关于油田低渗储层特征的研究

关于油田低渗储层特征的研究
关于油田低渗储层特征的研究

关于油田低渗储层特征的研究

【摘要】低渗资源是我国石油资源的重要组成部分,其储量在我国石油资源总量中所占比例达到20%以上,研究油田低渗储层的类型、特征、成因对于石油资源的进一步开发利用有着重要的意义。本文分析了低渗储层的主要类型及其特征,并对其低渗储层特征的成因进行了分析。

【关键词】油田低渗储层类型特征成因

我国石油资源总量为940×108吨,其中低渗资源总量为210108吨,低渗资源总量占我国石油资源总量的22.41%,可见低渗资源是我国油气资源的重要组成部分之一,而随着未来石油勘探规模的扩大和勘探程度的加深,低渗资源在石油资源总量中所占的比重将进一步增大。因而对低渗储层的研究、开发在未来一段时间内将成为我国石油技术领域和产业领域的重要热点。强化对低渗油田的认识,加深对低渗储层的研究,分析低渗储层的类型、特征及其成因对于我国未来石油工业的发展有着重要的意义,现将低渗储层的主要类型、特征,及低渗储层的物性影响因素分析如下。

1 低渗储层的类型及其特征

沉积作用、成岩作用以及构造作用直接关系到低渗透储层的形成,地质因素不同在低渗透储层的形成中控制能力也不相同,根据控制作用的大小可以把低渗透砂储层大致分为三类,即原生低渗透储层、次生低渗透储层和裂缝性低渗透储层。

首先来说原生低渗透储层,原生低渗透储层包括原生孔低渗型

油田储层物性变化

油田开发过程中储层性质变化的机理和进本规律 班级:石工10-9班姓名:林鑫学号:2010022116 对于大多数油田来说,随着开发的进行,注水量的增加,油田储层的性质也随着变化,大多数情况是储层物性变差,以下,主要从储层孔隙度、渗透率,储层岩性、原油性质和润湿性变化这几个角度进行分析。 1.孔隙度和渗透率变化 孔隙度在油田开发中不是一成不变的,在注入水的冲刷下,中高渗储层水洗后,孔道内的衬边粘土矿物多被冲刷掉,孔道增大,且连通性能变好,发生了增渗速敏,尤其是“大孔道”在注水开发中变得越来越大, 相应地储层( 尤其是高渗储层)的渗透率增高,从而加剧了注入水的“水窜”,影响油藏的开发效果。另一方面, 一些泥质含量较高的砂体,孔隙大小一般未发生变化, 甚至有缩小趋势。 在实际条件下,注水井与产出井之间由于地层的非均质性、流体的流动速度不同及岩性的差异,不同岩石中的微粒对注入速度增加的反应不同,有的反应甚微,则岩石对流动速度不敏感;有的岩石当流体流速增大时, 表现出渗透率明显下降。因此,地层的渗透率变化是受岩性、注入速度等条件限制的,可能增大也可能减小。这种孔隙度和渗透率的变化,导致了储层非均质性的加重,加大了储层开发的难度。 例如:胜坨油田二区沙二段3层为砂岩储层,泥质胶结为主,在注水开发过程中,随着注水倍数的增加,砂岩中的胶结物不断被冲刷带出,胶结物含量逐渐减少。开发初期颗粒表面及孔隙间充填较多的粘土矿物,到特高含水期,样品颗粒表面较干净,粒间的粘土矿物减少。从不同含水期相同能量带的毛管压力曲线对比也可看出,由开发初期到特高含水期, 毛管压力曲线的门限压力减小,说明最大孔喉半径增大,随着最大孔喉半径增大,流体的流动能力增强,渗透率有较大幅度提高。而沙二8层粒度细、孔喉细小、泥质含量高,随着油田注水开发,蒙脱石膨胀、高岭石被打碎等原因部分堵塞喉道,使得孔喉半径变得更小,导致了储层的渗透率降低。 储层岩性的变化 对于储层岩性的变化主要从粘土矿物和岩石骨架两个方面进行研究。 注入水对粘土矿物的作用主要有两种:水化作用和机械搬运与聚积作用。注水过程中储层内水敏性强的粘土矿物吸水膨胀,原来的矿物结构遭到破坏。因此,水驱后储层中孔道中心的粘土矿物被冲散、冲走,在微孔隙处富集。由于注入水总是沿着物性好、渗透性好的部位流动,这样就使原来粘土矿物少的部位水驱后粘土矿物变得更少,而原来物性差、分选差的部位粘土矿物含量变得更多,结果是粗孔道更加通畅,细孔道更容易被堵塞,从而使两者的差距加大。 注入水对岩石骨架的作用为溶蚀作用。虽然储层中矿物的溶解度很低,但是长期积累的效果对整个储层而言也不可忽视,溶蚀作用的结果是水淹层的孔隙结构发生变化、孔隙度增大。尤其是高渗透条带,注入介质所造成的冲刷、溶解现

特低渗透储层可动原油饱和度确定方法及影响因素分析

2019年第6期 西部探矿工程*收稿日期:2018-10-18 作者简介:武晓鹏(1986-),男(汉族),河北邢台人,助理工程师,现从事岩石流体饱和度分析工作。 特低渗透储层可动原油饱和度确定方法及影响因素分析 武晓鹏* (大庆油田勘探开发研究院中心化验室,黑龙江大庆163000) 摘 要:近年来,大庆油田新增油气储量中特低渗透储量不断上升,如何高效动用这部分特低渗透储 量对油田可持续发展意义重大。研究表明,特低渗透油藏具有孔隙度和渗透率低、孔喉细小、粘土矿物含量高、构造裂缝发育等特征,有效动用难度大。可动油饱和度是评价特低渗透储层的重要参数,利用核磁共振技术可以求取可动油饱和度,结合宏观上和微观上对可动油分布特征研究,可以为特低渗透储量有效动用提供指导。 关键词:特低渗透储层;特征;可动油饱和度;求取方法 中图分类号:TE348文献标识码:A 文章编号:1004-5716(2019)06-0062-03我国特低渗透油藏油气资源丰富,随着持续的勘探,特低渗透储量在石油储量中占比不断上升[1]。大庆油田东部扶余油层石油地质储量丰富,属于特低渗透储层,地层有效孔隙度在12%左右,渗透率在1.5×10-3μm 2左右,且裂缝较发育。在特低渗透扶余油层开发过程中,存在储层动用程度低、注水开发效率低、产量递减快等问题,制约了扶余油层勘探开发进程[2-3]。为此,深入研究特低渗透储层特征,准确求取可动油饱和度,提高特低渗透储层开发效率具有重要意义。1 特低渗透油藏的地质特征 我国每年新增油气储量中,低渗透、特低渗透油藏储量不断上升。特低渗透油藏是一个相对的概念,区别于常规的储层,具有以下特征: (1)特低渗透油藏孔隙度、渗透率低。特低渗透储层最显著的特征是低孔、低渗。特低渗透油藏中组成岩石的颗粒分选差,粒径分布范围广,且粘土矿物、碳酸盐岩胶结物多,导致储层中岩石孔隙度和渗透率均较低[4]。研究表明,低渗透油藏孔隙度多分布在1.2%~30.2%之间,平均孔隙度为18.6%,渗透率在(10~1)×10-3μm 2,且储层非均质性严重。 (2)粘土矿物含量高。特低渗透油藏中含有大量粘土矿物,造成储层孔隙度低,不同粘土矿物水敏性不同。蒙脱石、伊利石是典型的水敏矿物,极易吸水,遇水膨胀后体积增大几十倍,使得储层岩石中孔隙吼道变窄,储层流通性变差。高岭石是速敏矿物,由于分子 结构不紧密,遇水极易发生脱落,随水流运移堵塞孔隙。绿泥石属于酸敏矿物,与酸反应可以生成沉淀,堵塞孔隙通道,使得储层渗透率降低。 (3)特低渗透储层岩石中孔隙孔喉细小,且溶蚀孔较发育。特低渗透储层岩石孔隙多为粒间孔,同时发育溶蚀孔隙。此外还发育有晶间孔、裂缝孔及微孔隙。孔隙直径以中、小孔为主,孔隙吼道呈片状或管状,据统计,特低渗透储层岩石中孔隙半径中值通常小于1μm ,且非有效孔隙在孔隙体积中占比较大,导致储层渗透性较差。 (4)特低渗透储层发育构造裂缝,裂缝通常分布比较规律,深度较大,产状以高角缝为主,裂缝分布受到构造、岩性等影响,通常在背斜构造、褶皱转折处或断层处较为发育,且岩石越致密、硬度越大裂缝越发育。裂缝在特低渗透储层中具有重要地位,能够沟通基质孔隙,提升储层孔隙连通性,有利于储层流体渗流。2特低渗透油藏可动油饱和度测定方法及影响因素分析 2.1 核磁共振原理 核磁共振基本原理是原子核和磁场之间相互作用。原子核由质子和中子组成,其中质子带电,中子不带电,原子核质量取决于质子和中子的数量之和,而电荷取决于质子的数量。原子核分为有自旋的原子核和无自旋的原子核,研究发现,核子为奇数或核子个数为偶数但原子序数为奇数的原子核都具有自旋特性,例62

低渗透油藏

一.低渗透致密气藏的定义 关于低渗透气田的定义,大多根据储层物性来划分,但是目前国内外尚没有统一的 低渗透气田划分标准。以前关于低渗透气田的定义多参考低渗透油田标准,由于气体分 子直径要比油分子小得多,气体熟度(o.01mPa?)也远远小于原油,使气体具有吸附、 渗透和扩散的特性,在地层条件下其流动应该较原油容易得多,因此相应的气体可流动 的物性下限应较原油低得多。采用袖藏物性划分标准,往往使得气田的流动物性界限偏高,而忽略了许多有开采价值的储层,因此有必要对气藏的可流动物性界限做相应的研究。根据我国气田开发多年的经验,借鉴国外相关研究成果已形成了以下比较一致的观点。 一.低渗透气藏地质特征 美国在低渗透致密储层方面已经作过了不少的研究工作,其中最主要的研究成果有下列的几项:spenc欧(1985)简要讨论了落基山地区的低渗透致密储层的地质现状,F1nley (1984)总结了有代表性的毯状(层状)致密储层的地质及工程特征s spe皿。和Mast (1986)以美国石油地质学家协会名义发表了致密气藏的地质研究;M踢比船(1984)描述了 加拿大致密气藏的重要现状,spnc既(1989)总结了美国西部的低渗透致密储层特征等。 由于我国在低渗透气藏方面尚未进行全面的系统研究,因此下列基本特征是在美国所总结的资料基础上,参考我国低渗透油气田实际情况进行总结得到的。 (一)沉积特征和成因分娄 我国低渗透储层和其他中高渗透层一样,大部分生成于中、新生代陆相盆地之中,具有陆相碎屑岩储层共有的一些基本沉积特征——多物源、近物源、矿物及其结构成熟度低和沉积相带变化快等。从具体沉积环境分析,低渗透储层有以下几种成因类型和特点。 1.近源沉积 储层离物源区较近,未经长距离搬运就沉积下来,碎屑物质颗粒大小相差悬殊,分选差,不同粒径颗粒及泥块充填在不同的孔隙中,使储层总孔隙显连通孔隙都大幅度减小,形成低渗透储集层。冲积扇相沉积属于这类型,冲积扇沉积是山地河流一出山口,坡度变缓,宽度扩大,加上地层滤失,水量减少,流速急速更小,河水携带的碎屑物快速堆积成扇体沉积。 2.远源沉积 储层沉积时离物源区较远,水流所携带的碎屑经长距离的搬运,颗粒变细,悬浮部分增多。沉积成岩后,形成粒级细、孔隙半径、泥质(或钙质)含量高的低渗透储层。此类 储层在助陷型大型盆地沉积中心广泛发育。 3成岩作用 碎屑岩的形成从渗透储层的原因来说,除沉积成因以外,沉积后的成岩作用及后生作用对储层物性也起着十分重要的作用。储层在压实作用、胶结作用和溶蚀作用下,储层的孔隙度、渗透率不断发生变化。成岩过程中的压实作用和胶结作用使岩石原生孔隙减小,特别是成熟度低的岩石,由于孔隙度大量减小,容易变为低渗透储层,甚至变为极致密的非储集层。溶蚀作用可产生次生孔隙,使致密层孔隙度增加,重新变为低渗透储层。一般该类储层主要表现为低孔、低渗储层。 (二)储层特征 低渗透砂岩气藏主要有以下特征: 含水饱和度。 1.非均质性 低渗透砂岩储层一般具有严重的非均质性,储层物性在纵、横向上各向异性明显,产层厚度和岩性都很不稳定,在短距离内就会出现岩相变化或岩性尖灭,以致井问无法对比。

低渗透砂岩储层类型及地质特征

低渗透砂岩储层类型及地质特征 摘要:矿物含量高;成岩成熟度高,毛管压力高,孔半径小;沉积物成熟度低 等是我国低渗透砂岩储层的地质特点,如果进行开采、钻井以及完井的工程,就 会引起巨大的危害,通常来说,低渗透砂岩储层测井反映的都是低电阻率,所以,对这个类型油藏的开采与认知难度系数较大。本文先对低渗透砂岩储层几个主要 的特征进行了分析和讨论,然后讨论了低渗透砂岩储层是怎样形成的,最后介绍 了裂缝的成因类型、特征及分布规律,希望对读者有帮助。 关键词:低渗透;砂岩;储层类型;地质特征 引言:低渗透砂岩的优质储层中会进行发育,并留存着次生孔隙、原生孔隙 以及裂缝。若想简单的就可以留存原生空隙,满足的条件是压实作用低、埋深浅。在孔隙流体中存在各种各样的矿物质,其中绿泥石能够起到结膜的作用,大多数 情况下都在碎屑颗粒中,这种现象将抗压实性大大增加了,能够较好的保留原生 孔隙;成岩中会出现溶蚀的情况,主要是将岩屑与长石等进行溶蚀,其中有很多 稳定性低的颗粒,从而使得次生孔隙带状态稳定;次生孔隙带再次出现的因素为 方解石等胶结物溶蚀后以酸性孔隙流体为基础;影响裂缝的有断层、岩性以及褶皱,断层周边之所以时常出现裂缝带,是由于砂岩致密硬脆时才可以。对此类储 层的认识时间我国是比较早的,在十八世纪初,就探寻到了典型的特低渗油藏, 即延长油矿。在我国的油气储量中,低渗透油气藏的占比为三成。 1低渗透砂岩储层的特征 非均质性强;孔隙结构差;压力敏感性强;结构与成分成熟度低;裂缝发育 以及储层物性差等都归属于低渗透砂岩储层的特性当中。 1.1岩石学特征 在低渗透砂岩中,岩石特性各不相同,类型也多种多样,长石砂岩与岩屑砂 岩在低渗透砂岩中分布的最为广泛,并且有较低成熟度的结构与矿物,碳酸盐胶 结物与黏土矿物在其中的含量多。安塞油田位于鄂尔多斯盆地,在低渗透砂岩储 层的探究中优势大,开发便捷,成本低,效率高,南部油田的砂岩较为细腻,直 径大约零点二毫米,称之为中粒长石砂岩,呈次棱状;颗粒多、薄膜等是孔隙式 胶结的特性;颗粒的成分大多数是长石,含量大约在百分之五十;浊沸石与绿泥 石占填隙物的比例大。 1.2孔隙结构特征 在低渗透砂岩储层中,孔隙的状态一般为粒间孔,次生粒间溶蚀孔与原生粒 间孔都包含在内。孔隙形状不规整,一般的形状为多边形,喉道细是其的特征, 片状与管状占多数,其孔隙结构差。 1.3物性特征 在我国低渗透油田中,基质渗透率在四十毫升以下,基质的孔隙度在百分之 十以下。根据气田来讲,其基质渗透率在零点五毫升以下,基质的孔隙度在百分 之十以下。 1.4裂缝特征 成岩裂缝与构造裂缝这两个天然裂缝都出现在低渗透砂岩中,它们的储集性 能低,不过在渗透通道中是主要通道。 1.5非均质性特征 裂缝的发育趋势不同、裂缝的出现等是导致孔隙非均质性高的一个主要原因,并且裂缝的发育状况各不相同,从而让裂缝的渗透率差别越来越不同。

低渗透油藏

低渗透油藏 一(低渗透致密气藏的定义 关于低渗透气田的定义,大多根据储层物性来划分,但是目前国内外尚没有统一的低渗透气田划分标准。以前关于低渗透气田的定义多参考低渗透油田标准,由于气体分子直径要比油分子小得多,气体熟度(o(01mPa?)也远远小于原油,使气体具有吸附、渗透和扩散的特性,在地层条件下其流动应该较原油容易得多,因此相应的气体可流动的物性下限应较原油低得多。采用袖藏物性划分标准,往往使得气田的流动物性界限偏高,而忽略了许多有开采价值的储层,因此有必要对气藏的可流动物性界限做相应的研究。根据我国气田开发多年的经验,借鉴国外相关研究成果已形成了以下比较一致的观点。 一(低渗透气藏地质特征 美国在低渗透致密储层方面已经作过了不少的研究工作,其中最主要的研究成果有下列的几项:spenc欧(1985)简要讨论了落基山地区的低渗透致密储层的地质现状,F1nley (1984)总结了有代表性的毯状(层状)致密储层的地质及工程特征s spe皿。和Mast (1986)以美国石油地质学家协会名义发表了致密气藏的地质研究;M踢比船(1984)描述了加拿大致密气藏的重要现状,spnc既(1989)总结了美国西部的低渗透致密储层特征等。由于我国在低渗透气藏方面尚未进行全面的系统研究,因此下列基本特征是在美国所总结的资料基础上,参考我国低渗透油气田实际情况进行总结得到的。 (一)沉积特征和成因分娄 我国低渗透储层和其他中高渗透层一样,大部分生成于中、新生代陆相盆地之中,具有陆相碎屑岩储层共有的一些基本沉积特征——多物源、近物源、矿物及

其结构成熟度低和沉积相带变化快等。从具体沉积环境分析,低渗透储层有以下几种成因类型和特点。 1(近源沉积 储层离物源区较近,未经长距离搬运就沉积下来,碎屑物质颗粒大小相差悬殊,分选差,不同粒径颗粒及泥块充填在不同的孔隙中,使储层总孔隙显连通孔隙都大幅度减小,形成低渗透储集层。冲积扇相沉积属于这类型,冲积扇沉积是山地河流一出山口,坡度变缓,宽度扩大,加上地层滤失,水量减少,流速急速更小,河水携带的碎屑物快速堆积成扇体沉积。 2(远源沉积 储层沉积时离物源区较远,水流所携带的碎屑经长距离的搬运,颗粒变细,悬浮部分增多。沉积成岩后,形成粒级细、孔隙半径、泥质(或钙质)含量高的低渗透储层。此类储层在助陷型大型盆地沉积中心广泛发育。 3成岩作用 碎屑岩的形成从渗透储层的原因来说,除沉积成因以外,沉积后的成岩作用及后生作用对储层物性也起着十分重要的作用。储层在压实作用、胶结作用和溶蚀作用下,储层的孔隙度、渗透率不断发生变化。成岩过程中的压实作用和胶结作用使岩石原生孔隙减小,特别是成熟度低的岩石,由于孔隙度大量减小,容易变为低渗透储层,甚至变为极致密的非储集层。溶蚀作用可产生次生孔隙,使致密层孔隙度增加,重新变为低渗透储层。一般该类储层主要表现为低孔、低渗储层。 (二)储层特征 低渗透砂岩气藏主要有以下特征: 含水饱和度。 1(非均质性

低渗透储层的微观孔隙结构分类及其储层改造技术的探讨

[收稿日期]2009-01-18  [作者简介]宋周成(1966-),男,1989年大学毕业,高级工程师,博士生,现主要从事油气田开发方面的研究工作。 低渗透储层的微观孔隙结构分类 及其储层改造技术的探讨 宋周成 (西南石油大学石油工程学院,四川成都610500;塔里木油田分公司,新疆库尔勒841000) [摘要]讨论了低渗透油层的空隙、喉道结构,几何形态、孔隙系统、孔隙喉道组合;低渗储层自然产能 高低不一,一般需要压裂改造才能获得有效产能,其储层微孔隙发育,存在储层伤害因素,在此类油气 藏的勘探开发过程中,需要进行配套的大型油层改造措施攻关,要注意油层改造过程中的油层保护工作, 以提高油气井产能。具体工艺措施如下:钻井、固井、射孔、油层改造、采油等技术处理。 [关键词]低渗透储层;孔隙类型;压裂改造;油层保护;工艺技术 [中图分类号]TE384[文献标识码]A [文章编号]1000-9752(2009)01-0334-03 我国低渗透储层在油气勘探中占有十分重要的地位,约有214×109t 以上的低渗透油藏,占总探明储量比例高达47%。因此,研究低孔隙度、低渗透率储层的形成原因及其优质储层的形成与分布规律,可以提高低渗透率储层的勘探效率。但是低渗透油层由于孔喉细小,结构复杂,渗流阻力大,固液表面分子作用强烈,贾敏效应显著,使其渗流特性与中高渗透油层有很大的不同,具有启动压力梯度,加上配套工艺的适应性差,造成这些单井产能很低,开发动用难度大。随着对低渗透油藏渗流规律认识的不断进步以及开采工艺技术的提高,低渗透油藏逐渐成为油田实现稳产目标的主力军。和其他油藏一样,低渗透油藏的开发也存在递减阶段,过去大家偏重于对递减规律的研究[1],而忽略了对递减影响因素的分析。低渗透油藏渗流特征研究是开发低渗透油气田所需要解决的重要问题,也是现在渗流力学的前沿研究方向之一。笔者就此讨论了低渗透油层的空隙、喉道结构,几何形态、孔隙系统、孔隙喉道组合,及其储层改造技术。 1 低渗透油层孔隙结构分类及评价 我国低渗和特低渗透储集层中的主要类型,如丘陵油田J 2s 油层组中、粗、细砂油层均以中小孔为主,细喉道约占58%。值得注意的是在特低和超低渗透油层中,也出现以小孔、细喉、微喉连接的孔隙网络,或出现裂隙,它们的组合非常复杂,在油田开发中有更大的难度[2]。 将低渗透油层分为6类,符合我国低渗透油田的实际状况: Ⅰ类:一般低渗透层,渗透率在(50~10)×10-3μm 2之间,是低渗透层中的佼佼者。各项分类参数明显,是低渗透油层中驱油效率最高的油层。 Ⅱ类:特低渗透油层,渗透率在(10~1)×10-3μm 2之间,分类中的参数与其上下油层有明显的 差异,上流半径小(115309 μm ),孔喉配位低,喉道细,流动能力差,石油采收率在50%左右。Ⅲ类:超低渗油层,渗透率在(110~011)×10-3μm 2之间,排驱压力高(21282M Pa ),主流半径 小(0111 μm )。其分类参数虽具明显性,但能否成为工业油层,实例较少,只有火烧山油田平二段油层,平均渗透率为01523×10-3μm 2(32块样品),其他油层的平均渗透率均大于1×10-3μm 2。新疆小拐油田夏子街组油层是这类油层的实例,平均渗透率为01247×10-3μm 2(387块样品),其中夏一段渗433石油天然气学报(江汉石油学院学报)  2009年2月 第31卷 第1期Journal of Oil and G as T echnology (J 1J PI )  Feb 12009 Vol 131 No 11

低渗储层物性特征分析

148 1?储层物性特征1.1?储层岩石学特征 储层岩石学特征的研究,是对储层的后续特征研究的一个基础,它包括对储集层岩石的组分、分选、磨圆、粒度、填隙物成分等一系列与储集岩体有关的内容,这些都是储集层的先天条件,是决定油气储层性能的关键因素[1]。 根据岩心和铸体薄片观察统计,储层的岩石类型基本为含长石石英砂岩、长石砂岩和岩屑长石砂岩,含少量岩屑石英砂岩。研究区长6油层组主要为长石砂岩,偶见岩屑长石砂岩,说明研究区长6油层组砂岩成分成熟度低。 1.2?储层填隙物成分 研究区长6油层组储层砂岩粘土杂基含量较少,平均为3.76%,最高达8.5%,表现出分布的不均匀性,一般位于河道砂体中下部的中~细粒长石砂岩中,泥质杂基含量很少;而位于河道砂体中上部和河道间沉积的粉砂岩中,泥质分布较为普遍,含量1%~7%不等;由于研究区长6油层组储层砂岩杂基普遍较少,因而胶结物对储层物性的影响更为重要。胶结物种类较多,有碳酸盐矿物、粘土矿物、次生石英和长石等,其含量分别为云母0.93%,绿泥石3.32%,方解石2.56%,石英加大0.96%,长石加大0.66%。 1.3?储层物性 根据研究区样品的物性分析,研究区粒间孔含量8.6%,溶孔含量1.1%,晶间孔含量0.3%,面孔率10.1%,平均孔径63.6μm。储层孔隙度最小值为4.55%,最大值为11.86%,平均值为9.2%,储层渗透率分布在(0.10~3.47)×10-3 μm 2 之间,平均1.0×10-3 μm 2 ,为低孔、低渗储层。 2?储层物性影响因素 2.1?机械压实作用和压溶作用 压实作用是在一定的埋深下,在上覆地层压力或构造运动力等能使其发生体积变小的力的作用下导致储层的空间结构变小,进而使得孔隙度变差的一种成岩作用[2]。在压实作用下,储层的砂岩颗粒可能会发生变形,破裂等, 进而形成更加致密的岩层,主要发生在成岩作用早期,对储层的破坏性较大。 2.2 溶蚀作用 溶蚀作用是对储层具有贡献性的成岩作用之一,多是在酸性条件下,碎屑颗粒及填隙物发生溶解而使得储层孔隙变大的作用[3]。工区长6储层发生溶蚀的组分主要以碎屑、杂基为主,主要与有机质演化过程中所形成的酸性物质发生化学反应,而产生一系列的空间较大的次生孔隙,该类孔隙连通性相对较好。 2.3?胶结作用 石英次生加大胶结在工区内较为常见,长石次生加大胶结稍微少见,据室内资料统计分析,石英次生加大是导致工区渗透性变差的主要因素之一,常见于粒度较粗、含碳酸盐胶结物的砂岩中,充填与粒间孔隙中。石英加大边在早期压溶作用的改造下产出,多覆盖于颗粒边缘。另自生石英胶结呈六方双锥状充填于粒间孔,致使储层孔隙度因空间结构减小而降低。 3?结论 1)研究区储层孔隙度平均为9.2%,渗透率平均为1.0×10-3μm 2,为低孔、低渗储层。 2)研究区长6储层砂岩成分成熟度较低。 3)影响研究区储层物性的主要因素有,压实作用、压溶作用、胶结作用以及溶蚀作用。其中,压实、胶结作用降低了储层物性,压溶作用、溶蚀作用对储层物性是有利的。 参考文献 [1]孙健,姚泾利,廖明光,等.?陇东地区延长组长_(4+5)特低渗储层岩石学特征[J].?特种油气藏,2015(6):70-74;144. [2]高潮,孙兵华,孙建博,等.?鄂尔多斯盆地西仁沟地区长2低渗储层特征研究[J].?岩性油气藏,2014(1):80-85. [3]李彩云,李忠兴,周荣安,等.?安塞油田长6特低渗储层特征[J].?西安石油学院学报:自然科学版,2001(6):30-32;3. 低渗储层物性特征分析 苗贝1,2? ? 鲁晋瑜1,2 1.西安石油大学 陕西 西安 710065 2.延长油田井下作业工程公司 陕西 延安 716000 摘要:目前低渗储层已成为我国开发的重点,对低渗储层物性特征进行研究对低渗储层的开发具有重要指导意义,本文对M区低渗储层物性特征进行了分析。 关键词:低渗储层?物性特征?成岩作用 Analysis?of?physical?properties?of?low?permeability?reservoirs Miao?Bei?1,2,Lu?Jinyu?1,2 1.Xi ’an Shiyou University ,Xi ’an 710065,China Abstract:The?low?permeability?reservoirs?have?become?the?focus?of?oilfield?development?in?China.?The?research?on?the?physical?properties?of?low?permeability?reservoirs?is?of?great?significance?to?the?development?of?low?permeability?reservoirs.?This?article?describes?the?characteristics?of?low?permeability?reservoirs?in?M?Block. Keywords:low?permeability?reservoir;physical?property;diagenesis

大庆油田区域储层特征认识

盆地沉积盖层自侏罗系开始,至中,新生代均有不同程度的发育,但是以白垩系,尤其是下白垩统为主,新生界厚度不大。地表均被第四系所覆盖。盆地内发现三套含油组合,起上部含油组合为黑地庙油层,分布在嫩江祖的三四中;中部含油组合为萨尔图,葡萄花和高台子油层,分布在青山口组二三段及姚家组和嫩江祖一段中;下部含油组合为扶余和扬大城子油层,分布在泉头组三四段中,油田集中在中部含油组合内。盆地沉积盖层被划分为七个一级构造单元,31个二级构造和130多个局部构造,目前所发现的油田大部分都集中在中央坳陷区内。 松辽盆地基底分别由大兴安岭华里西晚期褶皱带和吉黑华里西晚期褶皱带汇合而成。在经历了三叠纪和侏罗纪早期的抬升剥蚀后,在侏罗纪晚期由于以断裂为主的构造运动的作用,在这里产生了众多的断陷、地垒和断阶带。进入早白垩世松辽盆地沉降作用不断增强,使早期出现的分割性的小断陷扩大沟通,形成统一的松辽盆地大型沉积坳陷,至晚白垩世和第三纪,由于淤积充填而使盆地沉降速度明显减缓,坳陷渐趋萎缩。 松辽盆地是我国东北地区的大型中新生代陆相沉积盆地,面积约26×104km2,沉积地层厚度5000~6000m,全盆地分为7 个一级构造单元:中央坳陷区、西部斜坡区、东南隆起区、东北隆起区、北部倾没区、西南隆起区、开鲁坳陷区,大庆长垣是松辽盆地北部的一个二级构造单元,由喇嘛甸、萨尔图、杏树岗、太平屯、高台子、葡萄花、敖包塔7个背斜构造组成 大庆松辽盆地属于我国著名地质学家李四光同志划分的中国东部新华夏系第二沉降带,即呈北北东走向的中新生代沉降带中的一个大型沉积盆地。盆地内部总的轮廓是北部、东北部、东南部和西南部为隆起区,西部是平缓斜坡,中间是大面积的拗陷区 大庆长垣北部,基岩以上沉积了上侏罗统、白垩系、第三系和第四系的巨厚地层。各沉积岩层的层序、岩性及含油状况见图1—3。厚度最大、分布最广的是白垩系地层。根据岩性、沉积环境和生、储、盖的组合关系可划分四个沉积旋回:即登娄库组、泉头组—青山口组、姚家组—嫩江组、四方台组—明水组。各个沉积旋回之间是以不整合或沉积间断的方式相互接触的,每一个沉积旋回从下至上岩性为粗→细→粗的演变,岩石颜色(尤其是泥质岩颜色)呈浅色→暗色→浅色的变化,反映了从湖退到湖进再到湖退的完整过程。 一萨尔图油田

低渗透油藏储层改造与油气增产新技术

低渗透油藏储层改造与油气井增产新技术王玉来(中原油田采油一厂工艺研究所) 摘要:世界上低渗透油气田资源十分丰富,分布范围非常广泛,各产油国基本上都有这种类型的油气田,低渗透油气藏的开采,对世界能源贡献具有重要作用。随着全世界对能源需求的不断增加,近年很大一部分低渗透油田来相继投入开发,在低渗透油气藏的增产方面,涉及到了水力压裂和高能气体压裂等多个领域。总结了水力压裂、高能气体压裂、复合压裂、层内爆炸压裂等采油技术对低渗透油气藏进行研究改造的进展,并提出了联合作业是低渗透油气藏改造技术的主要发展方向的理论研究。 关键词:低渗透油气藏油藏增产增产新技术联合作业前景展望 一、低渗透油藏技术特征描述 1、低渗透油藏 砂岩基质渗透率小于50×10-3μm2的油藏 2、分类标准 不同国家分类不同,主要有以下几种分类标准: 前苏联≤50~100×10-3μm2低渗透 美国>10×10-3μm2好 ≤10×10-3μm2低渗透 中国10~50×10-3μm2低渗透 1~10×10-3μm2特低渗 0.1~1×10-3μm2超低渗 3、孔隙度\渗透率统计(国内) 孔隙度一般8-18%,渗透率低于10×10-3μm2的占20%

4、低渗透油藏特征 油层内部渗流困难,供油能力差; 弹性能量开采时间短,油层压力递减快; 由于岩石的孔喉半径小,油层容易受到伤害 断层和天然裂缝比较发育缓慢; 整体开发效益通常低于中高渗透常规油田。 二、低渗透油气藏的分布及改造现状 1、低渗透油气藏的分布 世界上低渗透油气田资源十分丰富,分布范围非常广泛,各产油国基本上都有这种类型的油气田,在美国、加拿大、澳大利亚、俄罗斯等都有广泛的分布。在我国,低渗透油气田也广泛的分布在全国的各个油区,如大庆、胜利、辽河、长庆、吐哈、中原、新疆等油田 对世界能源贡献具有重要作用。随着全世界对能源需求的不断增加,越来越多的难动用储量近年来相继投入开发,这其中有很大一部分就是低渗透油田。到2004年,我国陆上探明低渗透油田的储量为52.1×108t ,动用地质储量近27×108t ,动用程度52%。低渗透油田广泛地分布在我国21个油气区内,长庆、四川几乎全部为低渗透油气田,吐哈、吉林、二连等油田低渗透储量也占50%以上,在陆上低渗透探明储量中胜利、新疆等油田分别约占15%。 0102030405060克拉玛依油田彩南油田火烧山油田丘陵油田鄯善油田老君庙油田高尚堡地区枣园油田马西深层文留油田牛庄油田渤南油田朝阳沟油田榆树林油田新民油田新立油田安塞油田留西油田 油田名称孔隙度(%)渗透率(M D )渗透率孔隙度 低渗透油田孔隙度、渗透率分布图0246810′ó′ì′′′′′ó′′′′¤′ì′′′¤′′′ ′′′′÷ ′′0 1 2 345 6 ′ó′ì′′′′′ó′′′′¤′ì′′′¤′′′′′′′′′

史家畔油田储层地质分析

史家畔油田储层地质分析 史家畔油田位于鄂尔多斯盆地东部属于致密砂岩油藏,开发有很大的难度。本文对史家畔油田的储层地质概况进行了叙述与分析,并通过分析史家畔油田岩石学特征,对史家畔油田储层地质情况进行了全面的叙述,以求在油田地质研究方面起到抛砖引玉之效果。 标签:低渗透裂缝鄂尔多斯史家畔 0前言 史家畔油区位于子长县城北东15Km,属史家畔乡境内。勘探范围北到子洲县边界,南达昌家沟—何家石畔,西起散家坪—郝家沟,东至吴家崖—沙井沟,面积54Km2。研究其油田储层地质情况及岩石学特征将会对储层压裂改造及注水开发具有积极的指导意义。 1史家畔油田区域地质概况 瓦窑堡史家畔油区属黄土塬地貌,沟谷纵横、塬峁林立,地面海拔1050~1300m,属大陆季风性气候,气候干燥缺水,植被不发育,年降水量300~600mm,主要集中在6~9 月份。年平均气温8~12℃,无霜期170 天。沿沟顺梁有树枝状沙石路相通,其南有子(长)—清(涧)二级公路穿越,交通较为方便,石油工业是该区的龙头产业。 1.1油田地质特征 瓦窑堡油田史家畔油区构造位置处于鄂尔多斯盆地陕北斜坡的东部,主要含油层系为上三叠统延长组长4+5、长 6 油层组,其中长4+5 油层组划分为长4+51和长4+52两个油层亚组,长6 油层组划分为长61、长62、长63、长64四个油层亚组(以下简称亚组),本区大多数井的长64油层亚组未被打穿,油层厚度小于2m,研究意义不大。其中长 6 油层组中长61、长62油层组为主要含油层位。 1.2区域地层特征 根据三叠系上统延长组油气层纵向分布规律,将延长组自上而下将其划分为10 个油层组,即长1~长10。延长组的沉积格局和沉积体系的分布,毫无例外受着长期继承性整体升降运动下形成的广阔斜坡构造背景的控制。 1.3地层划分整体思路 地层的划分与对比是研究储层特征、沉积相识别等一系列工作的基础。本次在研究区地质沉积背景分析的基础上,根据生产需要及前人的研究成果,选定本

影响低渗透油田开发效果的因素.

影响低渗透油田开发效果的因素及对策目前,低渗透油田储量在我国油田储量中所占的比例越来越大。近年,低渗透油田石油勘探和开发程度的快速发展,为我国天然气产量快速发展和原油产量稳定增长做出了重大贡献。但随着时间的延长,低渗透油田开发过程出现一些影响开发效果的因素,不但影响了油田的安全生产,而且影响了油田开发的经济效益。 1影响低渗透油田开发效果的主要因素 影响低渗透油田的开发效果的因素有很多,其中最主要的就是技术方面的影响。 1.1油层孔喉的影响 影响低渗透油层开采根本原因是储层孔喉细小和比表面积大。低渗透油层平均孔隙直径为26~43μm;油层孔喉细小,半径中值只有0. 1~2. 0μm;比表面积相对较大,在2~20 m2/g之间;三者之间直接形成了渗透率低。 1.2渗流规律的影响 低渗透储层的渗流规律具有启动压力梯度特点,是不遵循达西定律的。低渗透油田主要表现非达西型渗流特征:表面分子力和贾敏效应作用强烈、孔喉细小、比表面积和原油边界层厚度大。渗流直线段的延长线与压力梯度轴的交点即为启动压力梯度,是不通过坐标原点而与压力梯度轴相交,由于渗透率越低,所以启动压力梯度越大。 1.3弹性能量的影响 低渗透油田弹性能量除少数异常高压油田外,一般的油田弹性阶段采收率只有1% ~2%。弹性能量小主要是由于一般底、边水都不活跃,储层渗流阻力大、连通性差引起的。在消耗天然能量方式开采条件下,弹性能量压力和产量下降快,是由于地层压力大幅度下降,油田产量急剧递减,使生产和管理都非常被动。1.4见注水效果的影响

低渗透油田开发过程中,油井见注水效果尤为重要。在井距280 m左右的条件下,注水效果需注水半年至一年时间才见效,见效后油井产量、压力相对稳定,但上升现象很不明显。有部分油田的注水井因注不进水转为间歇注水或被迫关井停注,从而影响开发效果。低渗透油层采油指数相当于高、中渗透油层的几十分 之一,只有1~2t/(MPaod。低渗透油井见注水效果程度差,停止吸水是由于泵压与井口压力达到平衡时出现的。因为启动压力很高,渗流阻力大,而且吸水能力低,大部分能量都消耗在注水井周围,使注水井附近地层压力上升很快。 1.5产液(油指数的影响 低渗透油井见水后产液(油指数大幅度下降,是由于岩石润湿性和油水黏度比等多种因素影响的。当含水达到55 %左右时,无因次产液指数最低,只有0. 4左右,无因次采油指数更低,只有0.15左右,对油井见水后的提液和稳产造成极大困难。 1.6地应力的影响 地应力的大小和方向对开发效果具有重要的影响,因此,开发方案必须考虑地应力的影响和作用。压裂开发是低渗透油田通常进行的一种开发方式,压裂裂缝的延伸方向和形状很大程度受地应力的大小和方向制约。 2低渗透油田开发的主要对策 2.1合理加密井网 目前国内外已基本建立采收率及水驱控制程度与低渗油藏井网密度的关系的一系列经验方法。开发好低渗透油田的基础和关键是合理井网部署方案。低渗油藏、小断块开发的目标定位要适当,不宜过高,要充分考虑到低渗油田开发的复杂性,为此要根据采用线状注水方式、平行裂缝主要方向布井、井距可以加大、排距应该减小的低渗透油田井网部署的基本原则,合理缩小井距,加大井网密度。 2.2合理优选储量富集区块

低渗储层特征分析

1 储层特征 根据岩心和铸体薄片观察统计,储层的岩石类型基主要为长石砂岩、岩屑长石砂岩以及长石石英砂岩。根据石英、长石和岩屑三端元的含量绘制砂岩碎屑成分三角分类图,研究结果表明长2储层以长石砂岩为主,岩屑长石砂岩较少,说明长2储层砂岩成分成熟度低[1]。 研究区储层填隙物主要包括了水云母、硅质、高岭石以及铁方解石等,填隙物总量9.68%,其中高岭石含量为2.75%,、硅质含量为3.0%,其次为水云母,占2.1%,铁方解石、铁白云石含量较低,分别为0.5%、1.33%。从以上填隙物含量情况分析。 研究区碎屑颗粒粒径分布在0.15mm~0.6mm之间,主要粒径在0.1mm~0.45mm,主要为中-细粒砂岩。分选好,磨圆度为次棱角状,以薄膜-孔隙式胶结为主。 2 储层非均质性 2.1 层内非均质性 层内的非均质性渗透率的不同,主要由层内的非渗透薄层的分布引起,其是关键的地质影响因素。非渗透薄层的存在使得储层具有较强的非均质性。 2.2 平面的非均质性 平面的非均质性指的是砂体的连通性、连续程度和渗透率的变化等。储层的这个特性与开发过程中开发井网的分布有着直接的关系,根据砂体的孔隙度、厚度的平面分布图可以发现:沉积主要控制渗透率和储层的孔隙度。在分流河道的中心位置,砂体较粗,碎屑含量低;由于水下的沉积粒度细,因此它的碎屑含量相对较高,但物性较差。在平面上,水下分流河道和分流河道的砂体是油层主要发育的中心部位。 3 影响因素 3.1 压实压溶作用影响 压实、压溶作用是使岩石,密度增大、原生孔隙度大幅降低的主要成岩作用。岩石埋藏深度、低温压实压溶及岩屑矿物组分等确定压实作用的强弱。浅埋藏时是以机械压实为主,当埋藏深度加大就会代之发育压溶作用[2]。 通过单偏光片和扫描电镜显示,本研究区压实作用主要是对原生孔隙起破坏作用,云母被压实弯曲和假杂基化。造成塑性颗粒发生变形和调整。压实作用是研究区储层孔隙度、渗透率降低的主要因素。 3.2 胶结作用影响 在碎屑岩中,颗粒间以化学沉淀方式形成的自生矿物称之为胶结物,胶结作用是矿物沉淀在颗粒间,并且固结为岩石,造成减少孔隙的过程[3]。 本研究区砂岩胶结作用主要是自生粘土矿物胶结、碳酸盐胶结、硅质胶结。其中自生粘土矿物胶结主要是高岭土、绿泥石膜、伊利石等,它们填充孔隙导致孔隙度降低,阻碍了孔隙水与颗粒的进一步反应,造成石英次生发育加大不明显。碳酸盐以方解石为主,研究区主要是铁方解石胶结物为主。 3.3 溶解溶蚀作用影响 溶解溶蚀作用是形成砂岩次生孔隙的主要作用,在改善研究区储层物性方面起着重要的作用。在本研究区内,溶解溶蚀作用主要表现在对碎屑颗粒的溶解,同时对杂基和胶结物等也起到溶解作用,在一定条件下,它还对石英、硅质胶结物也发生不同程度的溶解,其中溶解作用伴随在整个准同生期到成岩过程。 4 结束语 (1)研究区储层存在层内、层间非均质性。 (2)压实压溶作用、胶结作用以及溶解溶蚀作用是影响研究区储层物性的主要因素。其中压实作用、胶结作用减小储层孔隙空间,降低储层渗透率,溶解溶蚀作用增加储层渗流能力。 参考文献 [1]汪新光,李茂,覃利娟,等.利用压汞资料进行低渗储层孔隙结构特征分析——以W11-7油田流沙港组三段储层为例[J].海洋石油,2011(1):42-47. [2]侯瑞云.大牛地气田盒一段低孔渗砂岩储层特征[J].石油与天然气地质,2012(3):467-478. [3]汪超,秦俊杰,李敬松,等.低渗储层微观特征对压裂产能的影响分析[J].长江大学学报(自科版),2016(19):14-20+3. 低渗储层特征分析 高万阳1,2 李刚2 1.西安石油大学 陕西 西安 710065 2.延长油田股份有限公司靖边采油厂 陕西 榆林 718500 摘要:随着石油能源的开采开发,中高渗储层已进入开采后期,低渗储层成为主要开采对象,而储层特征认识是储层开采的基础,是制定油藏开发方式的关键影响因素,本文对低渗储层特征及影响因素进行了分析。 关键词:低渗储层 储层特征 影响因素 物性 Analysis for characteristics of low permeability reservoir Gao Wanyang 1,2,Li Gang2 1.Xi’an Shiyou University,Xi’an 710065,China Abstract:The middle and high permeability reservoirs have entered the later stage with the oil development and exploitation. Low permeability reservoirs have been the focus of exploration,and recognition on reservoir characteristics are the basis of reservoir exploitation and the key factors for reservoir development.The characteristics and influential factors of low permeability reservoir are analyzed in this paper. Keywords:low permeability reservoir;reservoir characteristics;influential factor;physical property 181

镇北油田长81储层特征及控制因素

镇北油田长81储层特征及控制因素 综合利用岩心、薄片、扫描电镜、压汞测试等资料,对镇北地区长81储层特征及控制因素进行研究。储层岩性主要为细粒长石岩屑砂岩和岩屑长石砂岩,沉积相和成岩作用对储层物性有较好的控制作用。 标签:储层特征;控制因素;成岩作用;沉积相;镇北油田 镇北油田位于鄂尔多斯盆地西南部,镇原以北、木钵以南、东到驿马、西至殷家城。构造位置属位于鄂尔多斯盆地天环坳陷南部,西接西缘冲断带,东邻陕北斜坡边缘。该区中生界延安组、延长组均具丰富的油气资源,尤其是三叠系延长组长81储层因砂体厚度大、近邻长7湖相生油岩,而为该区主力产油层,开展储层特征及控制因素研究,对该区油气的勘探开发具有重大作用。 1 储层特征 1.1 储层岩石学特征 根据镇57、镇110、镇118等井80块薄片鉴定结果,储层岩性为灰绿色、褐灰色中-细粒岩屑质长石砂岩;主要碎屑成份石英含量29.88%,长石含量29.98%,岩屑含量23.52%;颗粒分选中等,粒径一般0.1-0.5mm,最大0.60mm,颗粒呈次棱状,颗粒间呈线状接触,薄膜-孔隙型胶结为主。粘土矿物主要有绿泥石(61.12%)、伊利石(24.83%)、伊/蒙混层、高岭石等。 1.2 储层孔隙类型及特征 镇北油田长81储集空间由粒间孔、溶孔和少量的微裂隙组成。溶孔主要发育长石溶孔和岩屑溶孔。粒间孔:由于强烈的压实及自生矿物的充填作用使原生孔隙缩小、变形,成为残余粒间孔,是最主要的孔隙类型,平均含量2.56%,占总孔隙的65%。长石溶孔:由于长81储层长石含量较高,长石沿解理缝选择性溶蚀形成,电镜下呈空蜂窝状。部分长石完全溶蚀,形成铸模孔,部分长石的溶孔和粒间孔相连,形成超大孔隙,孔径大小相差悬殊,是该区较主要的储集空间之一。岩屑溶孔:喷出岩岩屑中含有一些容易蚀变的矿物,如角闪石、辉石及部分长石,在成岩过程中会发生溶蚀形成岩屑溶孔。岩屑溶孔在一定程度上改善了岩石的孔隙性,相反却影响了砂岩的连通性,使得渗透率变差。微裂隙:由沉积、成岩或构造作用形成的裂缝。沉积作用形成的裂缝一般平行层面分布,充填有有机质等;构造作用一般形成高角度裂缝,延伸较远,裂缝壁上生长有自生方解石晶体;成岩缝是由于上覆地层的压力使颗粒破碎形成裂缝,此种成岩缝对孔隙的连通性起到了极其重要的作用。 1.3 储层物性特征 研究区储层的孔隙度为0.2%-16.2%,通过对大于6%的孔隙度计算平均值,

低渗透油田开发资料

目录 一、国内国外低渗透油田开发现状? (1) 二、低渗透油田地质特点有哪些? (6) 三、朝阳沟油田目前开发现状、存在的主要矛盾及对策? (9) 四、提高采收率原理是什么?主要的提高采收率技术有哪些? 其提高采收率机理是什么? (17) 五、外围难采储量如何经济有效动用? 要实现经济有效动用需要哪些技术攻关? (23) 六、如何搞好技术创新与应用,实现油田可持续发展? (26) 七、低渗透油田(朝阳沟油田)注水开发技术方法? (32) 八、精细油藏描述技术的内容及成果应用有哪几个方面? (37) 九、多学科油藏研究? (41) 十、油藏评价的方法(模式)有哪些?主要应用的技术? (42) 十一、“百井工程”的内容以及在零散、复杂、规摸小的 油藏评价中的作用? (44) 十二、水驱开发过程中的油层保护技术有哪些? (45) 十三、目前三次采油技术主要有哪些?哪些具有应用潜力 (48) 十四、油田开发合理采油速度、合理储采比受哪些因素,如何界定? (51) 十五、油田开发合理注水压力、合理注采比是如何界定? (53) 十六、区块分类治理的原则、思路和目标? (54) 十七、油田分几个开发阶段,不同阶段的调整方法有哪些? (55) 十八、如何确定注水开发中技术调控指标? (57) 十九、裂缝对低渗透油田的利弊? (58) 二十、低渗透油田怎样进行合理井网部署? (59) 二十一、如何进行低效井治理? (60)

一、国内国外低渗透油田开发现状 1、低渗透油田的划分 世界上对低渗透油田并无统一固定的标准和界限,只是一个相对的概念。不同国家根据不同时期石油资源状况和技术经济条件而制定。根据我国的实际情况和生产特征,按照油层平均渗透率把低渗透油田分为三类。 第一类为一般低渗透油田,油层平均渗透率为10.1~50×10-3μm2,油井一般能够达到工业油流标准,但产量太低,需采取压裂措施提高生产能力,才能取得较好的开发效果和经济效益; 第二类为特低渗透油田,油层平均渗透率为1.1~10.0×10-3μm2,一般束缚水饱和度较高,必须采取较大型的压裂改造和其他相应措施,才能有效地投入工业开发; 第三类为超低渗透油田,油层平均渗透率为0.1~1.0×10-3μm2,油层非常致密,束缚水饱和度很高,基本没有自然产能,一般不具备工业开发价值。 2、国内低渗透油田储量动用情况 2004年,我国探明低渗透油层的石油地质储量为52.1×108t,动用的低渗透油田地质储量约26.0×108t,动用程度为50%。从我国每年提交的探明石油地质储量看,低渗透油田地质储量所占的比例越来越大,1989年探明低渗透油层的石油地质储量为9989×104t,占当年总探明储量的27.1%。1990年探明低渗透油层的石油地质储量为21214×104t,占当年总探明储量的45.9%;1995年探明低渗透油层的石油地质储量为30796×104t,占当年总探明储量的72.7%,年探明的石油地质储量中大约三分之二为低渗透油层储量。可见,今后低渗透难采储量的开发所占的比重逐年加大,如何经济有效做好难采储量的评价、动用和开发理论技术的研究是我们攻关的主要目标和方向。 从我国近些年来对低渗透油田的研究和开发水平看,有了较大的进展和提高, - 1 -

相关文档
最新文档