浅析如何利用同步电动机实现无功补偿

浅析如何利用同步电动机实现无功补偿
浅析如何利用同步电动机实现无功补偿

浅析如何利用同步电动机实现无功补偿

张慧慧

(广东省水利水电第三工程局有限公司,广东东莞523710)

摘要:功率因数在电力系统中有着举足轻重的作用,功率因数无论过大还是过小,都对电网或电气设备不利,为了使其保持在合理区间,在电气设备运行中,往往会采取一定的技术手段进行人为调节,即通过改变无功,从而改变功率因数,也就是无功补偿。无功补偿技术的发展经历了多个阶段,到目前为止已经形成了多种无功补偿的技术。本文将从同步电动机如何进行无功调节的角度进行简要的分析说明。

关键词:功率因数、无功补偿、励磁、同步电动机。

我们都知道在电气设备运行时,功率因数cosψ不能太低,功率因数太低会造成电能浪费,而功率因数也不能太高,功率因数太高尤其当功率因数接近于1时,此时只剩下有功功率p,即感性无功和容性无功几乎相抵消,那么在电路中极有可能会表现为感性阻抗与容性阻抗发生串联或并联谐振,而这对电气设备运行是极其不利的。根据运行经验,电气设备在功率因数取0.9~0.95之间运行最佳。所以当功率因数太低或太高时,我们都需要对进行无功补偿,以保证功率因数在合理区间内。所以无功补偿在电力系统中有着不可忽缺的作用,选择合理的无功补偿方式,不仅可以减少经济投入和电能浪费,还可以提高电能质量,否则就会产生谐波、电压波动等诸多不利因素。无功补偿发展至今,已经形成了多种补偿技术,目前所用到的无功补偿装置主要有电容补偿(较为常用)、同步调相机补偿、静止无功补偿SVC、静止同步补偿SVG等。在上述几种补偿技术中,同步调相机补偿技术本质上就是励磁可调但空载运行的同步电动机,即在其转轴上不带机械负载,而通过调节励磁电流大小改变其发出无功的大小及性质,从而达到无功补偿的效果。同步调相机不进行机械能和电能的转换,只是补偿电力系统所需的无功功率,从而改善功率因数。既然同步调相机无功补偿本质上就是通过改变空载运行的同步电动机所发出的无功功率的大小和性质进行无功补偿,那么当励磁可调的同步电动机带负载后还能不能在保持其有功不变的情况下进行无功调节,下面我们就进行简要的分析:

同步电机由隐极机和凸极机,而隐极机仅为凸极机的特例,为了简便期间,下述分析均以隐极机为例。由等效电路图可得同步电动机电压平衡方程式:

U

r jx

E

....E I jx r U +?+=)((:外加电压.U ,:反电势.

E ,:绕组电阻r ,:绕组感抗x )

另外由同步电动机的功率平衡方程式: )(ad fe m M cu p p p P P p P +++==-21,两边同时除以同步角速度Ω可得:

(其中:1P :电网输入功率, 2P :电动机输出的机械功率, M P :气隙磁场作用产生的电磁功率, m p :机械损耗, fe p :铁芯损耗, ad p :附加损耗, cu p :定子绕组铜耗)

02T T T M +=(M T :电磁驱动转矩,2T :负载制动转矩, 0T :空载制动转矩,Ω

)(ad fe m p p p T ++=0) 为了分析简化,我们假设电网电压恒定,频率恒定,且为无内阻的无穷大系统,那么当忽略定子绕组铜耗,则可由同步电动机的电压平衡方程式及功率平衡方程式得出:

M P P ≈1 ,

jx E U +≈..

我们再进行简化假设,若空载制动转矩为常数,且保持负载制动转矩不变,则可得知电磁驱动转矩常数=M T ,从而常数==1P P M ,常数ψ常数,θ====cos P sin 1mUI x

mEU P M ,那么常数ψ常数,θ==cos sin I E 。从上面分析式可以定性看出,在保持负载转矩即输出机械功率不变的情况下,若调节励磁电流可以导致电枢电流变化,从而引起功率因数变化,即无功的增加或减少。而从上述分析式得到的相量图(见下图)中我们可以得出以下结论:当输入仅为有功时,电枢电流最小,此时为正常励磁;仅调节励磁电流,不会引起有功的变化;当增加励磁电流,即过励时,感应

电动势增加,输入有功不变,但超前的容性无功增加;当减小励磁电流,即欠励时,感应电动势减小,输入有功不变,但滞后的感性无功增加。

相量图

既然励磁可调的同步电动机在带负载情况下可以进行无功调节,那么我们就通过案例对同步电动机的无功补偿作用进行定量分析:

某制造厂目前所有电力设备所消耗有功功率1800kW ,功率因数cos ψ=0.8(滞后),现由于工厂扩产,消耗功率需增加到2200kW ,由于该厂原来功率因数较低,致使电能浪费较多,那么如果通过购入额定效率为95%的同步电动机在额定运行状态下进行无功调节(调节后功率因数cos ψ=0.9,滞后)和达到扩产目的,则需要选择额定功率因数为多少的同步电动机?下面我们对该案例进行计算分析:

由本案例可知:kW P 2200=总,(滞后)ψ总9.0cos =,则kW P S 4.24449

.02200cos ===总总总ψ5.1065

0.9-14.2444c o s -122=?=?=总总总ψS Q ; kW P 18001=,(滞后)ψ8.0cos 1=,则

22508

.01800cos 111===ψP S

13508.0-12250cos 121211=?=-?=ψS Q ;

kW P 4002=,则

2

2cos 400ψ=S ,2222222cos -1cos 400cos -1ψψψ?=?=S Q , 另21Q Q Q +=总,那么由222cos -1cos 40013505.1065ψψ?+

=得出: (超前)ψ0.81cos 2=。

由上计算分析可知,只需选择一台额定效率为0.95,额定功率因数为0.81(超前),额定功率为400×0.95=380kW 的同步电动机即可达到无功补偿和扩产的目的。所以在适合的背景情况下,可以选择励磁可调的同步电动机进行无功补偿,这样不仅可以可以提高功率因数,减少电能浪费,还可以减少增加无功补偿装置的专项费用。当然在本案例中,如果制造厂在扩产前就含有励磁可调的同步电动机,那么我们也可以利用其原有的同步电动机进行无功功率的调节而达到调节功率因数的效果。也就是说在所有含有励磁可调的同步电动机的动力系统运行时,如果我们发现功率因数不合理时,就可以通过调节励磁电流,而改变同步电动机的无功功率的大小和性质,从而达到调节功率因数的效果。

综上所述,励磁可调的同步电动机在非空载运行时也可以通过改变励磁电流而改变其输出无功功率,进而改善功率因数,使其达到预期的要求,所以在含有励磁可调的同步电动机和异步电动机的混合动力系统中,我们可以就地取源,利用现有资源进行无功调节,而不必进行无功补偿装置的专项投资。

参考文献:《电机学》(中国电力出版社)

《谐波抑制和无功功率补偿》(机械工业出版社)

《同步发电机励磁系统原理与运行维护》(中国水利水电出版社)

《励磁控制与电力系统稳定》(中国电力出版社)

第四章 异步电动机的功率因数与无功补偿.doc

第四章异步电动机的功率因数与无功补偿 §4-1异步电动机的功率因数与无功功率的经济当量 §4-2 电动机无功补偿的分类 §4-3电动机就地补偿的技术经济效益 §4-4绕线型感应电动机的转子进相器 §4-1异步电动机的功率因数与无功功率的经济当量 工矿企业消耗的无功功率异步电动机约占70%。不少电动机负载率很低,经常处在轻载或空载运行,功率因数普遍不高。负载率愈低,则功率因数愈低,无功功率相对于有功功率的百分比更为显著地浪费电能。因此对于异步电动机采用就地无功补偿以提高功率因数、节约电能,减少运行费用以及提高电能质量具有重要的意义。 用户功率因数的高低,直接关系到电网中的功率损耗和电能损耗,关系到供电线路的电压损失和电压波动,而且关系到节约用电和整个供电区域的供电质量。但在实际电力系统中异步电动机作为传统的主要负荷使电网产生感性无功电流,这些无功电流都导致电网中产生大量的无功功率。在无功功率传递过程中会消耗大量的有功功率率,由于安装了无功补偿容量,减少了无功功率传输而降低的有功功率损耗值与无功功率减少值的比值,即输送的无功功率减少1 kvar(或增加1 kvar 无功补偿容量)时所减少的有功功率损耗值就是无功功率的经济当量。 线路的有功功率损耗值为:

安装无功补偿容量Q bch 后,有功功率损耗值为: 减少的有功功率损耗为: 无功补偿的经济当量为: 其中C y 为无功功率通过线路时引起的有功功率损耗的单位损耗值;Q bch /Q 为无功功率的相对降低值,称为补偿度。 当补偿度很低,即Q bch <>Q 时, C bch =C y 说明补偿容量越大,对减小有功损耗的作用越小,并非补偿容量越大越经济。补偿容量的大小需通过技术经济比较来确定。 232232222332210101010L LP LQ S R P Q P R U U P Q R R U U P P ----?+==?=?+?=+22 ' 3322()1010bch L Q Q P P R R U U ---=?+?'32(2)10bch bch L L Q Q Q P P P R U --?=-=?32232(2)10(2)10(2)(2)bch L bch bch bch LQ bch bch y Q Q P C R Q U Q QQ R QU P Q Q C Q Q Q ---?==?-=?=-=-

浅谈电动机无功功率就地补偿

浅谈电动机无功功率就地补偿论文导读:现代工矿企业中,三相异步电动机是最常用的电气设备之一,在企业的生产设备中占有相当大的比例。由于它们都是电感性负荷,所以在企业内部的生产运行中,功率因数一般都比较低,需要从电源中吸收大量的无功功率,才能正常工作,给企业造成较大的电压损失和电能损耗。4.4应避免电容器和电动机产生自激电压。关键词:电动机,电容器,就地无功补偿,无功功率 0.概述 现代工矿企业中,三相异步电动机是最常用的电气设备之一,在企业的生产设备中占有相当大的比例。由于它们都是电感性负荷,所以在企业内部的生产运行中,功率因数一般都比较低,需要从电源中吸收大量的无功功率,才能正常工作,给企业造成较大的电压损失和电能损耗。无功补偿是指采用另加无功补偿装置的办法,让无功负荷与无功补偿装置之间进行无功功率交换,以提高系统的功率因数,降低能耗,从而大大减少供电线路,改善电网电压质量。 许多企业一般都是在企业内部配电室里低压母线上集中安装一些电容器柜,对变配电系统的无功功率进行补偿,这对于提高企业内部的供电能力,节约变配电损耗都有积极作用。可是,由于企业内部的电动机大都通过低压导线连接,分散在各个生产车间,形成企业内部的输配电网络,由此,大量的无功电流仍然在企业内部的输配电线路中流动,这些无功电流在企业内部所造成的损耗,依然不能解决。 电动机无功功率就地补偿,就是把电动机所需要的无功电流局限在电

动机设备的最终端,实现无功功率就地平衡,使得整个变配电网络的功率因数都比较高,有效地减少输配电线路的无功损耗。 1.三相异步电动机运行功率因数及损耗 三相异步电动机运行时,所消耗的功率包括有功功率和无功功率两个分量。有功功率是用于电动机产生机械转矩并且驱动负载所需的功率,它的电流随负载的增加而增加,而无功功率,则是用于电动机内部的电场与磁场随着电源频率的反复变化,在负载与电源之间不断地进行能量交换时所消耗的功率。无功电流在负载变化的情况下,其变化很微小,在相位上,电流的变化总是滞后于电压90°,所以是纯电感性质的。在实际运行中,电源供给电动机的总电流是有功电流和无功电流的矢量和,当电动机处于满负荷运行时,有功电流大于无功电流,总电流的功率因数较高,而当负载下降时,有功电流减小,无功电流基本不变,所以功率因数降低。 可以这样认为:当电动机的输出功率一定时,功率因数越低,就意味着其所需的无功功率越大,因而造成的损耗也较大。实践证明,无功功率所产生的电能损耗,主要是发生在输配电线路上的,对于那些距离电源较远,线路电阻比较大,电动机运行功率因数低的终端设备,所造成的无功损耗就更加突出了。 2.无功功率就地补偿原理及电容量的选择 2.1因为在电容负载中产生的超前无功电流与在电感负载中产生的滞后无功电流能够相互补偿,所以在电动机电源终端并联一个适当容量的电容器,就可以使电动机所需的无功电流大部分由并联的电容器供

浅谈无功补偿原理及无功补偿率

浅谈无功补偿原理及无功补偿率 无功补偿原理 电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。 简介编辑 无功补偿原理 当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。 电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。此时电流滞后电压一个角度φ。在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的矢量和:  无功功率为: 有功功率与视在功率的比值为功率因数: cosf=P/S 无功功率的传输加重了电网负荷,使电网损耗增加,系统电压下降。故需对其进行就近和就地补偿。并联电容器可补偿或平衡电气设备的感性无功功率。当容性无功功率QC等于感性无功功率QL时,电网只传输有功功率P。根据国家有关规定,高压用户的功率因数应达到0.9以上,低压用户的功率因数应达到0.85以上。 如果选择电容器功率为Qc,则功率因数为: cosφ= P/ (P2 + (QL-Qc)2)1/2 在实际工程中首先应根据负荷情况和供电部门的要求确定补偿后所需达到的功率因数值,然后再计算电容器的安装容量: Qc = P(tanf1 - tanf2)=P〔(1/cos2f1-1)1/2-(1/cos2f2-1)1/2〕 式中:

浅谈10KV线路的无功补偿

浅谈10KV线路的无功补偿 电力网在运行时,电源供给的无功功率是电能转换为其他形式能的前提,它为电能的输送、转换创造了条件,没有它,变压器就不能变压与输送电能,没有它,电动机的旋转磁场就建立不起来,电动机就无法转动,但是,长距离输送无功电力,又会造成有功功率的损耗和电压质量的降低,这不仅影响电力网的安全经济运行,而且也影响产品的质量。因此,如何减少无功电力的长距离输送,已成为电力行业一个关键性的问题。 无功补偿的原则之一:集中补偿与分散补偿相结合,以分散补偿为主。这就要求在负荷集中的地方进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,目的是做到无功就地平衡,减少其长距离输送。由于用户端随机、随器、随荷补偿的不完全或未进行补偿,线路上仍有大量的无功负荷在传输。采用在10千伏线路上并联高压电容器实现就近补偿,以降低线路传输电流,降低线路损耗,这就是线路无功补偿。 1.线路补偿容量的确定 线路补偿电容器装置一般安装在室外电线杆上,没有自动投切装置,所以只能进行固定补偿。为此选定的电容器容量必须为线路流动的最小无功负荷,否则会发生无功倒送。所以要进行线路无功补偿就必须实测低谷时期无功负荷,然后确定无功补偿容量。 2. 线路电容器安装地点及补偿容量 2.1无功负荷沿线路均匀分布 根据理论计算,从降低线损的角度看,以下补偿容量和安装位置为最佳值: 2.1.1只安装一组电容器 Q为该线最小负荷时无功功率值,L为线路总长度。 C0=1/3Q 由变电所实施无功补偿。 C1=2/3Q

2.1.2安装两组电容器 C0=1/5Q 由变电所实施无功补偿。C1=C2=2/5Q 2.1.3安装三组电容器

浅谈无功补偿及消谐装置

浅谈无功补偿及消谐装置 【摘要】工农业生产规模的进一步扩大,电力用户除了对电能总量需求量不断增加外,对供配电系统供电安全性、可靠性、经济性等也提出了更高的要求。目前,供配电系统普遍存在供电线路错综复杂、负荷分布范围广、线损较高等问题,加上供电区域电力负荷用电时段带有明显的不确定性,使得系统供电电压水平波动较大,供电质量较差,给工农业生产和供配电企业带来巨大的经济损失,现阶段我国大多电力电子装置功率因数很低,给电网带来较大额外负担,并影响供电质量,因此,抑制谐波和提高功率因数以成为电力电子技术、电气自动化技术及电力系统研究领域所面临的一个重大课题,正在受到越来越多的关注。本文简单介绍了无功功率的补偿问题和现在的无功补偿方法。 关键词无功补偿消谐供电 一.无功补偿, 就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。1.无功补偿的合理配置原则从电力网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤以低压配电网所占比重最大。为了最大限度地减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配置,应按照“分级补偿,就地平衡”的原则,合理布局。(1)总体平衡与局部平衡相结合,以局部为主。(2)电力部门补偿与用户补偿相结合。在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。因此,为了减少无功功率在网络中的输送,要尽可能地实现就地补偿,就地平衡,所以必须由电力部门和用户共同进行补偿。(3)分散补偿与集中补偿相结合,以分散为主。集中补偿,是在变电所集中装设较大容量的补偿电容器。分散补偿,指在配电网络中分散的负荷区,如配电线路,配电变压器和用户的用电设备等进行的无功补偿。集中补偿,主要是补偿主变压器本身的无功损耗,以及减少变电所以上输电线路的无功电力,从而降低供电网络的无功损耗。但不能降低配电网络的无功损耗。因为用户需要的无功通过变电所以下的配电线路向负荷端输送。所以为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿。所以,中、低压配电网应以分散补偿为主。(4)降损与调压相结合,以降损为主。 2.无功补偿的效益在现代用电企业中,在数量众多、容量大小不等的感性设备连接于电力系统中,以致电网传输功率除有功功率外,还需无功功率。如自然平均功率因数在0.70~0.85之间。企业消耗电网的无功功率约占消耗有功功率的60%~90%,如果把功率因数提高到0.95左右,则无功消耗只占有功消耗的30%左右。由于减少了电网无功功率的输入,会给用电企业带来效益。(1)、节省企业电费开支。提高功率因数对企业的直接经济效益是明显的,因为国家电价制度中,从合理利用有限电能出发,对不同企业的功率因数规定了要求达到的不同数值,低于规定的数值,需要多收电费,高于规定数值,可相应地减少电费。可见,提高功率因数对企业有着重要的经济意义。(2)、提高设备的利用率。对于原有

国家标准《静止式动态无功补偿装置功能特性》(精)

国家标准《静止式动态无功补偿装置功能特性》 征求意见稿编制说明 2005年7月 一、概述 国家标准《静止式无功功率补偿装置(SVC)功能特性导则》被列入了2003年国家标准制修订计划,计划编号为20032411-T-469。完成年限2005年。本标准由国家标准化管理委员会提出;全国电压电流等级和频率标准化技术委员会(以下简称“标委会”)归口并负责起草。 本标准主要起草单位: 本标准主要起草人: 本标准参加起草单位: 本标准参加起草人: 为了保证标准质量,特别邀请西安交通大学夏道止教授、王兆安教授、清华大学陈建业教授、中国电力科学研究院林海雪教授级高工(兼)、全国电力电子学标委会秘书处周观允教授级高工(兼)担任标准编制工作组顾问。 1 标准项目的提出和编制过程 该项目是在全国电压电流等级和频率标委会委员、鞍山荣信电力电子有限公司左强总经理的提议下,于2001年初和《静止式动态无功补偿装置(SVC) 现场试验导则》国家标准项目一起,向国家标准委提出立项申请,2003年底被批准立项的。 2004年第1季度,标委会秘书处研究确定:成立以全国电压电流等级和频率标委会秘书处、全国电力电子学标委会秘书处、中国电力科学研究院、西安领步电能质量研究、鞍山容信电力电子有限公司为主要起草单位的标准编制工作组;随着工作的进一步开展,还将扩展供电、用电、设备及其主要部件制造行业的工程技术人员参加标准编制工作。 根据2004年6月23日国家标准委高新技术部有关“无功补偿装置”国家标准规划及制定工作会议精神,两项《静止式动态无功补偿装置(SVC)》国家标准的制定过程中将积极吸收相关行业和单位的意见。 2004年12月21-23日,于北京召开了主要起草人和顾问工作扩大会议。会议就采用美国IEEE相应标准的基本原则达成以下共识: ——本标准不是等同、也不是修改采用,但鉴于美国IEEE 1303:1994相应标准的框架和技术内容有一定价值,因此在编制我国标准时应作为主要参考文件;关键是要保证国家标准的先进性,提高产品竞争力,技术内容可适当超前以指导科研; ——标准的适用范围要突破美国IEEE相应标准,涵盖输电和配电系统; ——保持立项时的标准名称,暂不改变; ——标准中,对实现产品性能的方法(例如冷却方式)不应强行做推荐性规定; ——该标准在编制过程中,要注意与国家标准《静止式动态无功补偿装置现场试验》的编制工作的密切协调; ——标准内容不应与现行国家标准发生矛盾; ——编制标准时应注意充分研究现正在编制的相关电力行业标准和可控硅阀国家标准。 会议对由西安领步电能质量研究所、鞍山荣信电力电子有限公司分别组织翻译,并聘请有关专家校对的最新IEEE标准进行了集体校对;研究商讨了IEEE 1303:1994各章条的采用程度和增删意见。会议决定由刘军成高级工程师执笔起草、林海雪教授级高工校核本标准的征求意见稿讨论稿,然后提交2005年5月召开的主要起草人会议,供集体讨论修改。

同步电动机的起动分析

同步电动机的起动 1.同步电机的基本原理 同步发电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。一般分为转场式同步电机和转枢式同步电机。 图1.1给出了最常用的转场式同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场) 气隙处于电枢内圆和转子磁极之间,气隙层的厚度和形状对电机内部磁场的分布和同步电机的性能有重大影响。 除了转场式同步电机外,还有转枢式同步电机,其磁极安装于定子上,而交流绕组分布于转子表面的槽内,这种同步电机的转子充当了电枢。图中用AX、BY、CZ三个在空间错开120 分布的线圈代表三相对称交流绕组。 图1.1同步电机结构模型 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主

磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 感应电势有效值:每相感应电势的有效值为E0 =4.44fNψ Φ 感应电势频率:感应电势的频率决定于同步电机的转速n和极对数p ,即 f=pn/60 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 1.2同步转速 同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: n=60f/p=3000/p 要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 1.3运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 分析表明,同步电机运行于哪一种状态,主要取决于定子合成磁场与转子主极磁场之间的夹角δ,δ称为功率角。

三相交流异步电动机的无功补偿

三相异步交流电动机的无功补偿 邵宗岐北京时代集团公司 摘要:三相交流异步电动机在工矿企业中应用广泛,无论高压还是低压电动机,采取就地无功补偿对电动机运行节能降损具有重要意义。根据工程项目的实施,对电动机无功补偿容量的计算方法做了归纳总结,多项工程实践证明是切实可行的,实际应用也取得了良好的效果。 关键词:无功补偿; 空载电流; 负载率; 电动机效率 Three Phases AC Asynchronous Motor’s Reactive Power Compensation SHAO Zong-qi Time Group Incorporation Beijing China Abstract:Three phase AC asynchronous motors are widely used in factories.Whether for high voltage motors or low voltage motors, it’s important to effectively spread individual correction of the power factor. According to the project in practical experience,the design method of the the reactive power correction is summarized.It has been proved by many projects and gained good purpose in practical applications. Keywords: reactive power compensation;no-load current; load factor; motor’s efficiency 概述 在我国,三相异步电机用电量占全国发电总量的60∽70%,是主要用电负荷。然而,由于异步电动机独特的工作原理,以及电网节能降损的要求,异步电动机的应用使无功补偿装置成为其必不可少的配备一部分。异步电动机作为企业的主要用电设备,在企业用电总消耗的无功功率中约占70%,因此对于异步电动机采用就地无功功率补偿以提高供电系统的功率因数,节约电能,减少运行费用以及提高电能质量,具有重要的意义。尤其高压电动机额定容量大,年运行小时多,实施无功就地补偿,则节能效果更加显著。我国有关部门对三相异步电动机无功就地补偿推广应用制定了相应的标准,国家技术监督局GB3485-83<<评价企业合理用电导则>>中规定:在100kW以上的异步电动机在安全条件允许的情况下,就地补偿

异步电动机无功补偿

摘要 本文进行了异步电动机的运行特性分析,通过电路分析和数学推导建立了异步电动机的数学模型及等效电路。阐述了三相异步电动机就地无功补偿的原理和作用。最后,以8051单片微型机作为控制主体设计了智能型交流异步电动机就地无功补偿装置。 关键词:异步电动机;单片机;无功补偿;AD654芯片;功率因数 AbStraCt Because Of SUCh adVan土age Ofthe aSynchronous motOr aS Simple St,rUCture,the reliable running,the convenient service and cheap phce,n iS widely applied in all tradeS and occupatiOnS.n iS well known that motOr whiCh iS direct·on Starting haS many malpracdces.When eleCtriCal machinery 1ight-lOading running,the power 10Se increases,the e伍Ciency and power faCtors bOth greatly reduce.TherefOre 讧haS extremely V讧a1 Signincance tO implement efieCUve COntrOl on aSyncbronous motOr, guaran“ng the secur讧y Ofthe eleCthCal machinery, avoiding th云eleCtriCal network impact,enabling讧economyrunninS. ThiS paper analyZe the model and equiValent Circun Ofthe aSynchronous motOL Anerdepic“ngthetheoryOftheaSynchronousmotOrreacdvepowercompensatiOno n the spot,we deSignathe aSynchronousmotOrreacdvepowercompensatiOndeviCe on theSpOtbasedon 8051 SingleChipMiCrocomputer. KeywordS:ASynchrOllOUS motOr; MiCrocompUter; AD654Chip;Power factOr ReacUvepowercompensatiOn; 引言 随着我国工农业生产的迅速发展,电能的需求量越来越大,开发和节约能源已成当务之急。作为一种重要的动力设备,三相交流异步电动机的用电量是非常大的。这些异步电动机一般都是按照设计的负载进行选择的,但在实际使用中,大都经常处在轻载,甚至在空载运行。因此,“大马拉小车”的现象几 乎是很普通的,如煤矿常用的胶带输送机、刮板机、绞车、压风机、机床等设备在大部分运行时间中,电动机的负荷变动都较大,其平均输出功率与最高输出功率之比一般为0.3—0.4,有的还更低。电动机的负载率低,效率小高,电能 的浪费现象十分严重。1996年国家统计局统计数字表明,我国全国年发电量的60%为各种电机设各所消耗,其中90kW以内的中小功率异步电动机耗能占总 电机耗能的7 0%,即消耗4200亿度电。按我国今年国家规定0.5元//kWh

[同步电动机,装置]大型同步电动机的静止变频起动装置

大型同步电动机的静止变频起动装置 摘要:大型同步电动机能够输出稳定的动力,不会随着载荷的增加而减少,因此,在各行业中的大型机械中被广泛使用,工作可靠稳定,能够提供足够的动力驱动各种设备的稳定运转。由于提供的电流和功率远高于启动所需,会造成启动困难,产生较大的振动,对电动机的零部件造成不利的影响。因此,实现大型同步电动机的静止变频具有重要的意义,能够将所需频率调成与启动的额定频率相同,是电动机稳定的启动,降低产生的机械冲击,对设备的工作效率、使用年限都有利。本研究对静止变频装置进行分析,了解静止变频的工作原理,促进静止变频在同步电动机中的良好应用。 关键词:大型同步电动机;静止变频;分析 前言 同步电动机因为其与同步转速具有一定的比例关系,而且一旦确定比例因数就不会改变,始终保持相应的转动频率,所以称为同步电动机。根据同步电动机的这一特性,在我国的经济发展中起到了重要的作用,用于工、农业等大型用电机械的动力来源,能够输出固定的动力,而不随着载荷变化,与异步电动机相比,能够输出更稳定的动力来驱动设备,满足设备的工作需求,得到了广泛的应用。但是其频率是固定值,不会发生改变,也有一定的限制性,同步电动机的启动较为困难,能够提供的转速与所需频率不符,需要多次的启动才能实现,在大型同步电动机上体现的更加明显,这不仅会加大大型同步电动机零部件的磨损,减少同步电动机的使用寿命,还会浪费不必要的资源。实现同步电动机的静止变频能够有效的弥补同步电动机具有的局限性,是电动机能够更加稳定的启动,应用在大型机械中更加安全可靠。 1 大型同步电动机静止变频简介 1.1 大型同步电动机起动困难 大型同步电动机对电压的波动不敏感,自身受到的影响很低,而且,具有可调的功劳因数,适用范围广,在水泵、大型风机、抽水设备等大型的机械中都能蚪行使用,不论设备的负载多大,同步电动机始终能够提供固定的动力,具有可靠、稳定、动力大的特点,受到了广泛的应用。但是,大型同步电动机的起动十分困难,提供的电流和功率是所需的6-8倍,远远大于额定电流和额定功率,造成起动困难、起动滞后等现象。提供的起动电流过大,会使得电动机工作状况不稳定,往往需要多次起动才能成功,在这个过程中,对设备的磨损和损耗加大,造成设备的振动,可能会造成内部结构的变形、移动等,降低设备的使用寿命,也会增加设备发生事故的可能性。要实现大型同步电动机在技术上的进步,使得同步电动机的应用范围加大,对我国的经济发展和社会建设发挥更大的作用,解决大型同步电动机的起动困难是首要应该解决的问题。 1.2 静止变频在国内外的发展现状 同步电动机在国内外都得到了广泛的应用,起动困难这一缺点也受到了关注,都积极寻求可靠的解决方法。在不同的设备上使用的同步电动机特性也有所不同,要解决起动困难问题的静止变频装置也会发生变化。最初实现同步电动机的静止变频是西方发达国家在燃气轮

电动机无功补偿容量的选择及注意事项

电动机无功补偿容量的选择及注意事项 浙江省宁海县供电局高补林 采用低压静电电容器,在对感应电动机进行无功补偿时.准确、合理地选择补偿容量,可以最大限度地减少系统中流过的无功功率,降低电能的损耗,提高电压质量。目前,我们对城关公用低压线路上的感应电动机,普遍推行无功就地补偿,以减少公用线路日益上升的线损,我局已作为技改措施计划落实。 1 容量选择 1.l 单台三相电动机补偿容量,应把电动机空载时的功率因数补偿至1为原则、若以满载时耗用的无功功率作为补偿依据,空载时必为过补偿。因此,补偿容量按下式计算: (1) 式中U——电动机的额定电压kV I0——电动机的空载电流 A Q——无功补偿容量kvar 1.2 补偿容量的校正。当电网的实际运行电压低于电容器的额定电压,则电容器输出容量达不到额定值,应按下式进行校正。校正后为实际应补偿的容量: Q′=K2Q (2) 式中U eB——电容器的额定电压 U L——电网的代表日均方根电压值 1.3 对电动机组的补偿,应根据其行业的特点,确定需要系数及同期率,然后由(1)、(2)式求得补偿容量。 2 运行时注意事项 2.l 正常巡视电容器的运行情况,如发现有外壳鼓涨、漏油、绝缘放电及温升过高等情况.应及时处理,以防止事故扩大。

2.2在实际运行中,尤其是用电低谷,网络的电压将大大上升,当电网电压超过电容的额定电压的10%时,或电容器电流超过额定电流的1.3倍时,电容器应退出运行。 2.3补偿电容器一定要装设放电装置,放电装置按附图接线,运行时,K1闭合。放电时,K2闭合。放电回路不得装设熔丝。 2.4 低压电容器的保护可采用刀闸开关与低压熔断器或空气开关相配合的办法。 10KV线路变压器及电动机无功补偿 1.怎样进行无功补偿 应采取就地平衡的原则,使电网任一时刻无功总出力(含无功补偿)与无功总负荷(含无功总损耗)保持平衡。某供电局已实现了变电所的集中补偿,本文不再涉及,仅就10KV线路,配变与电动机的补偿加以讨论。 (1)10KV配电线路的无功补偿: 某供电局在每条10KV配电线路上安装1~2处高压无功自动补偿装置,补偿容量按线路配变总容量的10%掌握。某供电局公用配变容量为40500KVA,需补偿无功容量约为4000KVAR,约需资金55万元。经计算,安装一处时,宜将无功自动补偿装置安装在距线路首端的2/3线路长度处。安装两处时,第一处安装在距线路首端的2/5线路长度处,另一处安装在距线路首端的4/5线路长度处,各处容量为线路总补偿容量的一半。具体安装时,还应考虑便于操作、维护和检修工作等。 (2)配电变压器的无功补偿:

浅谈无功补偿技术在电气自动化中的应用

浅谈无功补偿技术在电气自动化中的应用 随着第三次科技革命渐趋尾声,改革开放的不断推进与社会主义市场经济高速发展,与人们的生产生活有着十分紧密的联系电气自动化技术发展非常迅速,技术规模也逐渐走向了成熟。小到一个电灯、电视的开关,大到宇宙飞船的实验、高速铁路的输配电网络,都与之衔接紧密。在电气自动化系统之中,无功补偿技术是不可或缺的重要部分,是确保电力系统得以安全稳定生产的新型技术。文章针对上述现象,对无功补偿技术在应用现状与应用意义等方面做了简略的阐述,希望对相关人员有所帮助。 标签:水务行业;无功补偿技术;电气自动化 前言 在现阶段社会发展中,水资源与电力资源是促进经济发展的关键因素。它的发展规模如何,决定着我国经济的发展快慢。而电气自动化在水务行业的发展与应用也日益广泛。我国电网储存量逐渐增多,相对来说对电网无功要求的标准也在逐年上升。然而,在电气自动化之中存在与负荷有关的非线性变化,随之而来的不可控因素会导致电力系统中负序电流与谐波的增加,也就是电力系统增加了输配电方面的损耗,浪费了资源,无功补偿技术就是针对这种情况而出现的。 1 无功补偿技术概述 1.1 无功补偿技术的定义 无功补偿,也可以称之为无功功率补偿。它在电力供电系统之中可以起到提高电网功率因数的效果,降低电力在供电变压器与输送线路方面的损耗。也因此得以提高供电、改善供电环境,最大限度的减少电网的损耗,为人们营造良好的电网环境[1]。 1.2 无功补偿技术的原理 在我国现今使用的国家电网与南方电网中,电网输出功率包含两类:其一是有功功率,它的内在特色为直接消耗电能,首先将电能转化为热能、声能、化学能或机械能,然后再利用这些能做功,有功功率即是针对这部分而言。而另一大类则是文章所研究的无功功率:它的内在特色则是不消耗电能而是将电能转化为另一种形式的能,在电网之中这种能是可以与电能进行周期性的转化。这一部分功率被称作无功功率。 1.3 无功补偿的方式 在与水务行业相关领域的电网中常用的无功补偿方式有以下几种:一类是分组补偿,即是在用户车间配电屏与配电变压器低压侧安装并联补偿电容器。另一

同步电动机常见启动故障分析及处理

同步电动机常见启动故障分析及处理 摘要:同步电动机能否顺利启动,不仅影响到同步电动机自身的安全,还影响到生产系统,为了快速、准确的发现故障、排除故障,对同步电动机常见的启动故障分析就显得非常必要。文章结合维修实践,分析了同步电动机常见启动故障,并给出了具体的处理措施,为今后同步电动机启动故障的维修提供了方法,具有一定的参考价值。 0 引言 同步电动机由于其功率因数高,运行效率高,稳定性好,转速恒定等优点广泛应用于工业生产中。熟悉同步电动机启动故障,并及时排除故障,对电 动机本身及生产系统都具有现实意义,为了能及时、准确排除故障,必须对 同步电动机常见故障进行详细的分析。 1 常见故障 1)同步电动机通电后,不能启动。 同步电动机接通电源后,不能启动和运行,一般有以下几方面的原因:(一)电源电压过低,由于同步电动机启动转矩正比于电压的平方,电源电压过低,使得电机的启动转矩大幅下降,低于负载转矩,从而无法启动,对此,应提高电源电压,以增大电机的启动转矩。(二)电动机本身的故障检查电动机定、转子绕组有无断、短路,开焊和连接不良等故障,这些故障都使电机无法建立起额定的磁场强度,从而电动机无法启动;检查电动机轴承有无损坏,端盖有无松动,如果轴承损坏或端盖松动,造成转子下沉,与定子铁心相擦,从而导致电机无法启动。对定、转子绕组故障可用低压摇表,逐步查找,视具体情况,采取相应的处理方法,对轴承和端盖松动故障,每次开车前都应盘车,看电动机转子转动是否灵活,如轴承(或轴瓦)损坏,应及时更换。(三)控制装置故障此类故障多为励磁装置的直流输出电压调整不当或无输出,造成电动机的定子电流过大,致使电机过流保护动作或引起电机的失磁运行,此时,检查励磁装置的输出电压、电流是否正常,电压、电流波形是否正常,如电压或电流波形不正常,为了节省时间,更换备用触发板。(四)机械故障如被拖动的机械卡住,

浅析如何利用同步电动机实现无功补偿

浅析如何利用同步电动机实现无功补偿 张慧慧 (广东省水利水电第三工程局有限公司,广东东莞523710) 摘要:功率因数在电力系统中有着举足轻重的作用,功率因数无论过大还是过小,都对电网或电气设备不利,为了使其保持在合理区间,在电气设备运行中,往往会采取一定的技术手段进行人为调节,即通过改变无功,从而改变功率因数,也就是无功补偿。无功补偿技术的发展经历了多个阶段,到目前为止已经形成了多种无功补偿的技术。本文将从同步电动机如何进行无功调节的角度进行简要的分析说明。 关键词:功率因数、无功补偿、励磁、同步电动机。 我们都知道在电气设备运行时,功率因数cosψ不能太低,功率因数太低会造成电能浪费,而功率因数也不能太高,功率因数太高尤其当功率因数接近于1时,此时只剩下有功功率p,即感性无功和容性无功几乎相抵消,那么在电路中极有可能会表现为感性阻抗与容性阻抗发生串联或并联谐振,而这对电气设备运行是极其不利的。根据运行经验,电气设备在功率因数取0.9~0.95之间运行最佳。所以当功率因数太低或太高时,我们都需要对进行无功补偿,以保证功率因数在合理区间内。所以无功补偿在电力系统中有着不可忽缺的作用,选择合理的无功补偿方式,不仅可以减少经济投入和电能浪费,还可以提高电能质量,否则就会产生谐波、电压波动等诸多不利因素。无功补偿发展至今,已经形成了多种补偿技术,目前所用到的无功补偿装置主要有电容补偿(较为常用)、同步调相机补偿、静止无功补偿SVC、静止同步补偿SVG等。在上述几种补偿技术中,同步调相机补偿技术本质上就是励磁可调但空载运行的同步电动机,即在其转轴上不带机械负载,而通过调节励磁电流大小改变其发出无功的大小及性质,从而达到无功补偿的效果。同步调相机不进行机械能和电能的转换,只是补偿电力系统所需的无功功率,从而改善功率因数。既然同步调相机无功补偿本质上就是通过改变空载运行的同步电动机所发出的无功功率的大小和性质进行无功补偿,那么当励磁可调的同步电动机带负载后还能不能在保持其有功不变的情况下进行无功调节,下面我们就进行简要的分析: 同步电机由隐极机和凸极机,而隐极机仅为凸极机的特例,为了简便期间,下述分析均以隐极机为例。由等效电路图可得同步电动机电压平衡方程式:

静止无功补偿器的控制方式

SVC 输出容量控制主要有电压控制和恒导纳控制两种方式,可以在运行人员的指令下互相切换。 3.1.1电压控制模式 这种控制模式下控制系统将测量所得到的母线电压Vmeas与一个设定的参考电压Vref 进行比较,然后将差值进行计算, 得到一个标么值电纳信号Bref ,该电纳值除以单组机械可投切电容(电抗) 器的电纳值可以确定需要的电容(电抗)器数目,而差值由TCR来补充。随后将该标么值电纳送往脉冲触发发生电路,控制TCR 的触发角。SVC稳态特性曲线的斜率采用电流反馈来实现,这种方法能够保证在SVC 控制范围内使端电压和端电流之间保持线性关系。实测的SVC电流ISVC与代表调差率的系数KSL相乘,构成信号VSL再输入到加法节点。当ISVC为感性时, VSL取正;当ISVC为容性时,VSL取负。其传递函数为:G( s) =K1(1+s T Q)/s(1+s Tp),其中T Q=Tp+Kp/K1 由于Tp通常设为零,因而控制器转化为简单的比例积分器,比例系数Kp 反映响应速度。电压调节器输出的电纳参考信号被送到触发计算单元,该单元计算出6 组触发角,送至脉冲发生电路,从而在SVC 母线上得到期望的电纳值,达到设定的控制目标。 3.1.2恒导纳控制模式 在该模式下,SVC 的等效导纳Bord 由运行人员设定,且该导纳可以在规定范围内连续可调。Bref来自电压调节器的输出,在恒导纳模式下被偏置。首先根据监控单元提供的开入量需要确定已投运的电容(电抗) 器组的等效电纳,然后经过电纳计算,得出仍需投切的电容(电抗) 器组以及需要的TCR 触发角连续调节的等效感性电纳。最后换算成触发角发送到触发脉冲发生电路。 3.1.3 PWM电流控制 对PWM电路的电流控制可分为间接电流控制和直接电流控制。前者通过控制整流器产生的交流电压基波分量的相位和幅值来实现PWM 交流侧的电流控制;后者采用跟踪型PWM控制技术对交流侧的电流进行直接控制。在目前的STATCOM 系统中,考虑到PWM开关频率较低以及功耗问题,因此多采用间接电流控制。但间接电流控制其网侧电流的动态响应慢,且对系统参数变化灵敏。相比之下,直接电流控制更能精确地控制PWM输出的电流,因此在DSTATCOM设计中,采用直接电流控制方法,从而可以设置较高的PWM 开关频率,减少输出电流谐波,获得较好的输出电流波形,进而降低系统设计成本,提高运行可靠性。该实验控制方法采用基于矢量变换的直接电流控制,其控制方案如下图所示。

同步电机启动

同步电机启动困难的原因: 当同步电机在频率恒定的电源下启动时,定子产生旋转磁动势F 以同步转速p N n f n 601=旋转。由于机械惯性的作用,电动机转速具有较大的滞后,不能快速的跟随同步转速;由电机的转矩角特性可以知道:转矩角是以2π为周期按正弦规律变化的。当转矩角0<θ<π时,电磁转矩大于零;当转矩角π<θ<2π时电磁转矩小于零,在一个周期内,电磁转矩的平均值等于零。所以在启动时,电磁转矩对转子的作用是一种高频的振动,不能使转子加速启动以达到同步转速,造成同步电机的启动困难。 同步电机稳定运行要求: 由隐极同步电机的转矩角特性图可以知道,当同步电机稳定运行于1θ时,此 时0<1θ<2 π电磁转矩和负载转矩平衡,当负载加大时,转子速度减慢,转子的感应电动势滞后,导致θ角的增大,此时电磁转矩也会增大,电磁转矩与负载转矩在 2θ处达到了新的平衡,同步电机仍以同步转速稳定运行。 图1 在0<θ<2 π隐极同步电机的转矩角特性 图2 在2 π<θ<π隐极同步电机的转矩角特性 当同步电机运行于3θ时,2 π<3θ<π,电磁转矩和负载转矩相等,当负载转矩加大时,转子速度减慢,转子的感应电动势滞后,导致θ角的增大,此时电磁

转矩会减小,电磁转矩减小,导致转矩角的进一步增大,则电磁转矩持续减小,最终电机的转速会偏离同步转速,就会导致失步。总之,在,2 π< <π范围内,同步电机不能稳定的运行,会产生失步现象。 失步现象: 同步电动机运行时,定子磁场拖动转子磁场旋转。两个磁场之间存在着一个固定的力矩,这个力矩的存在是有条件的,必须两者的转速要相等,即同步才行, 所以这个力矩也称为同步力矩 。 一旦两者的速度不相等 , 则同步力矩就不存在了,电机就会慢慢停下来。这种转子速度与定子磁场不同步,而造成同步力矩消失 , 转子慢慢停下来的现象,称为“失步现象”。 为什么失步时,电动机就没有旋转力矩呢?因为当转子与定子磁场不同步的话 , 两者的相对位置就会起变化,即转矩角就会变化。当转子落后定子磁场角度在转矩角0 ~ 180°度时定子磁场对转子产生的是驱动力;当转矩角180° ~ 360°时,定子磁场对转子产生的是阻力,所以平均力矩为零。 引起同步电机失步的原因:欠励失步、过励失步、断电失步。 ○ 1欠励失步 欠励失步主要是因为转子的励磁回路发生断路或者是接触不良、励磁绕组发生匝间短路、励磁系统发生故障等,导致同步电机的励磁绕组欠励磁或者是失去励磁,就会导致转子磁场滞后旋转磁场很大角度导致同步电机不能稳定运行,发生失步。 ○ 2过励失步 过励失步主要是由于相邻出线端头短路故障、附近大型机组或机组群起动或自起动引起母线电压较长时间较大幅度的降低、电动机所带负载的大幅度突增以及起动过程中励磁系统过早投励等原因所引起。电机在过励失步时,励磁系统虽仍有直流励磁,但励磁电流及定子电流都很大并且产生强烈脉振,转子磁场超前旋转磁场很大角度,有时甚至产生电磁共振和机械共振。 ○ 3断电失步 断电失步主要是由于外部供电系统跳闸及人工切换电源时,使交流电机供电电源输送渠道短暂中断而导致。在电源中断又重新恢复期间,同步电动机转子转速不断降低,电源重新恢复时,转子磁场的转速低于定子磁场的同步转速。导致失步。 怎么解决同步电机的失步问题: 同步电机的失磁是导致失步很重要的原因,为了防止失磁,可以在励磁机电源回路串联EPS 专门供电,防止外部大功率设备启动引起电网电压大幅波动。

无功补偿常用计算方法

按照不同的补偿对象,无功补偿容量有不同的计算方法。 (1)按照功率因数的提高计算 对需要补偿的负载,补偿前后的电压、负载从电网取用的电流矢量关系图如图3.7所示: I 2r I 1 补偿前功率因数1cos ?,补偿后功率因数2cos ?,补偿前后的平均有功功率为 P ,则需要补偿的无功功率容量 )tan (tan 21??-=P Q 补偿 (3.1) 由于负载功率因数的增加,会使电网给负载供电的线路上的损耗下降, 线损的下降率 %100)cos (3)cos (3)cos ( 3%21 122 2211?-= ?R I R I R I P a a a ???线损 %100)cos cos ( 1221???? ?? ?-=?? (3.2) 式中R 为负载侧等值系统阻抗的电阻值。 (2)按母线运行电压的提高计算 ①高压侧无功补偿 无功补偿装置直接在高压侧母线补偿,系统等值示意图如图3.8所示: 图3.7 电流矢量图

P+jQ 补偿 图中, S U、U分别是系统电压和负载侧电压;jX R+是系统等值阻抗(不 含主变压器高低压绕组阻抗);jQ P+是负载功率, 补偿 jQ是高压侧无功补偿容 量; 1 U、 2 U分别是补偿装置投入前后的母线电压。 无功补偿装置投入前后,系统电压、母线电压的量值存在如下关系: 无功补偿装置投入前 1 1U QX PR U U S + + ≈ 无功补偿装置投入后 2 2 ) ( U X Q Q PR U U S 补偿 - + + ≈ 所以 2 1 2U X Q U U补偿 ≈ -(3.3) 所以母线高压侧无功补偿容量 ) ( 1 2 2U U X U Q- = 补偿 (3.4) ②主变压器低压侧无功补偿 无功补偿装置在主变压器的低压侧进行无功补偿,系统等值示意图如图3.9所示: 图3.8 系统等值示意图

相关文档
最新文档