2018高考立体几何复习最新题型归纳

2018高考立体几何复习最新题型归纳
2018高考立体几何复习最新题型归纳

2018高考复习立体几何最新题型总结(文数)

题型一:空间几何体的结构、三视图、旋转体、斜二测法

了解柱、锥、台、球体及其简单组合体的结构特征,并能运用这些特征描述现实生活中的简单物体的结构。能画出简单空间几何体的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图。能用平行投影与中心投影两种方法画出简单空间几何体的三视图与直观图。了解空间几何体的不同表示形式。会画某建筑物的视图与直观图。

例1.将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )

例 2.由大小相同的正方体木块堆成的几何体的三视图如图所示,则该几何体中正方体木块的个数是 .

正视图 左视图

例3.已知一个正四面体的俯视图如图所示,其中四边形ABCD 是边长为2的正方形,则该正四面体的内切球的表面积为( )A .6πB .54πC .12πD .48π

例4:如图是一个几何体的三视图,根据图中数据,可得该几何体的 表面积为( )

A .π12

B .π16

C .π32

D .π8

例5:四棱锥P ABCD -的顶点P 在底面ABCD 中的投影恰好是A ,

E

F

D I

A H G B

C E

F D A

B

C

侧视

图1

图2

B

E

A .

B

E

B .

B

E

C .

B

E

D .

俯视图

俯视图

左视图

主视图

a

a a

D C

B A

其三视图如图,则四棱锥P ABCD -的表面积为( )

A. 23a

B.2

2a C.22

23a a +

D. 2222a a +

例6:三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q ,则四棱锥B —APQC 的体积是___________

例7:如图,斜三棱柱ABC —111C B A 中,底面是边长为a 的正三角形,侧棱长为 b ,侧棱AA ’与底面相邻两边AB 、AC 都成450

角,求此三棱柱的侧面积和体积.

例8:如图是一个几何体的三视图,根据图中的数据(单位:cm ),可知几何体的体积是_________

真题:

【2017年北京卷第6题】某三棱锥的三视图如图所示,则该三棱锥的体积为

(A )60 (B )30 (C )20 (D )10 【2017年山东卷第13题】由一个长方体和两个

1

4

圆柱构成的几何体的三视图如右图,则该几何体的体积2 2 主视图

2 2 侧视图

2

1 1 俯视图

为.

【2017年浙江卷第3题】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3

cm)是

A. π

+1

2

B.

π

+3

2

C.

π3

+1

2

D.

π3

+3

2

【2017年新课标II第6题】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为

A.90π

B.63π

C.42π

D.36π

1、(2016年山东高考)一个由半球和四棱锥组成的几何体,其三

视图如图所示.则该几何体的体积为

(A)12

33

(B)

12

3

(C)

12

3

(D)

2

1+π

【答案】D

3、(2016年天津高考)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图

如图所示,则该几何体的侧(左)视图为()

【答案】B

4、(2016年全国I 卷高考)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π

3

,则它的表面积是

(A )17π (B )18π (C )20π (D )28π 【答案】A

6、(2016年全国II 卷高考)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )

(A )20π (B )24π (C )28π (D )32π 【答案】C

7、(2016年全国III 卷高考)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为

(A )18365+ (B )54185+ (C )90 (D )81 【答案】B

1、(2016年北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.

【答案】3.2

2、(2016年四川高考)已知某三菱锥的三视图如图所示,则该三菱锥的体积 。

【答案】

33

3、(2016年浙江高考)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2

,体积是______cm 3

.

斜二测法:原斜S S 4

2=

例9:一个水平放置的平面图形的斜二测直观图是一个底角为ο

45,腰和上底边均为1的等腰梯形,则这个平面图形的面积是( ) A .2221+ B . 22+ C .21+ D .2

2

1+

例10:对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )

A .2倍

B .

24倍 C .2

2

倍 D .12倍

例11:如图,已知四边形ABCD 的直观图是直角梯形A 1B 1C 1D 1,且A 1B 1=B 1C 1=2A 1D 1=2, 则四边形ABCD 的面积为( )

A .3

B .3 2

C .6 2

D .6

例12:用斜二测画法画一个水平放置的平面图形为如下图的一个正方形,则原来图形的形状是( )

旋转体:

例13:下列几何体是旋转体的是( )

A B C D

例14:如图,在四边形ABCD 中,090DAB ∠=,,,

22CD =,2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积

及体积. 真题:

【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )

223

π(B )

423

π()

22π

()

42π

题型二:定义考察类题型

例15:已知直线l 、m ,平面βα、,则下列命题中假命题是( ) A .若βα//,α?l ,则β//l B .若βα//,α⊥l ,则β⊥l

C .若α//l ,α?m ,则m l //

D .若βα⊥,l =?βα,α?m ,l m ⊥,则β⊥m 例16:给定下列四个命题:

①若一条直线与一个平面平行,那么过这条直线的平面与这个面相较,则这线平行于交线 ②若一条直线与一个平面垂直,那么这条直线垂直于这个平面内的任一直线 ③若两个平面平行,那么分别在这两个平面内的两条直线平行 ④若两个平面垂直,那么分别在这两个平面内的两直线垂直 其中,为真命题的是( )

A .○1和○2

B .○2和○3

C .○3和○4

D .○2和○4

例17:已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )

A .若α⊥β,m ?α,则m ⊥β

B .,,αγβγαβ⊥⊥若则‖

C .,,m m αβαβ若则‖‖‖

D .ββααβα⊥?=?⊥?⊥l c c l l ,,,

例18:已知m n 、是两条不同的直线,αβ、是两个不同的平面,有下列命题: ①若,//m n αα?,则//m n ; ②若//m α,//m β,则//αβ; ③若,m m n α⊥⊥,则αn ; ④若,m m αβ⊥⊥,则//αβ; 其中真命题的个数是( )

A .1个

B .2个

C .3个

D .4个 例19:如图,四棱锥S —ABCD 的底面为正方形,SD ⊥底面ABCD ,则下

列结论

中不正确的是( )

A 、AC ⊥S

B B 、AB ∥平面SCD

C 、SA 与平面SB

D 所成的角等于SC 与平面SBD 所成的角 D 、AB 与SC 所成的角等于DC 与SA 所成的角

例20:已知,αβ为不同的平面,A 、B 、M 、N 为不同的点,a 为直线,下列推理错误的是( ) A.,,,,A a A B a B a βββ∈∈∈∈?? B.,,,,M M N N MN αβαβαβ∈∈∈∈?=I

C.,,A A A αβαβ∈∈?=I

D.,,A B M A B M αβ∈∈、、、、且A 、B 、M 不共线αβ?、重合

真题:

【2016年浙江高考】已知互相垂直的平面αβ, 交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( ) A.m ∥l B.m ∥n

C.n ⊥l

D.m ⊥n

【答案】C

【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α?,m β?( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m

【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )

A .l 至少与1l ,2l 中的一条相交

B .l 与1l ,2l 都相交

C .l 至多与1l ,2l 中的一条相交

D .l 与1l ,2l 都不相交

【2015高考湖北,文5】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( ) A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件

C .p 是q 的充分必要条件

D .p 既不是q 的充分条件,也不是q 的必要条件

题型三:直线与平面、平面与平面平行的判定与性质 证明平行的方法:

线线平行:相似,全等;平行线判断定理(内错角相等,同旁内角互补等),(高中阶段一般不考,只作为转化的一个桥梁)。

线面平行:(1)根据定理证明(面线线线////?);(2)通过面面平行的性质定理(面线面面////?) 面面平行:(1)平面α中分别有两条相交线与平面β的两条相交线平行 (2)平面α的法向量与平面β的法向量平行

例21:如图,在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,

侧面PAD ⊥底面ABCD

,且2

PA PD AD ==,若E 、F 分别

为PC 、BD 的中点.

(1)求证:EF ∥平面PAD ; (2)求证:平面PDC ⊥ 平面PAD .

例22:如图所示,在正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点,求证:MN P 平面A 1BD.

1

A

例23:如图,直棱柱111C B A ABC -中,D ,E 分别是AB ,1BB 的中点,1AA =AC=CB=2

AB 。

例24:如图所示,在四棱锥O-ABCD 中,底面ABCD 四边长为1的菱形, ∠ABC=

4

π

, OA ⊥底面ABCD,OA=2,M 为OA 的中点,N 为BC 的中点 (Ⅰ)证明:直线MN ∥平面OCD ; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。

例25:如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且

13

BM BD =,1

3AN AE =.求证://MN 平面CDE .

例26:如图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 分别是C 1C 、B 1C 1、C 1D 1的中点,求证:平面MNP ∥平面A 1BD.

例27:已知四棱锥P-ABCD 中, 底面ABCD 为平行四边形. 点M 、N 、Q 分别在PA 、BD 、PD 上, 且PM :MA=BN :ND=PQ :QD. 求证:平面MNQ ∥平面PBC.

题型四:线与面、面与面的垂直的证明方法

三垂线定理:如果在平面内的一条直线与平面的一条斜线在这个平面内的射影垂直,则它也和这条直线垂直。 三垂线逆定理:如果:如果在平面内的一条直线与平面的一条斜线垂直,则它也和这条直线在这个平面内的射影垂直。

例28:直三棱柱ABC-A 1B 1C 1中,BC AB ⊥,E 是A 1C 的中点,ED A C ⊥1且交AC 于D ,A A AB BC 12

2

== .

(I )证明:B C 11//平面A BC 1;(II )证明:A C 1⊥平面EDB .

例29:如图所示,已知四棱锥P ABCD -的底面ABCD 是菱形; PA ⊥平面ABCD ,

PA AD AC ==,点F 为PC 的中点. (Ⅰ)求证://PA 平面BFD ; (Ⅱ)求证面BFD PAC ⊥.

N

M

P

D

C

Q B

A

D

E

A 1

C

B

A

C 1

B 1

例30:如图,在棱长为a 的正方体1111D C B A ABCD -中,G F E 、、分别 是1CC CD CB 、、 的中点。 (1)求证:平面//11D AB 平面EFG ; (2)求证:⊥EF 平面C AA 1

例31:如图,在三棱柱111ABC A B C -中,侧面11ABB A ,11ACC A 均为正方形,∠=90BAC o

,点D 是棱11B C 的中点.

(Ⅰ)求证:1A D ⊥平面

11BB C C ; (Ⅱ)求证:1//AB 平面1A DC ;

例32:如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2, M 为PC 的中点。

(1)求证:BM ∥平面PAD ; (2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦。

F

G

E

D

B

A B 1

D 1

1

·

·

A

B

C

C 1

B 1

A 1

D

例33:在如图所示的几何体中,四边形ABCD 是正方形,BCD A MA 平面⊥,PD ∥MA ,E G F 、、分别为

MB 、PC PB 、的中点,且2MA PD A D ==.

(Ⅰ)求证:平面PDC EFG 平面⊥;

(Ⅱ)求三棱锥的体积之比与四棱锥ABCD P MAB P --.

例34:如图,在直三棱柱ABC —A1B1C1中,AC=BC ,点D 是AB 的中点。 (1)求证:D CA BC 11//平面 (2)求证:平面D CA 1⊥平面B B AA 11

例35:如图所示,已知矩形ABCD 中,AB=10,BC=6,将矩形沿对角线BD 把△ABD 折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上. (Ⅰ)求证:1BC A D ⊥;

(Ⅱ)求证:平面1A BC ⊥平面1A BD ; (Ⅲ)求三棱锥1A BCD -的体积.

真题:

【2016年上海高考】如图,在正方体ABCD ?A 1B 1C 1D 1中,E 、F

分别为BC 、

BB 1的中点,则下列直线中与直线EF 相交的是( )

(A)直线AA 1 (B)直线A 1B 1 (C)直线A 1D 1 (D)直线B 1C 1

【2017年新课标I 卷第6题】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )

【2017年新课标III 卷第10题】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则

A .11A E DC ⊥

B .1A E BD ⊥

C .11A E BC ⊥

D .1A

E AC ⊥

【2015高考山东,文18】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点. (I )求证://BD 平面FGH ;

(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .

题型五:空间中的夹角

知识点:夹角的分类:线线夹角、线面夹角、面面夹角 三者在计算或证明时的转换关系: 面面

线面

线线

计算三种夹角的方法:勾股定理、向量、坐标等,对于夹角问题我们一般分为三个步骤: ①找角,②证明所找的角,

③计算所找角的大小(切记不可找出来之后不证明就开始计算)

异面直线的夹角问题:

例36:在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,

a BC AB BC AD BAD ===∠,//,90ο2,,AD a PA ABCD PD =⊥底面与底面成30° (1)若,AE PD E ⊥为垂足,求证:BE PD ⊥;

(2)在(1)的条件下,求异面直线AE 与CD 所成角的正切值;

例37:如图,已知P 是平行四边形ABCD

所在平面外一点,M 、N 分别是AB 、PC 的中点

(1)求证:MN//平面PAD ;(2)若4MN BC ==,43PA =,求异面直线PA 与MN 所成的角的大小

例38:如图,四边形ABCD 是边长为1的正方形,MD ABCD ⊥平面,

NB ABCD ⊥平面,且MD=NB=1,E 为BC 的中点,求异面直线

NE 与AM 所成角的余弦值

例39:如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所

成的角的大小是____________。

例40:已知正四面体ABCD 中,各边长均为a ,如图所示,,E F 分别为,AD BC 的中点,连接,AF CE ,求异面直线,AF CE 所成角的余弦值。

A

E

D

C B

A

M

N

E

N M

B 1

A 1

C 1

D 1B

D C A

例41:已知S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA =2

π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值.

例42:已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A )

34 (B )54 (C )7

4

(D)

34例43:如图,在正方体''''D C B A ABCD -中,F E ,分别是','BC AB 的中点。 (1)若M 为'BB 的中点,证明:平面EMF ∥平面ABCD (2)求异面直线EF 与'AD 所成的角

例44:如图,四面体ABCD 中,AB ⊥BC ,AB ⊥BD ,BC

⊥CD ,且AB =BC =6,BD =8,E 是AD 中点,求BE 与CD 所成角的余弦值。

B

M A

N C

S

M F E

D B A

A'

B'

线面夹角(了解):

例45:如图,四棱锥P-ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,

AC=22,PA=AD=2,E 是PC 上的一点, 设二面角A-PB-C 为90°,求PD 与平面PBC 所成角的大小。

例46:如图,直三棱柱111ABC A B C -中,AB AC ⊥,D 、E 分别是1AA ,1B C 的中点,DE ⊥平面1BCC . (1)证明:AB=AC

(2)设二面角A-BD-C 为0

60,求1B C 与平面BCD 所成的角的大小

A 11

C 1

B C

A

D E

A 1

C 1

B 1

A

C

B

真题:

【2016年全国I 卷高考】如平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=I 平面,

11ABB A n α=I 平面,则m ,n 所成角的正弦值为

(A )

32(B )22(C )33(D )13

【2015高考浙江,文18】如图,在三棱锥111ABC A B C -中,11ABC 90AB AC 2,AA 4,A ∠====o

,在底 面ABC 的射影为BC 的中点,D 为11B C 的中点.

(1)证明:11D A BC A ⊥平面; (2)求直线1A B 和平面11B C B C 所成的角的正弦值.

【2014高考,文18】如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底面ABCD ,2

2AC =,

2PA =,E 是PC 上的一点,2PE EC =。

(Ⅰ)证明:PC ⊥平面BED ;

(Ⅱ)设二面角A PB C --为90o ,求PD 与平面PBC 所成角的大小。

【2015高考湖南,文18】(本小题满分12分)如图4,直三棱柱111ABC A B C -的底面是边长为2的正三角形,

,E F 分别是1,BC CC 的中点。(I )证明:平面AEF ⊥平面11B BCC ;

(II )若直线1A C 与平面11A ABB 所成的角为45o

,求三棱锥F AEC -的体积。

题型六:距离问题:点线距离(定义法、等体积法、向量法、空间坐标法);线面距离;面面距离。

例47:已知正四棱柱1111ABCD A B C D -的地面边长为1,则棱场为2,点E 为1CC 的中点,求点1D 到平面BDE 的距离。

E

D

A

P

1中 ,2AB =,1CC =E 为1CC 的中点,

则直线1AC 与平面BED 1

例120?,若ABC ?所在平面α外一点P 到A 、B 、C 的距离都是14,则P 到α的距离是( )

A.13

B.11

C.9

D.7

B

例50:如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4

ABC π

∠=

, OA ABCD ⊥底面,

2OA =,M 为OA 的中点,N 为BC 的中点

(Ⅰ)证明:直线MN OCD

平面‖;

(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。

例51:αβ和为平面,,,,l A B α?β=∈α∈βAB=5,A,B 在棱l 上的射影分别为A ′,B ′,AA ′=3,BB ′=2.若二面角l α--β的大小为

23

π

,求,点B 到平面α的距离为_____________ 例52:P 为矩形ABCD 所在平面外一点,且PA ⊥平面ABCD ,P 到B ,C ,D 三点的距离分别是5,17,13,则P 到A 点的距离是( )

A.1

B.2

C.3

D.4

例53:如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,

4

ABC π

∠=

, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的

中点

N

B

G

C

D

A

F E

B

(Ⅰ)证明:直线MN OCD

平面‖;

(Ⅱ)求异面直线AB 与MD 所成角的大小;(Ⅲ)求点B 到平面OCD 的距离

例54:如图,直四棱柱ABCD – A 1B 1C 1D 1中,AB//CD,AD ⊥AB,AB=2,AD=

,AA 1=3,E 为CD 上一点,DE=1,EC=3

(1) 证明:BE ⊥平面BB 1C 1C;

(2) 求点B1 到平面EA 1C 1 的距离

例55:如图,已知多面体ABC -DEFG 中,AB 、AC 、AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB=AD=DG=2,AC=EF=1。

(1)试判断CF 是否与平面ABED 平行?并说明理由; (2)求多面体ABC -DEFG 的体积。

例56:如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,

2, 2.CA CB CD BD AB AD ======

(I )求证:AO ⊥平面BCD ; (II )求点E 到平面ACD 的距离。

例57:如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900

。 (1)求证:PC ⊥BC ;

(2)求点A 到平面PBC 的距离。

C

D

B

O

E

-2018江苏高考数学立体几何真题汇编

A B C D E F 2008-2018江苏高考数学立体几何真题汇编 (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ??? E , F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)? ?????CB =CD F 是BD 的中点 ? CF ⊥BD ? ?? AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD

B C? (2009年第16题) 如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C . 求证:(1)EF∥平面ABC (2)平面A1FD⊥平面BB1C1C 证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC, 因为EF?平面ABC,BC?平面ABC,所以EF∥平面ABC (2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1, 又A1D?平面A1B1C1,故CC1⊥A1D, 又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C?平面BB1C1C 故A1D⊥平面BB1C1C,又A1D?平面A1FD, 故平面A1FD⊥平面BB1C1C

P A B C D D P A B C F E (2010年第16题) 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ; (2)求点A 到平面PBC 的距离. 证明:(1)因为PD ⊥平面ABCD , BC ?平面ABCD ,所以PD ⊥BC . 由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ?平面PCD , 所以BC ⊥平面PCD . 因为PC ?平面PCD ,故PC ⊥BC . 解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则: 易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍. 由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC , 因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F . 易知DF = 2 2 ,故点A 到平面PBC 的距离等于2. (方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h . 因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°. 从而AB =2,BC =1,得△ABC 的面积S △ABC =1. 由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3 . 因为PD ⊥平面ABCD ,DC ?平面ABCD ,所以PD ⊥DC . 又PD =DC =1,所以PC =PD 2+DC 2=2. 由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC = 2 2 . 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3 ,得h =2, 故点A 到平面PBC 的距离等于2.

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招

2018年高考数学压轴 题突破140之立体几何五种动态问题和解题 绝招 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招中高考数学名师张芙华2018-01-29 06:14:27 2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招 一.方法综述 立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性。一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等。此类题的求解并没有一定的模式与固定的套路可以沿用,很多学生一筹莫展,无法形成清晰的分析思路,导致该题成为学生的易失分点。究其原因,是因为学生缺乏相关学科素养和解决问题的策略造成的。 动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口。求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围。对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题。具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证。 二.解题策略 类型一立体几何中动态问题中的角度问题

【指点迷津】空间的角的问题,一种方法,代数法,只要便于建立空间直角坐标系均可建立空间直角坐标系,然后利用公式求解;另一种方法,几何法,几何问题要结合图形分析何时取得最大(小)值。当点M在P处时,EM与AF 所成角为直角,此时余弦值为0(最小),当M点向左移动时,EM与AF所成角逐渐变小时,点M到达点Q时,角最小,余弦值最大。 类型二立体几何中动态问题中的距离问题

立体几何题型归类总结

立体几何题型归类总结(总8 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

立体几何专题复习 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ① ???????? →???????→?? ??? 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为正方形 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★② r =d 、 球的半径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2 3 44,3 S R V R ππ== 球球(其中R 为球的半径)

俯视图 二、【典型例题】 考点一:三视图 1.一空间几何体的三视图如图1所示,则该几何体的体积为_________________. 第1题 2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________. 第2题 第3题 3.一个几何体的三视图如图3所示,则这个几何体的体积为 . 4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 . 第4题 第5题 2 2 侧(左)视图 2 2 2 正(主)视 3 俯视图 1 1 2 a

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为

A .1 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M PA C --为30?,求PC 与平面PAM 所成角的正弦值. 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ; (2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 2018年江苏理科:

立体几何经典题型汇总

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

2018高考数学立体几何含答案(最新整理)

5 ??n ? ? 2018 高考数学立体几何答案 1.(本小题 14 分)如图,在三棱柱 ABC ? A 1B 1C 1 中, CC 1 ⊥ 平面 ABC ,D ,E ,F ,G 分别为 AA 1 ,AC , A 1C 1 , BB 1 的中点,AB=BC = ,AC = AA 1 =2. (Ⅰ)求证:AC ⊥平面 BEF ; (Ⅱ)求二面角 B?CD ?C 1 的余弦值; (Ⅲ)证明:直线 FG 与平面 BCD 相交. 【解析】(1)在三棱柱 ABC - A 1B 1C 1 中, Q CC 1 ⊥ 平面 ABC , ∴ 四边形 A 1 ACC 1 为矩形.又 E , F 分别为 AC , A 1C 1 的中点, ∴ AC ⊥ EF , Q AB = BC ,∴ AC ⊥ BE , ∴ AC ⊥ 平面 BEF . (2)由(1)知 AC ⊥ EF , AC ⊥ BE , EF ∥CC 1 . 又CC 1 ⊥ 平面 ABC ,∴ EF ⊥ 平面 ABC . Q BE ? 平面 ABC ,∴ EF ⊥ BE . 如图建立空间直角坐称系 E - xyz . 由题意得 B (0, 2, 0) , C (-1, 0, 0) , D (1, 0,1) , F (0, 0, 2) , G (0, 2,1) , ∴CD =(2, 0,1) , CB =(1, 2, 0) ,设平面 BCD 的法向量为 n = (a , b , c ) , u u u r CD = 0 ∴? uur n ? ,∴?2a + c = 0 , a + 2b = 0 ? ? CB = 0 ? 令 a = 2 ,则b = -1 , c = -4 ,∴ 平面 BCD 的法向量 n = (2, - 1,, - 4) ,

立体几何常见重要题型归纳-高考立体几何题型归纳

立体几何常见重要题型归纳 阳江一中 利进健 题型一 点到面的距离 常见技巧:等体积法 例1:如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1分别是棱AD ,AA 1的中点. (1)设F 是棱AB 的中点,证明:直线EE 1∥平面FCC 1; (2)证明:平面D 1AC ⊥平面BB 1C 1C ; (3)求点D 到平面D 1AC 的距离. 解析:(1)11//,,,//,22 CD AB CD AB AF AB CD AF CD AF ==∴= ∴ 四边形AFCD 为平行四边形 ∴//CF AD 又AD ?面11ADD A ,CF ?面11ADD A ∴//CF 面11ADD A 2分 在直四棱柱中,11//CC DD , 又AD ?面11ADD A ,CF ?面11ADD A ∴1//CC 面11ADD A 3分 又11,,CC CF C CC CF ?=?面1CC F ∴面1CC F //面11ADD A 又1EE ?面11ADD A ,1//EE ∴面1CC F 5分 (2)122 BC CD AB === ∴ 平行四边形AFCD 是菱形 DF AC ∴⊥ ,易知//BC DF AC BC ∴⊥ 7分 在直四棱柱中,1CC ⊥面ABCD ,AC ?面ABCD 1AC CC ∴⊥ 又1BC CC C ?= AC ∴⊥面11BCC B 9分 又AC ?面1D AC ∴面1D AC ⊥面11BCC B 10分 (3)易知11D D AC D ADC V V --= 11分 ∴ 设D 到面1D AC 的距离为d ,则

近三年高考全国卷理科立体几何真题

新课标卷高考真题 1、(2016年全国I 高考)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面 ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.

2、(2016年全国II 高考)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,5 4 AE CF == ,EF 交BD 于点H .将DEF ?沿EF 折到'D EF ?位置,10OD '=. (Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.

3【2015高考新课标1,理18】 如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面AFC; (Ⅱ)求直线AE与直线CF所成角的余弦值.

4、[2014·新课标全国卷Ⅱ] 如图1-3,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点. (1)证明:PB∥平面AEC; (2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积. 图1-3

5、[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A1B1C1中,侧面BB1C1C 为菱形,AB⊥B1C. 图1-5 (1)证明:AC=AB1; (2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A -A1B1-C1的余弦值.

立体几何题型总结

立体几何类型题 如图所示,在四棱锥P ABCD -中,PD ⊥平面ABCD , 又 //AD BC ,AD DC ⊥, 且33PD BC AD ===. (Ⅰ)画出四棱准P ABCD -的正视图; (Ⅱ)求证:平面PAD ⊥平面PCD ; 并求 PE EB (Ⅲ)求证:棱PB 上存在一点E ,使得//AE 平面PCD ,的值. (Ⅰ)解:四棱准P ABCD -的正视图如图所示. ………………3分 (Ⅱ)证明:因为 PD ⊥平面ABCD ,AD ?平面ABCD , 所以 PD AD ⊥. ………………5分 因为 AD DC ⊥,PD CD D =I ,PD ?平面PCD ,CD ?平面PCD , 所以AD ⊥平面PCD . ………………7分 因为 AD ?平面PAD , 所以 平面PAD ⊥平面PCD . ………………8分 (Ⅲ)分别延长,CD BA 交于点O ,连接PO ,在棱PB 上取一点E ,使得1 2 PE EB =.下证//AE 平面 PCD . ………………10分 因为 //AD BC ,3BC AD =, 所以 13OA AD OB BC ==,即12OA AB =. 所以 OA PE AB EB = . 所以 //AE OP . ………………12分 因为OP ?平面PCD ,AE ?平面PCD , 所以 //AE 平面PCD . ………………14分 2如图所示,四棱锥P ABCD -的底面ABCD 是直角梯形,AD BC //,AB AD ⊥, AD BC AB 2 1 ==,PA ⊥底面ABCD ,过BC 的平面交PD 于M ,交PA 于 N (M 与D 不重合) . (Ⅰ)求证:BC MN //; (Ⅱ)求证:CD PC ⊥ ; (Ⅲ)如果BM AC ⊥,求此时PM PD 的值. 证明:(Ⅰ)因为梯形ABCD ,且AD BC //, 又因为?BC 平面PAD ,?AD 平面PAD , 所以//BC 平面PAD . 因为平面I BCNM 平面PAD =MN , 所以BC MN //. ……………………4分 (Ⅱ)取AD 的中点Q ,连结CQ . 因为AD BC //,AD BC 2 1 = , 所以AQ BC //,且AQ BC =. 因为AB BC =,且AB AD ⊥, 所以ABCQ 是正方形. 所以BQ AC ⊥. 又因为BCDQ 为平行四边形,所以且//CD BQ 所以⊥CD AC . 又因为PA ⊥底面ABCD , 所以PA ⊥CD . 因为A AC PA =I , 所以⊥CD 平面PAC , 因为PC ?平面PAC , 所以⊥CD PC . (Ⅲ)过M 作//MK PA 交AD 于K ,连结BK . 因为PA ⊥底面ABCD , O E D C B A P C N M P D B A K A B D P M C Q A B D P M C

2018高考理科数学分类之立体几何

立体几何 一、选择题: 1.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯眼,图中的木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) 俯 视 方 向 D. C. B. A. 2.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( ) A .1 B .2 C .3 D .4 3.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( ) A .4 B .8 C .12 D .16 4.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3 cm )是( )

俯视图 正视图 A .2 B .4 C .6 D .8 5.已知平面α,直线m ,n 满足m α?,n α?,则“//m n ”是“//m α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6.某圆柱的高为2,底面周长为16,其三视图如下图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A . B . C .3 D .2 7.在长方体1111ABCD A BC D -中,1AB BC == ,1AA =1AD 与1DB 所成角的余弦值为( ) A .15 B .6 C .5 D .2 8.设A 、B 、C 、D 是同一个半径为4的球的球面上四点,ABC ?为等边三角形且其面积 为D ABC -的体积最大值为( ) A . B . C . D .9.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .4 B .3 C .4 D .2 10.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( )

立体几何题型总结

立体几何题型总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

立体几何——点线面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线在此平面内。 公理2:过不在一条直线上的三点,有且只有一个平面 公理3:如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线。 1、公理的理解与应用 例1 已知,αβ为不同的平面,A 、B 、M 、N 为不同的点,a 为直线, 下列推理错误的是 ( ) A. ,,,,A a A B a B a βββ∈∈∈∈?? B. ,,,,M M N N MN αβαβαβ∈∈∈∈?= C. ,,A A A αβα β∈∈?= D. ,,A B M A B M αβ∈∈、、、、且A 、B 、M 不共线αβ?、重合 例2 下列条件中,能得到平面α∥平面β的是( ) A. 存在一条直线a a ααβ,∥,∥ B. 存在一条直线a a a αβ?,,∥ C. 存在两条平行直线a b a b a b αββα??,,,,∥,∥ D. 存在两条异面直线a b a a b αβα?,,,∥,∥ 例3 对于直线,m n 和平面α,下列命题中的真命题是() A. 如果,,,m n m n αα??是异面直线,那么//n α B. 如果,,,m n m n αα??是异面直线,那么n 和α相交 C. 如果,//,,m n m n αα?共面,那么//m n D. 如果//,//,,m n m n αα共面,那么//m n 例4 已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的 中点,则AE SD ,所成的角的余弦值为( ) A .13 B .3 C D .23

2016年_2018年立体几何全国卷高考真题

2015-2017立体几何高考真题 1、(2015年1卷6题)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 【答案】B 【解析】设圆锥底面半径为r ,则 12384r ??==16 3 r =,所以米堆的体积为211163()5433????=3209,故堆放的米约为 320 9 ÷1.62≈22,故选B. 考点:圆锥的性质与圆锥的体积公式 2、(2015年1卷11题)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=( ) (A )1 (B )2 (C )4 (D )8 【答案】B 【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为221 42222 r r r r r r πππ?+?++?=2254r r π+=16 + 20π,解得r=2,故选B. 考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式 3、(2015年1卷18题)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.

立体几何题型归类汇总

立体几何题型归类汇总

————————————————————————————————作者:————————————————————————————————日期:

立体几何专题复习 一、【知识总结】 基本图形 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ① ???????? →???????→?? ??? L 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 ②四棱柱 底面为平行四边形 平行六面体 侧棱垂直于底面 直平行六面体 底面为矩形 长方体 底面为正方形 正四棱柱 侧棱与底面边长相等 正方体 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★② 22 r R d =-(其中,球心到截面的距离为d 、 球的半径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切. 顶点侧面斜高高侧棱 底面O C D A B H S l 侧棱 侧面底面E'B' D' C'A'F'B D E A F C r d R 球面 轴球心 半径 A O O1 B A' C' D'B' C D O A B O C' A' A c

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2 3 44,3 S R V R ππ==球球(其中R 为球的半径) 平行垂直基础知识网络★★★ 平行关系 平面几线线平线面平 面面平 垂直关系 平面几线线垂线面垂面面垂 判 性 判定性判 判性判 面面垂 1.,//a b a b αα⊥⊥? 2.,//a a b b αα⊥?⊥ 3. 平行与垂直关系可互相转化

近五年浙江数学高考立体几何考题

近五年浙江数学高考立体几何考题 【2018年】 3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 俯视图 正视图 2 21 1 A .2 B .4 C .6 D .8 6.已知平面α,直线m ,n 满足m ?α,n ?α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 8.已知四棱锥S ?ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S ?AB ?C 的平面角为θ3,则 A .θ1≤θ2≤θ3 B .θ3≤θ2≤θ1 C .θ1≤θ3≤θ2 D .θ2≤θ3≤θ1 19.(本题满分15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC , ∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2. (Ⅰ)证明:AB 1⊥平面A 1B 1C 1; (Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.

3.某几何体的三视图如图所示(单位:cm), 则该几何体的体积(单位:cm2)是() A.+1 B.+3 C.+1 D.+3 9.(5分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则() A.γ<α<βB.α<γ<β C.α<β<γD.β<γ<α 19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点. (Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.

新版立体几何题型解题技巧适合总结提高用-新版-精选.pdf

第六讲立体几何新题型的解题技巧 考点1 点到平面的距离 例1(2007年福建卷理)如图,正三棱柱111ABC A B C 的所有棱长都为 2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角 1A A D B 的大小; (Ⅲ)求点C 到平面1A BD 的距离.例2.( 2006年湖南卷)如图,已知两个正四棱锥P-ABCD 与 Q-ABCD 的高分别为1和2,AB=4. (Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求异面直线 AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离. Q B C P A D O M A B C D 1 A 1 C 1 B

考点2 异面直线的距离例3已知三棱锥ABC S ,底面是边长为 24的正三角形,棱 SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求 CD 与SE 间的距离. 考点3 直线到平面的距离例4.如图,在棱长为 2的正方体 1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 考点4 异面直线所成的角例5(2007年北京卷文)如图,在Rt AOB △中, π6 OAB ,斜边4AB .Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C 的直二面角.D 是AB 的中点. (I )求证:平面COD 平面AOB ; (II )求异面直线 AO 与CD 所成角的大小. B A C D O G H 1 A 1 C 1 D 1 B 1 O O C A D B E

A B C Q P 例6.(2006年广东卷)如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平 面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE//AD. (Ⅰ)求二面角B —AD —F 的大小;(Ⅱ)求直线BD 与EF 所成的角. 考点5 直线和平面所成的角例7.(2007年全国卷Ⅰ理)四棱锥S ABCD 中,底面ABCD 为平行四边形,侧面 SBC 底面ABCD .已知45ABC ∠, 2AB ,22BC ,3SA SB . (Ⅰ)证明SA BC ; (Ⅱ)求直线SD 与平面SAB 所成角的大小. 考点6 二面角 例8.(2007年湖南卷文)如图,已知直二面角PQ ,A PQ ,B ,C ,CA CB , 45BAP , 直线CA 和平面 所成的角为30. (I )证明BC PQ ⊥;(II )求二面角B AC P 的大小. D B C A S

2018年高考数学立体几何试题汇编

2018 年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N 在左视图上的对应点为 B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A.2 17 B.2 5 C.3 D.2 18.如图,在平行四边形ABCM 中,AB AC 3 ,∠ACM 90 ,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB⊥DA . (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P为线段BC 上一点,且 2 BP DQ DA ,求三棱锥Q ABP 的体积.3 全国1 卷理科 理科第7 小题同文科第9 小题 18. 如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点 ABCD E, F AD ,BC DF △DFC C P 的位置,且PF BF . (1)证明:平面PEF 平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国 2 卷理科: 9.在长方体ABCD A1B1C1D1 中,AB BC 1 ,AA1 3 ,则异面直线A D 与DB1 所成角的余弦值为 1 A.1 5 B. 5 6 C. 5 5 D. 2 2 20.如图,在三棱锥P ABC 中,AB BC 2 2 ,PA PB PC AC 4 ,O 为AC 的中点.(1)证明:PO 平面ABC ;

(2)若点M 在棱BC 上,且二面角M PA C 为30 ,求PC 与平面PAM 所成角的正弦值. 全国3 卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12 分) 如图,边长为 2 的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点. ABCD CD M CD C D (1)证明:平面AMD⊥平面BMC ; (2)当三棱锥M ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 2018 年江苏理科: 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲.

高考数学题型归纳:立体几何题型解题方法

高考数学题型归纳:立体几何题型解题方法 精品资料欢迎下载 高考数学题型归纳:立体几何题型解题方法 如何提高学习率,需要我们从各方面去努力。WTT为大家整理了高考数学题立体几何题型解题方法,希望对大家有所帮助。 高考数学题型归纳:立体几何题型解题方法高考数学之立体几何 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决平行与垂直的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对

问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、 1 / 3 精品资料欢迎下载 面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2.判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:两平行平面没有公共点。 ⑵由定义推得:两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。

2018届高考数学立体几何(理科)专题02 二面角

2018届高考数学立体几何(理科)专题02 二面角 1.如图,在三棱柱111ABC A B C -中, 1,90A A AB ABC =∠=?侧面11A ABB ⊥底面ABC . (1)求证: 1AB ⊥平面1A BC ; (2)若15360AC BC A AB ==∠=?,,,求二面角11B A C C --的余弦值.

且,,,,平面 平面,点为的中点. (1)过点作一个平面与平面平行,并说明理由; (2)求平面与平面所成锐二面角的余弦值.

3.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形, 2AB AD =, BD =,且PD ⊥底面ABCD . (1)证明:平面PBD ⊥平面PBC ; (2)若Q 为PC 的中点,且1AP BQ ?=,求二面角Q BD C --的大小.

4.如图所示的几何体是由棱台和棱锥拼接而成的组合体,其底面四边形是边长为2的菱形,,平面. (1)求证:; (2)求平面与平面所成锐角二面角的余弦值.

5.在四棱锥P ABCD -中,四边形ABCD 是矩形,平面PAB ⊥平面ABCD ,点E 、F 分别为BC 、AP 中点. (1)求证: //EF 平面PCD ; (2)若0 ,120,AD AP PB APB ==∠=,求平面DEF 与平面PAB 所成锐二面角的余弦值.

6.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形, ,90AD BC ADC ∠=,平面PAD ⊥底面ABCD , Q 为AD 中点, M 是棱PC 上的点, 1 2,1,2 PA PD BC AD CD === ==(Ⅰ)若点M 是棱PC 的中点,求证: PA 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ; (Ⅲ)若二面角M BQ C --为30,设PM tMC =,试确定t 的值.

立体几何题型归类总结

立体几何专题复习 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ① ???????? →???????→?? ??? 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为正方形 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★② r d 、 球的半径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2 3 44,3 S R V R ππ==球球(其中R 为球的半径)

俯视图 1 1_________________. 第1题 2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________. 第2题 第3题 3.一个几何体的三视图如图3所示,则这个几何体的体积为 . 4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 . 第4题 第5题 侧(左)视图 正(主)视图 3 俯视图

5.如图5 是一个几何体的三视图,若它的体积是 a . 6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 . 7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm 8.设某几何体的三视图如图8(尺寸的长度单位为m ),则该几何体的体积为_________m 3 。 第 7题 第8题 9.一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_________________. 图9 正视图 侧视图 俯视图 俯视图 正 ( 主) 视图 侧(左)视图

相关文档
最新文档