AB ( 如图 1) 或线段 AB 的延长线 ( 如图 2) 于点 P . (1)当点 P 在线段 AB 上时 , 求证: △APQ ∽ △ABC ; (2)当 △PQB 为等腰三角形时,求 AP 的长。 模型三:射影定理 如图已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,,2 H C H AH B =?,试一试写出具体证明过程 模型四:类射影 如图,已知2AB AC AD =?,求证:BD AB BC AC =,试一试写出具体证明过程 相似三角形证明方法之射影定理与类射影 C A B H A B C D

相似三角形精选好题-证明题25题

相似三角形精选好题 解答题 学校:___________姓名:___________班级:___________考号:___________ 一、解答题(本大题共25小题,共200.0分) 1.如图,在△AAA中,AA=AA= 20AA,AA=30AA,点P从A点出发,沿着AB 以每秒4cm的速度向B点运动;同时点Q从C点出发, 沿着CA以每秒3cm的速度向A点运动,设运动时间 为x秒. 2.(1)A为何值时,AA//AA; 3.(2)是否存在某一时刻,使△AAA∽△AAA?若存在,求出此时AP的长;若不 存在,请说明理由; 4.(3)当A△AAA A△AAA =1 3 时,求 A△AAA A△AAA 的值. 5. 6. 7. 8. 9. 10. 11. 12.如图,△AAA中,AA=AA,AA⊥AA于A,A是BC中 点,连接AD与BE交于点F,求证:△AAA∽△AAA. 13. 14. 15. 16. … 17.如图,已知四边形ABCD中,∠AAA=90°,∠AAA= 90°,AA=6,AA=4,AA的延长线与AD的延长线 交于点E. 18.(1)若∠A=60°,求BC的长; 19.(2)若sin A=4 5 ,求AD的长. 20.(注意:本题中的计算过程和结果均保留根号) 21. 22.

23. 24. 25. 26. 27. 28. 如图,在△AAA 中,点D 在BC 边上, ∠AAA =∠A .点E 在AD 边上,AA =AA . 29. (1)求证:△AAA ∽△AAA ; 30. (2)若AA =6,AA =9 2,AA =2,求AE 的长. 31. 32. 33. 如图,在四边形ABCD 中,AA //AA,AA =2AA,AA =2,AA = 5,AA //AA ,交BC 于点F ,连接AF . 34. (1)求CF 的长; 35. (2)若∠AAA =∠AAA ,求AB 的长. 36. 如图,在锐角三角形ABC 中,点A,A 分别在边AA,AA 上,AA ⊥AA 于点 A,AA ⊥AA 于点A,∠AAA =∠AAA . 37. (1)求证:△AAA ∽△AAA ; 38. (2)若AA =3,AA =5,求AA AA 的值. ~

相关文档
最新文档