14卷积码编解码

14卷积码编解码
14卷积码编解码

实验四 卷积码的编解码

一、实验目的

1、掌握卷积码的编解码原理。

2、掌握卷积码的软件仿真方法。

3、掌握卷积码的硬件仿真方法。

4、掌握卷积码的硬件设计方法。

二、预习要求

1、掌握卷积码的编解码原理和方法。

2、熟悉matlab 的应用和仿真方法。

3、熟悉Quatus 的应用和FPGA 的开发方法。

三、实验原理

1、卷积码编码原理

在编码器复杂度相同的情况下,卷积码的性能优于分组码,因此卷积码几乎被应用在所有无线通信的标准之中,如GSM , IS95和CDMA 2000 的标准中。

卷积码通常记作( n0 , k0 , m) ,它将k 0 个信息比特编为n 0 个比特, 其编码效率为k0/ n0 , m 为约束长度。( n0 , k0 , m ) 卷积码可用k0 个输入、n0 个输出、输入存储为m 的线性有限状态移位寄存器及模2 加法计数器来实现。

本实验以(2,1,3)卷积码为例加以说明。图1就是卷积码编码器的结构。

图1 (2,1,3)卷积码编码器

其生成多项式为:

21()1G D D D =++; 2

2()1G D D =+;

如图1 所示的(2,1,3)卷积码编码器中,输入移位寄存器用转换开关代替,每输入一个信息比特经编码产生二个输出比特。假设移位寄存器的初始状态为全0,当第一个输入比特为0时,输出比特为00;若输入比特为1,则输出比特为11。随着第二个比特输入,第一个比特右移一位,此时输出比特同时受到当前输入比特和前一个输入比特的影响。第三个比特输入时,第一、二个比特分别右移一位,同时输出二个由这三位移位寄存器存储内容所共同决定的比特。依次下去就完成了编码过程。

下面是卷积码的网格图表示。他是比较清楚而又紧凑的描述卷积码的一种方式,它是最常用的描述方

式之一。

图2(2,1,3)卷积码的网格图表示

2、Viterbi译码原理

2k N-种状态,每个节点(即每个状态)有2k条支路引入也有2k条如图2所示,卷积码网格图中共有(1)

支路引出。为简便起见,我们讨论k=1的情形,从全0状态起始点开始讨论。由网格图的前N-1条连续支

2N-条路径各不相同,当接受到第N条支路时,每条路径都有2条支路构成的路径互不相交,即最初的1

路延伸到第N级上,而第N级上的每两条支路有都汇集在一个节点上。在维特比译码算法中,把汇集在每个节点上的两条路径的对数似然函数累加值进行比较,然后把具有较大对数似然函数累加值的路径保存下来,而丢弃另一条路径,经挑选后第N级只留下1

2N-条幸存路径,选出的路径连同他们的对数似然函数累加值一起被存储起来。由于每个节点引出两条支路,因此以后各级中路径的延伸都增大一倍,但比较他们的似然函数累加值后,丢弃一半,结果留存下来的路径总数保持常数。由此可见,上述译码过程的基本操作是“加-比选”,即每级求出对数似然函数累加值,然后两两比较并做出选择。有时会出现两条路径的对数似然函数累加值相等的情形,在这种情况下可以任意选择其中一条作为“幸存”路径。

为了更具体地阐述Viterbi译码的过程,我们仍以图2的卷积码为例,假设编码器输出序列为全0码,仍不失一般性。假设接受序列为Y=001001000000……,由于编码输出序列全为0,因此上述接受序列是误码序列。图3(1-8)表示了随着接受序列的串行输入Viterbi译码器中各条路径的取舍情况。计算某路径的对数似然函数可以用计算该路径与接受序列之间的汉明距离(称为度量)来代替。每次产生八条路径,经计算度量后又丢掉四条。遇到度量相同的就任意丢掉一条。下表给出了Viterbi译码器中存储器内的信息。这就是译码器可能的输出序列。

表1 Viterbi译码器存储器内容

图3 Viterbi解码图解全过程

四、卷积码的波形和误码率仿真

1、建立仿真文件

删余卷积码误码率仿真(conv1.mdl)

2、仿真程序

clear all;

close all;

R=1/2;

trellis=poly2trellis(3,[7,5]);

d1=(sign(randn(1,8))+1)/2;

s=convenc(d1,trellis);

figure(1);

subplot(2,1,1);

stem(d1);

subplot(2,1,2);

stem(s);

R=1/2;

EbN0=0:6;

EsN0=EbN0-10*log10(R);

N0=10.^(-EsN0/10);

sigma=sqrt(N0/2);

trellis=poly2trellis(3,[7,5]);

error=zeros(1,length(N0));

for k=1:length(N0)

n=0;

while n<100

d1=(sign(randn(1,1000))+1)/2;

d=[d1 zeros(1,2)];

s=convenc(d,trellis);

r=(2*s-1)+sigma(k)*randn(1,length(s));

rr=(1+sign(r))/2;

dd=vitdec(rr,trellis,3,'trunc','hard');

error(k)=error(k)+sum(abs(dd(1:length(d1))-d1));

n=n+1;

end

ber(k)=error(k)/(n*1000);

end

figure(2);

PT=semilogy(EbN0,ber,'-o');

set(PT,'LineWidth',[1.5]);

L1=legend('卷积码(2,1,3)误码率');

set(L1,'FontSize',14);

X=xlabel('Eb/No(dB)');

set(X,'FontSize',14);

Y=ylabel('BER');

set(Y,'FontSize',14);

grid on;

3、仿真结果

(1)编解码波形

(2)白高斯噪声信道误码率仿真结果

五、实验中的卷积码编解码框图

1、编码模块

(1)端口设置

cs_ conv:输入BCH编码使能位,’1’电平有效;datain_ conv:输入8位编码输入位;

dataout_ conv:输出16位编码输出位。

(2)主程序

process(cs_conv,datain_conv)

variable m1 :std_logic:='0';

variable m2 :std_logic:='0';

variable m3 :std_logic:='0';

begin

if cs_conv='1' then

for i in 0 to 7 loop

m1:=m2;

m2:=m3;

m3:=datain_conv(i);

dataout_conv(2*i)<=m1 xor m2 xor m3;

dataout_conv(2*i+1)<=m1 xor m3;

end loop;

m1:='0';m2:='0';m3:='0';

else

dataout_conv<="0000000000000000";

end if;

(3)仿真结果

如图所示:编码输入为00111100时,编码输出为1110010110110000。

2、Viterbi解码部分

(1)解码框图

(2)解码波形

其中viterbi用于每次更新路径;max_sel选择最大路径。

当两路解码输入分别为:11111111,00001111。解码输出为00000000。

六、实验操作说明

开关置ON表明输入0,OFF表明输入1;LED亮表明输出1,暗表明输出0。

1、编码输入:由SW101-8,SW101-7,SW101-6,SW101-5,SW101-4,SW101-3,SW101-2,SW101-1可以输入由高位到低位的8位编码输入位。

2、编码方式选择

3、信道选择(选择加错位置)

4、加错数目选择

从SW103-6,SW103-5,SW103-4,SW103-3指示的位置开始,每帧加错的位数有SW103-2,SW103-1的状态决定。

5、编码输出设置

D116,D115,D114,D113,D112,D111,D110,D109,D108,D107,D106,D105,D104,D103,D102,D101为16位编码输出位。TP102和TP103分别可以测量编码输出的帧和对应该帧的时钟信号。6、解码方式选择

注:SW201-8为解码方式,接OFF为自动

7、解码数据输出端:D208,D207,D206,D205,D204,D203,D202,D201。错误指示灯(当判断出数据有错码时

就指示):D220。

8、其他:七段码显示表明维特比译码的四路路径度量。

七、实验内容

1、用matalab中的simulink对(2,1,3)卷积码进行软件仿真,绘制(2,1,3)卷积码的误码率图,分析它的纠错能力;

2、选择一种在移动通信中应用的卷积码,通过simulnk进行软件仿真,绘制其误码率图,分析它的纠错能力;

3、在Quatus中分别对(2,1,3)卷积码的编码和解码程序进行仿真,分析卷积码的编解码过程;

4、在实验系统中,分别置SW102-2,SW102-1,SW102-0为” 100”和SW201-3,SW201-2,SW201-1为” 100”,选择卷积码编解码方式。置SW103-6,SW103-5,SW103-4,SW103-3,SW103-2,SW103-1为”000000”,即不加任何错。

5、由SW101-8,SW101-7,SW101-6,SW101-5,SW101-4,SW101-3,SW101-2,SW101-1任意输入8位数据,观察并记录D116,D115,D114,D113,D112,D111,D110,D109,D108,D107,D106,D105,D104,D103,D102,D101对应的编码后的输出数据。

6、用示波器分别测量TP102和TP103,观察并编码输出的帧的帧格式。

7、观察并记录解码数据输出端D208,D207,D206,D205,D204,D203,D202,D201的解码输出状态和错误指示灯(当判断出数据有错码时就指示)D220的输出状态。看是否译码正确。

8、通过SW103-6,SW103-5,SW103-4,SW103-3,SW103-2,SW103-1选择在任意位置设置一位错误。

9、看看解码模块的解码输出数据D208,D207,D206,D205,D204,D203,D202,D201以及误码指示D220。看是否译码正确。

10、换几组数据(至少4组数据)重复上述步骤4-9。

八、实验仪表

1、电脑一台(装有matlab和quatus软件);

2、ByteblasterII下载设备;

3、移动通信原理实验系统;

4、60M双踪示波器。

5、数字万用表。

九、思考题

自己编程实现(2,1,3)卷积码编码和Viterbi解码。并且自己通过实验箱的JTAG模式下载调试验证。

十、实验报告要求

1、按照实验要求整理数据,画出解码过程图。

2、实验报告中完成思考题。

卷积码的编解码Matlab仿真

卷积码的编解码Matlab仿真摘要 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力D随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文简明地介绍了卷积码的编码原理和译码原理o并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真和实测,并对测试结果作了分析。得出了以下三个结论z (1)当改变卷积码的码率时,系统的误码性能也将随之发生变化。 (2)对于码率一定的卷积码,当约束长度N发生变化时,系统的误码性能也会随之发生变化。 (3)回溯长度也会不同程度上地影响误码性能。 关键词:卷积码:码率:约束长度:回溯长度

Simulation and Research on Encoding and Decoding of Convolution Code Abstract Convolution code has a superior performance of the channel code. It is easy to coding and decoding.An d it has a strong ability to correct e盯ors. As correcting coding theory has a long development,the practice of convolution code is more and more extensive.In由1S由esis,the principle of convolution coding and decoding is introduced simply白rstly. Then由e whole simulation module process of encoding,decoding and the Error Rate Calculation is completed in由is design. Finally,in order to understand 由eir performances of error rate,many changes in parameters of convolution code are calculated in the simulation process.Af ter simulation and me皿UTe,an analysis of test results is presented.Th e following由ree conclusions are draw: (l)Wh en the rate of convolution Code ch皿ges,HER performance of the systemwill change. (2) For a certain rate of convolution code,when由ere is a change in the constraint length of N,BER perfonnance of由e system will change. (3) Re位ospec咀ve length will affect BE R. Key words: convolution code; rate; cons缸aint leng由; retrospective length;

实验九 (2,1,5)卷积码编码译码技术

实验九 (2,1,5)卷积码编码译码技术 一、实验目的 1、掌握(2,1,5)卷积码编码译码技术 2、了解纠错编码原理。 二、实验内容 1、(2,1,5)卷积码编码。 2、(2,1,5)卷积码译码。 三、预备知识 1、纠错编码原理。 2、(2,1,5)卷积码的工作原理。 四、实验原理 卷积码是将发送的信息序列通过一个线性的,有限状态的移位寄存器而产生的编码。通常卷积码的编码器由K级(每级K比特)的移位寄存器和n个线性代数函数发生器(这里是模2加法器)组成。 若以(n,k,m)来描述卷积码,其中k为每次输入到卷积编码器的bit数,n 为每个k元组码字对应的卷积码输出n元组码字,m为编码存储度,也就是卷积编码器的k元组的级数,称m+1= K为编码约束度m称为约束长度。卷积码将k 元组输入码元编成n元组输出码元,但k和n通常很小,特别适合以串行形式进行传输,时延小。与分组码不同,卷积码编码生成的n元组元不仅与当前输入的k元组有关,还与前面m-1个输入的k元组有关,编码过程中互相关联的码元个数为n*m。卷积码的纠错性能随m的增加而增大,而差错率随N的增加而指数下降。在编码器复杂性相同的情况下,卷积码的性能优于分组码。 编码器 随着信息序列不断输入,编码器就不断从一个状态转移到另一个状态并同时输出相应的码序列,所以图3所示状态图可以简单直观的描述编码器的编码过程。因此通过状态图很容易给出输入信息序列的编码结果,假定输入序列为110100,首先从零状态开始即图示a状态,由于输入信息为“1”,所以下一状态为b并输出“11”,继续输入信息“1”,由图知下一状态为d、输出“01”……其它输入信息依次类推,按照状态转移路径a->b->d->c->b->c->a输出其对应的编码结果“110101001011”。 译码方法 ⒈代数 代数译码是将卷积码的一个编码约束长度的码段看作是[n0(m+1),k0(m+1)]线性分组码,每次根据(m+1)分支长接收数字,对相应的最早的那个分支上的信息数字进行估计,然后向前推进一个分支。上例中信息序列 =(10111),相应的码序列 c=(11100001100111)。若接收序列R=(10100001110111),先根据R 的前三个分支(101000)和码树中前三个分支长的所有可能的 8条路径(000000…)、(000011…)、(001110…)、(001101…)、(111011…)、(111000…)、(110101…)和(110110…)进行比较,可知(111001)与接收

卷积码的编码及解码Viterbi解码Word版

卷积码的编码及解码(Viterbi 解码) 一、实验目的 1、了解卷积码的基本原理; 2、掌握卷积码编码的电路设计方法; 2、掌握卷积码 Viterbi 译码的基本方法和电路设计方法。 二、实验仪器 1、移动通信实验箱一台; 2、台式计算机一台; 三、实验原理 1.卷积码编码原理 卷积码是一个有限记忆系统,它也将信息序列切割成长度 k的一个个分组,与分组码不 同的是在某一分组编码时,不仅参看本时刻的分组而且参看本时刻以前的 L 个分组。我们把 L+1 称为约束长度。 2.卷积码的译码算法(硬判决 Viterbi 译码) Viterbi译码算法是一种最大似然算法,它不是在网络图上依次比较所有可能的路径, 而是接收一段,计算,比较一段,保留最有可能的路径,从而达到整个码序列是一个最大似然序列。Viterbi解码算法的基本步骤如下: 1、从某一时间单位j=m开始,对进入每一状态的所有长为j段分支的部分路径,计算部分路径度量。对每一状态,挑选并存储一条有最大度量的部分路径及 其部分度量,称此部分路径为留选(幸存)路径。 2、j增加1,把此时刻进入每一状态的所有分支度量,和同这些分支相连的前一时刻的留选路径的度量相加,得到了此时刻进入每一状态的留选路径,加以存储并删去其他所有的路径。因此留选路径延长了一个分支。 3、若j

基于MATLAB的卷积码的分析与应用

基于MATLAB的卷积码的分析与应用

毕业设计(论文)任务书

基于MATLAB的卷积码的分析与应用 摘要 随着现代通信的发展,特别是在未来4G通信网络中,高速信息传输和高可靠性传输成为信息传输的两个主要方面,而可靠性尤其重要。因为信道状况的恶劣,信号不可避免会受到干扰而出错。为实现可靠性通信,主要有两种途径:一种是增加发送信号的功率,提高接收端的信号噪声比;另一种是采用编码的方法对信道差错进行控制。前者常常受条件限制,不是所有情况都能采用。因此差错控制编码得到了广泛应用。 介绍了多种信道编码方式,着重介绍了卷积码的编码方法和解码方式。介绍了MATLAB的使用方法、编程方法、语句、变量、函数、矩阵等。介绍了TD-SCDMA通信系统和该系统下的卷积码,搭建了系统通信模型。编写卷积码的编码和解码程序。用MATLAB仿真软件对TD-SCDMA系统的卷积码编解码进行仿真。对其纠正错码性能进行验证,并且对误码率进行仿真和分析。卷积码的编码解码方式有很多,重点仿真Viterbi算法。Viterbi算法就是利用卷积码编码器的格图来计算路径度量,选择从起始时刻到终止时刻的惟一幸存路径作为最大似然路径。沿着最大似然路径回溯到开始时刻,所走过的路径对应的编码输出就是最大似然译码输出序列。它是一种最大似然译码方法,当编码约束长度不大、或者误码率要求不是很高的情况下,Viterbi译码器设备比较简单,计算速度快,因而Viterbi译码器被广泛应用于各种领域。 关键词:卷积码;信道编码;TD-SCDMA;MATLAB

目录 毕业设计(论文)任务书 ............................................................................................I 摘要........................................................................................................................... II Abstract......................................................................................... 错误!未定义书签。第1章绪论 . (1) 1.1课题研究的背景和来源 (1) 1.2主要内容 (2) 第2章相关理论介绍 (3) 2.1信道编码 (3) 2.1.1 信道编码的分类 (3) 2.1.2 编码效率 (3) 2.2线性分组码 (3) 2.3循环码 (5) 2.4卷积码 (6) 2.4.1 卷积码简介 (7) 2.4.2 卷积码的编码 (7) 2.4.3 卷积码的解码 (13) 第3章MATLAB应用 (21) 3.1数和算术的表示方法 (21) 3.2向量与矩阵运算 (21) 3.2.1 通过语句和函数产生 (21) 3.2.2 矩阵操作 (22) 3.3矩阵的基本运算 (22) 3.3.1 矩阵乘法 (22) 3.3.2 矩阵除法 (23) 3.4MATLAB编程 (23) 3.4.1 关系运算 (23) 3.4.2 控制流 (25) 第4章卷积码的设计与仿真 (27) 4.1TD-SCDMA系统 (27) 4.1.1 系统简介 (27) 4.1.2 仿真通信系统模型 (27)

基于MATLAB对卷积码的性能分析

基于MATLAB对卷积码的性能分析 【摘要】本文对比了在加性高斯白噪声(AWGN)信道下经BPSK调制后的数据不编码与添加卷积编码后接收到的信道输出的误码性能,并通过对比对卷积码性能进行分析。采用MATLAB自编函数对[2,1,8]卷积码以及维特比译码进行仿真,且对其性能进行分析。由于卷积码有性能floor,编码增益随信噪比降低而体现不明显。仿真结果表明:当信噪比等于-1dB时,一个序列通过加性高斯白噪声信道后接收到的信道输出误比特率大于10-1,且该序列运用[2,1,8]卷积码编码,维特比译码(硬判决)后所得的序列误比特率升高。当信噪比为2dB时,一个序列通过加性高斯白噪声信道后接收到的信道输出误比特率约为4*10-2,且该序列运用[2,1,8]卷积码编码,维特比译码后所得的序列误比特率小于10-3,误码率远低于不编码时的误码率。因此卷积码适用于信道输出误码率比较低时候。 【关键词】维特比译码;卷积码;误比特率;马尔科夫性 1.引言 卷积码的编码器是由一个有k位输入、n位输出,且具有m位移位寄存器构成的有限状态的有记忆系统,通常称它为时序网络。[1]编码器的整体约束长度为v,是所有k个移位寄存器的长度之和。具有这样的编码器的卷积码称作[n,k,v]卷积码。对于一个(n,1,v)编码器,约束长度v等于存储级数m。卷积码是由k个信息比特编码成n(n>k)比特的码组,编码出的n比特码组值不仅与当前码字中的k个信息比特值有关,而且与其前面v个码组中的v*k个信息比特值有关。 卷积码有三种译码方式:序列译码、门限译码和概率译码。其中,概率译码根据最大似然译码原理在所有可能路径中求取与接收路径最相似的一条路径,具有最佳的纠错性能,[2]维特比译码是概率译码中极重要的一种方式。 序列译码和门限译码则不一定能找出与接收路径最相似的一条路径。不同于维特比译码,门限译码与序列译码所需的计算量是可变的且对于给定信息分组的最终判决仅仅基于(m+1)个接收分组,而不是基于整个接收序列。[3]与维特比译码所使用的对数似然量度不同,序列译码所使用的量度为Fano量度。在接收序列受扰严重的情况下,序列译码的计算量大于维特比译码所需的固定计算量,虽然序列译码要求的平均计算次数通常小于维特比译码。在采用并行处理的情况下,维特比译码的速度会优于序列译码。在同样码率和存储级数的条件下,门限译码的性能比维特比译码低大约3dB。 维特比译码的数据输出方式有硬判决及软判决两种方式,本文选取生成多项式为561,753的(2,1,8)卷积码对硬判决的性能进行分析,并依据维特比译码的原理以及卷积码的特性,对卷积码编码和维特比译码过程在加性高斯白噪声(AWGN)信道下进行仿真,并且根据仿真结果对维特比译码(硬判决)的结果

MATLAB实现卷积码编译码-

本科生毕业论文(设计) 题目:MATLAB实现卷积码编译码 专业代码: 作者姓名: 学号: 单位: 指导教师: 年月日

目录 前言----------------------------------------------------- 1 1. 纠错码基本理论---------------------------------------- 2 1.1纠错码基本理论 ----------------------------------------------- 2 1.1.1纠错码概念 ------------------------------------------------- 2 1.1.2基本原理和性能参数 ----------------------------------------- 2 1.2几种常用的纠错码 --------------------------------------------- 6 2. 卷积码的基本理论-------------------------------------- 8 2.1卷积码介绍 --------------------------------------------------- 8 2.1.1卷积码的差错控制原理----------------------------------- 8 2.2卷积码编码原理 ---------------------------------------------- 10 2.2.1卷积码解析表示法-------------------------------------- 10 2.2.2卷积码图形表示法-------------------------------------- 11 2.3卷积码译码原理---------------------------------------------- 15 2.3.1卷积码三种译码方式------------------------------------ 15 2.3.2V ITERBI译码原理---------------------------------------- 16 3. 卷积码编译码及MATLAB仿真---------------------------- 18 3.1M ATLAB概述-------------------------------------------------- 18 3.1.1M ATLAB的特点------------------------------------------ 19 3.1.2M ATLAB工具箱和内容------------------------------------ 19 3.2卷积码编码及仿真 -------------------------------------------- 20 3.2.1编码程序 ---------------------------------------------- 20 3.3信道传输过程仿真-------------------------------------------- 21 3.4维特比译码程序及仿真 ---------------------------------------- 22 3.4.1维特比译码算法解析------------------------------------ 23 3.4.2V ITERBI译码程序--------------------------------------- 25 3.4.3 VITERBI译码MATLAB仿真----------------------------------- 28 3.4.4信噪比对卷积码译码性能的影响 -------------------------- 28

卷积码的编解码仿真与研究

卷积码的编解码仿真与研究 摘要 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文简明地介绍了卷积码的编码原理和译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真和实测,并对测试结果作了分析。得出了以下三个结论: (1)当改变卷积码的码率时,系统的误码性能也将随之发生变化。 (2)对于码率一定的卷积码,当约束长度N 发生变化时,系统的误码性能也会随之发生变化。 (3)回溯长度也会不同程度上地影响误码性能。 关键词:卷积码;码率;约束长度;回溯长度

Simulation and Research on Encoding and Decoding of Convolution Code Abstract Convolution code has a superior performance of the channel code. It is easy to coding and decoding. And it has a strong ability to correct errors. As correcting coding theory has a long development, the practice of convolution code is more and more extensive. In this thesis, the principle of convolution coding and decoding is introduced simply firstly. Then the whole simulation module process of encoding, decoding and the Error Rate Calculation is completed in this design. Finally, in order to understand their performances of error rate, many changes in parameters of convolution code are calculated in the simulation process. After simulation and measure, an analysis of test results is presented. The following three conclusions are draw: (1) When the rate of convolution Code changes, BER performance of the system will change. (2) For a certain rate of convolution code, when there is a change in the constraint length of N, BER performance of the system will change. (3) Retrospective length will affect BER. Key words: convolution code; rate; constraint length; retrospective length;

14卷积码编解码

实验四 卷积码的编解码 一、实验目的 1、掌握卷积码的编解码原理。 2、掌握卷积码的软件仿真方法。 3、掌握卷积码的硬件仿真方法。 4、掌握卷积码的硬件设计方法。 二、预习要求 1、掌握卷积码的编解码原理和方法。 2、熟悉matlab 的应用和仿真方法。 3、熟悉Quatus 的应用和FPGA 的开发方法。 三、实验原理 1、卷积码编码原理 在编码器复杂度相同的情况下,卷积码的性能优于分组码,因此卷积码几乎被应用在所有无线通信的标准之中,如GSM , IS95和CDMA 2000 的标准中。 卷积码通常记作( n0 , k0 , m) ,它将k 0 个信息比特编为n 0 个比特, 其编码效率为k0/ n0 , m 为约束长度。( n0 , k0 , m ) 卷积码可用k0 个输入、n0 个输出、输入存储为m 的线性有限状态移位寄存器及模2 加法计数器来实现。 本实验以(2,1,3)卷积码为例加以说明。图1就是卷积码编码器的结构。 图1 (2,1,3)卷积码编码器 其生成多项式为: 21()1G D D D =++; 2 2()1G D D =+; 如图1 所示的(2,1,3)卷积码编码器中,输入移位寄存器用转换开关代替,每输入一个信息比特经编码产生二个输出比特。假设移位寄存器的初始状态为全0,当第一个输入比特为0时,输出比特为00;若输入比特为1,则输出比特为11。随着第二个比特输入,第一个比特右移一位,此时输出比特同时受到当前输入比特和前一个输入比特的影响。第三个比特输入时,第一、二个比特分别右移一位,同时输出二个由这三位移位寄存器存储内容所共同决定的比特。依次下去就完成了编码过程。 下面是卷积码的网格图表示。他是比较清楚而又紧凑的描述卷积码的一种方式,它是最常用的描述方

213卷积码编码和译码

No.15 (2,1,3)卷积码的编码及译码 摘要: 本报告对于(2,1,3)卷积码原理部分的论述主要参照啜刚教材和课件,编程仿真部分绝对原创,所有的程序都是在Codeblocks 8.02环境下用C语言编写的,编译运行都正常。完成了卷积码的编码程序,译码程序,因为对于短于3组的卷积码,即2 bit或4 bit纠错是没有意义的,所以对正确的短序列直接译码,对长序列纠错后译码,都能得到正确的译码结果。含仿真结果和程序源代码。 如果您不使用Codeblocks运行程序,则可能不支持中文输出显示,但是所有的数码输出都是正确的。

一、 卷积码编码原理 卷积码编码器对输入的数据流每次1bit 或k bit 进行编码,输出n bit 编码符号。但是输出的分支码字的每个码元不仅于此时可输入的k 个嘻嘻有关,业余前m 个连续式可输入的信息有关,因此编码器应包含m 级寄存器以记录这些信息。 通常卷积码表示为 (n,k,m). 编码率 k r n = 当k=1时,卷积码编码器的结构包括一个由m 个串接的寄存器构成的移位寄存器(成为m 级移位寄存器、n 个连接到指定寄存器的模二加法器以及把模二加法器的输出转化为穿行的转换开关。 本报告所讲的(2,1,3)卷积码是最简单的卷积码。就是2n =,1k =,3m =的卷积码。每次输入1 bit 输入信息,经过3级移位寄存器,2个连接到指定寄存器的模二加法器,并把加法器输出转化为串行输出。 编码器如题所示。 二、卷积码编码器程序仿真 C 语言编写的仿真程序。 为了简单起见,这里仅仅提供数组长度30 bit 的仿真程序,当然如果需要可以修改数组大小。为了更精练的实现算法,程序输入模块没有提供非法字符处理过程,如果需要也可以增加相应的功能。 进入程序后,先提示输入数据的长度,请用户输入int (整型数)程序默认用户输入的数据小于30,然后提示输入01数码,读入数码存储与input 数组中,然后运算输出卷积码。经过实验仿真,编码完全正确。 以下是举例: a.课件上的输入101 输出11 10 00 的实验

卷积码编译码课设 (2)

摘要 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文对卷积码和卷积码的编译码有一个简单的介绍且给出了信道编码的发展历史及研究状况,然后详细讨论了(2,1,2)卷积码的编码过程和译码过程,通过状态转移方程和输出方程得出状态转移表和状态转移图,然后通过维特比译码器研究,总结出了维特比译码算法,最后通过Matlab软件进行设计与仿真,得到了编码程序和译码程序,其运行结果与理论分析一致。 关键字卷积码编码、信道编码、Viterbi译码、MATLAB仿真

目录 摘要........................................... 错误!未定义书签。 一、引言 (3) 1.1发展历史及研究状况 (3) 1.2设计目的和意义 (3) 1.3设计方法 (4) 二、卷积码编译码原理 (5) 2.1 卷积码编码原理 (5) 2.2编码器 (6) 2.3 卷积码译码原理 (7) 2.4 VITEBI 译码的关键步骤 (8) 2.4.1 输入与同步单元 (8) 2.4.2 支路量度计算 (8) 2.4.3 路径量度的存储与更新 (8) 2.4.4 信息序列的存储与更新 (8) 2.4.5 判决与输出单元 (8) 三、卷积码编码实现 (9) 3.1 编码原理分析 (9) 3.2 卷积码编码流程图 (10) 四、卷积码译码实现 (11) 4.1 译码编程思路 (11) 4.2 卷积码译码流程图 (11) 五、卷积码编译码程序的编译及仿真波形 (11) 5.1 卷积码编码仿真 (12) 5.2卷积码译码仿真 (13) 5.3卷积码纠错码仿真 (14) 六、总结 (15) 七、参考文献 (16) 附录 (17)

卷积码实验报告

苏州科技大学天平学院电子与信息工程学院 信道编码课程设计报告 课设名称卷积码编译及译码仿真 学生姓名圣鑫 学号1430119232 同组人周妍智 专业班级通信1422 指导教师潘欣欲 一、实验名称 基于MAATLAB的卷积码编码及译码仿真 二、实验目的 卷积码就是一种性能优越的信道编码。它的编码器与译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本实验简明地介绍了卷积码的编码原理与Viterbi译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码与译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真与实测,并对测试结果作了分析。 三、实验原理

1、卷积码编码原理 卷积码就是一种性能优越的信道编码,它的编码器与解码器都比较易于实现,同时还具有较强的纠错能力,这使得它的使用越来越广泛。卷积码一般表示为(n,k,K)的形式,即将 k个信息比特编码为 n 个比特的码组,K 为编码约束长度,说明编码过程中相互约束的码段个数。卷积码编码后的 n 各码元不经与当前组的 k 个信息比特有关,还与前 K-1 个输入组的信息比特有关。编码过程中相互关联的码元有 K*n 个。R=k/n 就是编码效率。编码效率与约束长度就是衡量卷积码的两个重要参数。典型的卷积码一般选 n,k 较小,K 值可取较大(>10),但以获得简单而高性能的卷积码。 卷积码的编码描述方式有很多种:冲激响应描述法、生成矩阵描述法、多项式乘积描述法、状态图描述,树图描述,网格图描述等。 2、卷积码Viterbi译码原理 卷积码概率译码的基本思路就是:以接收码流为基础,逐个计算它与其她所 有可能出现的、连续的网格图路径的距离,选出其中可能性最大的一条作为译码估值输出。概率最大在大多数场合可解释为距离最小,这种最小距离译码体现的正就是最大似然的准则。卷积码的最大似然译码与分组码的最大似然译码在原理上就是一样的,但实现方法上略有不同。主要区别在于:分组码就是孤立地求解单个码组的相似度,而卷积码就是求码字序列之间的相似度。基于网格图搜索的译码就是实现最大似然判决的重要方法与途径。用格图描述时,由于路径的汇聚消除了树状图中的多余度,译码过程中只需考虑整个路径集合中那些使似然函数最大的路径。如果在某一点上发现某条路径已不可能获得最大对数似然函数,就放弃这条路径,然后在剩下的“幸存”路径中重新选择路径。这样一直进行到最后第 L 级(L 为发送序列的长度)。由于这种方法较早地丢弃了那些不可能的路径,从而减轻了译码的工作量,Viterbi 译码正就是基于这种想法。对于(n, k, K )卷积码,其网格图中共 2kL 种状态。由网格图的前 K-1 条连续支路构成的路径互不相交,即最初 2k_1 条路径各不相同,当接收到第 K 条支路时,每条路径都有 2 条支路延伸到第 K 级上,而第 K 级上的每两条支路又都汇聚在一个节点上。在Viterbi译码算法中,把汇聚在每个节点上的两条路径的对数似然函数累加

基于matlab的2-3卷积码编码译码设计与仿真

西南科技大学 方向设计报告 课程名称:通信工程方向设计 设计名称:2/3卷积码编译码器仿真与性能分析 姓名: 学号: 班级: 指导教师: 起止日期:2011.12.12-2012.1.6 西南科技大学信息工程学院制

方向设计任务书 学生班级:学生姓名:学号: 设计名称:2/3卷积码编译码器仿真与性能分析 起止日期:2011.12.12-2012.1.6指导教师: 设计要求: (1)分析2/3卷积码编码器结构; (2)分析2/3卷积码译码的Viterbi算法; (3)基于SIMULINK进行2/3卷积码的纠错性能仿真; 方向设计学生日志 时间设计内容 12.15-12.17 查看题目及设计要求。 12.18-12.23 查阅相关资料,设计方案。 12.23-12.27 编写报告及调试程序。 12.28-12.29 完善修改课程设计报告。 12.30-12.31 答辩。

方向设计考勤表 周星期一星期二星期三星期四星期五 方向设计评语表 指导教师评语: 成绩:指导教师: 年月日

2/3卷积码编译码器仿真与性能分析 摘要: 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文简明地介绍了卷积码的编码原理和Viterbi译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真和实测,并对测试结果作了分析。 关键词: 卷积码编码器、viterbi译码器、SIMULINK

34卷积码编码原理分析与建模仿真

3/4卷积码编码原理分析与建模仿真 一、摘要 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文简明地介绍了卷积码的编码原理和Viterbi译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分析了卷积码误比特率与信噪比之间的关系,及卷积码与非卷积码的对比。经过仿真和实测,并对测试结果作了分析。 关键词:卷积码编码建模 SIMULINK仿真

目录 一、摘要 ................................................................................................................................................................. - 1 - 二、设计目的和意义 ............................................................................................................................................. - 2 - 三、设计原理 ......................................................................................................................................................... - 3 - 3.1 卷积码基本概念 ...................................................................................................................................... - 3 - 3.2 卷积码的结构 .......................................................................................................................................... - 3 - 3.3 卷积码的解析表示 .................................................................................................................................. - 4 - 3.4 卷积码的译码 .......................................................................................................................................... - 4 - 3.4.1 卷积码译码的方式........................................................................................................................ - 4 - 3.5.2 卷积码的Viterbi译码 .................................................................................................................. - 5 - 四、详细设计步骤 ................................................................................................................................................. - 6 - 4.1 卷积码的仿真 .......................................................................................................................................... - 6 - 4.1.1 SIMULINK仿真模块的参数设置及意义 ................................................................................. - 6 - 五、设计结果及分析 ........................................................................................................................................... - 11 - 5.1不同信噪比对卷积码的影响.................................................................................................................. - 11 - 5.2卷积码的对比 ........................................................................................................................................ - 12 - 六、总结 ............................................................................................................................................................... - 14 - 七、体会 ............................................................................................................................................................... - 14 - 八、参考文献 ....................................................................................................................................................... - 14 - 二、设计目的和意义 因为信道中信号不可避免会受到干扰而出错。为实现可靠性通信,主要有两种途径:一种

213卷积码编码和译码

(2,1,3)卷积码的编码及译码 摘要: ¥ 本报告对于(2,1,3)卷积码原理部分的论述主要参照啜刚教材和课件,编程仿真部分绝对原创,所有的程序都是在Codeblocks 环境下用C语言编写的,编译运行都正常。完成了卷积码的编码程序,译码程序,因为对于短于3组的卷积码,即2 bit或4 bit纠错是没有意义的,所以对正确的短序列直接译码,对长序列纠错后译码,都能得到正确的译码结果。含仿真结果和程序源代码。 如果您不使用Codeblocks运行程序,则可能不支持中文输出显示,但是所有的数码输出都是正确的。

一、 卷积码编码原理 卷积码编码器对输入的数据流每次1bit 或k bit 进行编码,输出n bit 编码符号。但是输出的分支码字的每个码元不仅于此时可输入的k 个嘻嘻有关,业余前m 个连续式可输入的信息有关,因此编码器应包含m 级寄存器以记录这些信息。 通常卷积码表示为 (n,k,m). 编码率 k r n = ( 当k=1时,卷积码编码器的结构包括一个由m 个串接的寄存器构成的移位寄存器(成为m 级移位寄存器、n 个连接到指定寄存器的模二加法器以及把模二加法器的输出转化为穿行的转换开关。 本报告所讲的(2,1,3)卷积码是最简单的卷积码。就是2n =,1k =,3m =的卷积码。每次输入1 bit 输入信息,经过3级移位寄存器,2个连接到指定寄存器的模二加法器,并把加法器输出转化为串行输出。 编码器如题所示。 二、卷积码编码器程序仿真 C 语言编写的仿真程序。 为了简单起见,这里仅仅提供数组长度30 bit 的仿真程序,当然如果需要可以修改数组大小。为了更精练的实现算法,程序输入模块没有提供非法字符处理过程,如果需要也可以增加相应的功能。 进入程序后,先提示输入数据的长度,请用户输入int (整型数)程序默认用户输入的数据小于30,然后提示输入01数码,读入数码存储与input 数组中,然后运算输出卷积码。经过实验仿真,编码完全正确。 } 以下是举例:

卷积码的编译码MATLAB程序

%survivor state是一个矩阵,它显T了通过网格的最优路径,这个矩阵通过一个单独的函数metric(x,y)给出。 %其中G是一个矩阵,它的任一行决定了从移位寄存器到模2加法器的连接方式.为生成矩阵%这里,我们做了一个简单的(2,1,7)卷积码编码器。 k=1; G=[1 0 1 1 0 1 1;1 1 1 1 0 0 1];%G1=133,G2=171 %以下3种输入序列,可任选一种% %input=[0 0 0 0 0 0 0];%全0输入 %input=[1 1 1 1 1 1 1];%全1输入 input=[round(rand(1,7)*1)];%随机系列输入,也可用 randint(1,7,[0 1]) figure;plot(input,'*r') %figure1:画图:目标input,红色(red,r),形状为* s=input; g1=G(1,:); g2=G(2,:); c1=conv(s,g1);%作卷积 %disp(c1); c2=conv(s,g2); %disp(c2); n=length(c1);%7位输入时n=13 c=zeros(1,2*n);%生成全0矩阵,1*26 %disp(c); for i=1:n c(2*i-1)=c1(i);c(2*i)=c2(i);%两个模2加法器分别输出卷积结果序列后,由旋转开关读取的结果(此时仅为卷积结果,非2进制0/1) end for i=1:2*n if(mod(c(i),2)==0)% mod(c(i),2)==0意思:c(i)除以2,余数为0 c(i)=0; else c(i)=1; end end output=c; channel_output=output;%输出矩阵 %disp(channel_output); figure;plot(output,'*b') %画图:目标:卷积码编码输出,蓝色(blue,b)* %————————————————以上为编码部分,以下为维特比译码———————————————— n=size(G,1);%取矩阵G的行数,故n=2。即得到输出端口,即2个模2加法器 %检验G的维数 if rem(size(G,2),k)~=0 %当矩阵G的列数不为k的整数倍时,rem为求余函数 error('Size of G and k do not agree')%报错 end if rem(size(channel_output,2),n)~=0 %当输出矩阵的列数不是输出端口n的整数倍时。(注:size(channel_output,2)=26,2个模2加法器合成的输出)

相关文档
最新文档