(整理)3x30m连续梁下部结构计算书.

(整理)3x30m连续梁下部结构计算书.
(整理)3x30m连续梁下部结构计算书.

广青公路二期(洛水至红白镇段)工程蓥华大桥

3×30m连续梁下部结构计算书

1.工程概况

桥梁上部为3×30m跨预应力混凝土连续梁,主梁总宽度为12m,梁高为1.6m。主梁采用单箱双室断面,其中主梁悬臂长 2.0m,标准断面箱室顶板厚0.22m,底板厚0.2m,腹板厚0.45m,中支点及边支点断面箱室顶板厚0.37m,底板厚0.32m,腹板厚0.65m,两断面间设长2.5m的渐变段。混凝土主梁采用C50混凝土现场浇注,封端采用C45混凝土。主梁中墩采用两根直径1.6m圆柱,下接直径1.8m桩基,左侧中墩高7m,右侧墩柱高8.5m。主梁边墩采用盖梁+直径1.6m双柱中墩,下接直径1.8m桩基形式;中、边墩横桥向中心距均为5.6m。

主梁边支点采用普通板式橡胶支座,中墩与主梁固结。

2.设计规范

《城市桥梁设计准则》(CJJ11—93);

《城市桥梁设计荷载标准》(CJJ77—98);

《公路工程技术标准》(JTGB01-2003);

《公路桥涵设计通用规范》(JTG D60-2004);

《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004));

《公路桥涵地基与基础设计规范》(JTG D63—2007);

《公路桥梁抗震设计细则》(JTG/T B02-01-2008);

《公路桥涵施工技术规范》(JTJ041-2000);

3.静力计算

3.1 计算模型

由于主梁支撑中心与其中心线斜正交,且主梁平面基本为直线,因此建立平面杆系模型计算结构的内力及变形。桥梁内力及位移的计算均采用桥梁博士3.0有限元程序进行,其中边支点仅采用竖向支撑,中墩底部采用弹性支撑,其支撑刚度根据m法计算(m0=1.2×105kN/m4,K水平=2.4×106kN/m,K弯曲=1.1×107kN.m/rad)。

根据桥梁结构受力特点,其计算模型见下图。

主梁计算模型

3.2 计算荷载

3.2.1 结构自重及二期恒载

盖梁结构自重:

混凝土容重按26kN/m3计;

二期恒载:

桥面铺装0.18×11.04×25=49.7kN/m;

防撞护栏及挂板等每侧6.5kN/m

二期恒载合计:62.7kN/m。

3.2.2 汽车活载:

汽车活载:采用公路Ⅰ级车道荷载,按3车道布载

汽车冲击:正弯矩区0.273;

负弯矩区0.37;

偏载系数:1.15;

车道折减系数:0.8。

3.2.3 其它荷载

体系温差:+30℃;-30℃;

桥面日照温差:+14℃;-7℃(按规范模式加载);

基础沉降:各墩柱取5mm;

混凝土收缩、徐变:按规范计算

3.3 主梁预应力钢束设置

预应力钢束采用13×7φ5高强低松弛预应力钢铰线,其标准强度为1860MPa,张拉控制应力为1302MPa。主梁共布置三排钢束,每排布置6束。预应力钢束的整体布置见下图。

主梁预应力钢束布置图

钢束1输入信息

钢束2输入信息

钢束3输入信息

3.4 墩柱计算结果

中墩采用C40混凝土现浇,按普通钢筋混凝土构件设计。各工况下,墩柱受力情况见下表。

左中墩墩顶内力统计表

左中墩墩底内力统计表

右中墩墩顶内力统计表

右中墩墩底内力统计表

中墩各控制截面配筋验算见下表:

中墩控制截面配筋验算表

说明:墩柱斜截面抗剪强度由地震偶然组合(E2)控制,故此处不进行验算。

从上表可以看出,墩柱配筋满足规范要求。

4.结构抗震验算

4.1 计算模型

建立空间杆系模型,采用Midas/Civil 2006软件进行抗震相关计算分析。其中主梁、横梁、墩柱、桩基、系梁均采用空间梁单元模拟,为简化计算,主梁边支撑仅考虑板式橡胶支座刚度,不再考虑边墩盖梁、墩柱、桩基与支座的刚度耦合。利用节点弹性支撑模拟桩—土相互作用,其顺桥向、横桥向及竖向约束刚度采用m法计算(其中m0=2×1.2×105kN/m4,C z=7.5×106kN/m2)。计算模型见下图。

结构地震响应通过加速度反应谱分析得到,其中模态组合采用CQC法。墩柱屈服弯矩、极限承载力及顺桥向横桥向容许位移通过静力弹塑性分析得到,其中采用FEMA铰模拟墩柱塑性铰特性。

3×30m 连续梁计算模型

4.2 计算参数

根据《公路桥梁抗震设计细则》(JTG/T B02-01-2008),本桥抗震设防类别按B 类考虑。根据蓥华大桥地质勘察报告,桥址处场地抗震设防烈度为Ⅶ度,设计地震分组为第二组,设计基本地震加速度为0.15g ,地震动反应谱特征周期为0.40S 。

设防目标:E1地震作用下,一般不受损坏或不需修复可继续使用;E2地震作用下,应保证不致倒塌或产生严重结构损伤,经临时加固后可维持应急交通使用。

根据抗震规范6.1.3,本桥为规则桥梁;根据抗震规范表6.1.4,本桥E1、E2作用均可采用SM/MM 分析计算方法。

当抗震分析采用多振型反应谱法,水平设计加速度反应谱S 由下式(规范5.2.1)确定:

max max max (5.50.45)0.10.1(/)g

g g S T T s

S S s T T S T T T T ?+?

其中

m a x 2.25i s d S C C C A

= 式中:Tg —特征周期(s); T —结构自振周期(s);

S—水平设计加速度反应谱最大值;

max

Ci—抗震重要性系数;

Cs—场地系数;

Cd—阻尼调整系数;

A—水平向设计基本地震加速度峰值。反应谱拟合的相关参数见下表:

E1地震作用加速度反应谱

E2地震作用加速度反应谱

4.3 E1地震验算

地震偶然荷载作用下(E1)结构内力见下图。

地震偶然荷载作用下(E1)顺桥向最不利弯矩对应轴力

地震偶然荷载作用下(E1)顺桥向最不利弯矩

地震偶然荷载作用下(E1)横桥向最不利弯矩对应轴力

地震偶然荷载作用下(E1)横桥向最不利弯矩地震偶然荷载组合(E1)下中墩各控制截面配筋验算见下表:

中墩控制截面配筋验算表

说明:墩柱斜截面抗剪强度由地震偶然组合(E2)控制,故此处不进行验算。

从上表可以看出,墩柱配筋满足规范要求。

4.4 E2地震验算

4.4.1 E2地震作用下墩柱容许位移验算 4.4.1.1 墩柱有效抗弯刚度计算

由公式(B.0.1-2),墩柱截面屈服曲率φy 为:

00277.06

.1002

.0213.2213.2=?=

=

D

y

y εφ

通过弹塑性分析得到铰的基本铰属性,计算墩柱截面顺桥向及横桥向屈服弯矩My 。

墩柱截面顺桥向弯矩-位移曲线

墩柱截面横桥向弯矩-位移曲线

因此墩柱塑性铰区域截面顺桥有效抗弯刚度:

c

y E φy eff M I =

=7700/(0.00277×3.250×107)=0.0855(m 4)

墩柱塑性铰区域截面有限刚度系数=0.0855/(π×1.64/64)=0.266

墩柱塑性铰区域截面横桥有效抗弯刚度:

c

y E φy eff M I =

=6125/(0.00277×3.250×107)=0.0680(m 4)

墩柱塑性铰区域截面有限刚度系数=0.0680/(π×1.64/64)=0.211。 4.4.1.2 墩柱等效塑性铰长度计算

根据上式,左墩柱等效塑性铰长度为0.5m ,右墩柱等效塑性铰长度为0.6m 。 4.4.1.3 E2作用下位移计算

在E2地震作用下,墩柱顺桥向及横桥向最大位移见下图。

E2地震作用下顺桥向位移(δXmax =3.0cm )

E2地震作用下横桥向位移(δYmax=2.5cm)

4.4.1.4 墩柱容许位移计算

根据规范7.4.8条建立弹塑性分析模型计算墩柱顺桥向及横桥向容许位移。

墩柱顺桥向荷载位移曲线(△

u =15.3cm)

墩柱横桥向荷载位移曲线(△

u

=13.3cm)

4.4.1.5 墩柱容许位移验算

E2地震作用下,墩顶的顺桥向和横桥向水平位移按抗震规范第6.7.6条计

算,△

d

=Cδ。

场地特征周期T

g =0.4S,顺桥向结构自振周期T=0.58>T

g

,查表6.7.6 c=1;

横桥向结构自振周期T=0.69>T

g

。查表6.7.6 c=1

4.4.2 E2地震作用墩柱斜截面抗剪承载力验算

4.4.2.1 墩柱顺桥向剪力设计值

墩顶、底顺桥向潜在塑性区域极限弯矩图

因此,顺桥向墩柱塑性铰区域抗剪承载力设计值:

5

.88765

90412.10

0+?

=+=n s zc x zc c H M M V φ=2514kN 4.4.2.2 墩柱横桥向剪力设计值

墩顶、底横桥向潜在塑性区域极限弯矩图

因此,横桥向墩柱塑性铰区域抗剪承载力设计值:

5

.810198

103012.10

0+?

=+=n s hc x hc c H M M V φ=2894kN 4.4.2.3 墩柱斜截面抗剪承载力验算

由上述计算可知,墩柱塑性铰区域斜截面抗剪承载力由横桥向控制,其承载力验算见下表。

墩柱塑性铰区域斜截面抗剪承载力验算表

4.4.3 E2地震作用桩基强度验算

E2地震作用下,桩基内力按规范6.8.5条及其条文说明计算,由上述计算可知,桩基配筋由横向弯矩控制。

E2地震作用下桩基最大内力

E2地震作用下,桩基承载力验算见下表。

桩基配筋验算表

桩基箍筋加密区采用2根φ16HRB335钢筋,间距为10cm,对应桩基斜截面抗剪承载力可满足规范要求。

midas连续梁分析报告实例

1. 连续梁分析概述 比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、 内力。 3跨连续两次超静定 3跨静定 3跨连续1次超静定 图 1.1 分析模型

?材料 钢材: Grade3 ?截面 数值 : 箱形截面 400×200×12 mm ?荷载 1. 均布荷载 : 1.0 tonf/m 2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差) 设定基本环境 打开新文件,以‘连续梁分析.mgb’为名存档。单位体系设定为‘m’和‘tonf’。 文件/ 新文件 文件/ 存档(连续梁分析 ) 工具 / 单位体系 长度> m ; 力 > tonf 图 1.2 设定单位体系

设定结构类型为 X-Z 平面。 模型 / 结构类型 结构类型> X-Z 平面? 设定材料以及截面 材料选择钢材GB(S)(中国标准规格),定义截面。 模型 / 材料和截面特性 / 材料 名称( Grade3) 设计类型 > 钢材 规范> GB(S) ; 数据库> Grade3 ? 模型 / 材料和截面特性 / 截面 截面数据 截面号( 1 ) ; 截面形状 > 箱形截面; 用户:如图输入 ; 名称> 400×200×12 ? 选择“数据库”中的任 意材料,材料的基本特 性值(弹性模量、泊松 比、线膨胀系数、容 重)将自动输出。 图 1.3 定义材料图 1.4 定义截面建立节点和单元

为了生成连续梁单元,首先输入节点。 正面, 捕捉点 (关), 捕捉轴线 (关) 捕捉节点 (开), 捕捉单元 (开), 自动对齐 模型 / 节点 / 建立节点 坐标 ( x, y, z ) ( 0, 0, 0 ) 图 1.5 建立节点 参照用户手册的“输 入单元时主要考虑事项”

30+45+30m预应力连续梁计算书

30+45+30米连续梁计算书 一、预应力钢筋砼上部结构纵向计算书 (一)工程概况: 本计算书是针对标段中的30+45+30米的预应力混凝土连续梁桥进行。桥宽为9.5m,采用单箱单室,单侧翼板长2.5米;梁高为1.6~2.3米,梁底按二次抛物线型变化。 箱梁腹板采用斜腹板,腹板的厚度随着剪力的增大而从跨中向支点逐渐加大,箱梁边腹板厚度为50~70cm。箱梁顶板厚22cm。为了满足支座布置及承受支点反力的需要,底板的厚度随着负弯矩的增大而逐渐从跨中向支点逐渐加大,厚度为22~35cm。其中跨跨中断面形式见图1.1,支承横梁边的截面形式见图1.2。结构支承形式见图1.3。主梁设纵向预应力。钢束采用?j15.24低松弛预应力钢绞线,标准强度为1860MPa,弹性模量为1.9X105 MPa,公称面积为140mm2。预应力钢束采用真空吸浆工艺,管道采用与其配套的镀锌金属波纹管。纵向钢束采用大吨位锚。钢束为19?s15.24的钢绞线,均为两端张拉,张拉控制应力为1339MPa。 图1.1 中跨跨中截面形式

图1.2 横梁边截面形式 图1.3 结构支承示意图 (二)设计荷载 结构重要性系数:1.0 设计荷载:桥宽9.5米,车道数为2,城-A汽车荷载。 人群荷载:没有人行道,所以未考虑人群荷载。 设计风载:按平均风压1000pa计, 地震荷载:按基本地震烈度7度设防, 温度变化:结构按整体温升200C,整体温降200C计,桥面板升温140C,降温70C。基础沉降:桩基础按下沉5mm计算组合。 其他荷载: (三)主要计算参数 材料:C50砼; 预应力钢束:高强度低松弛钢绞线,抗拉标准强度fpk=1860MPa,抗拉设计强度fpd=1260MPa,抗压设计强度fpd=390Mpa。

结构梁板荷载计算书

梁板荷载计算 设计依据 建筑结构荷载规范 GB50009-2012 一、楼面恒载 1、120mm 厚楼板 120 厚砼板: 25×0.12=3KN/m2 楼面地砖面层(详见建筑楼面做法) (0.6~0.8KN/m2) 取0.8KN/m2 板底8厚水泥石灰膏砂浆涂料 0.2KN/m2 恒载合计 4KN/m2 取值 4.5KN/m2 2、130mm 厚楼板 130 厚砼板: 25×0.13=3.25KN/m2 楼面地砖面层(详见建筑楼面做法) (0.6~0.8KN/m2) 取0.8KN/m2 板底8厚水泥石灰膏砂浆涂料 0.2KN/m2 恒载合计 4.25KN/m2 取值 4.5KN/m2 3、140mm 厚楼板 140 厚砼板: 25×0.14=3.5KN/m2 楼面地砖面层(详见建筑楼面做法) (0.6~0.8KN/m2) 取0.8KN/m2 板底8厚水泥石灰膏砂浆涂料 0.2KN/m2 恒载合计 4.5KN/m2 取值 4.5KN/m2 4、楼梯间:恒活荷载:8 , 3.5 二、屋面恒载 1、120mm 厚楼板 反光涂料 0.04 KN/m2 50 厚 C20 细石混凝土及涂料 1.25 KN/m2 20 厚抗裂防渗砂浆 0.4 KN/m2 70 厚挤塑聚苯板 0.3 KN/m2 10 厚低标号砂浆隔离层 0.2 KN/m2 防水卷材及涂膜 0.2 KN/m2 20 厚 1:3 水泥砂浆找平层 0.4 KN/m2 找坡层 0.7 KN/m2 砼结构板 25×0.12=3.0KN/m2 恒载合计 6.49 KN/m2 取值 7KN/m2

2、140mm 厚楼板 反光涂料 0.04 KN/m2 50 厚 C20 细石混凝土及涂料 1.25 KN/m2 20 厚抗裂防渗砂浆 0.4 KN/m2 70 厚挤塑聚苯板 0.3 KN/m2 10 厚低标号砂浆隔离层 0.2 KN/m2 防水卷材及涂膜 0.2 KN/m2 20 厚 1:3 水泥砂浆找平层 0.4 KN/m2 找坡层 0.7 KN/m2 砼结构板 25×0.14=3.5KN/m2 恒载合计 6.99 KN/m2 取值 8KN/m2 活荷载:楼梯取值 3.5KN/m2 ;办公区 2.0KN/m2 ;不上人屋面 0.5KN/m2。 三、梁间荷载 1、楼层内墙(200 厚),使用加气砼砌块,容重 7.0 KN/m3 加气砼砌块0.2×7=1.4 KN/m2 两侧找平粉刷 0.04×20=0.8KN/m2 恒载合计 2.2KN/m2 1.1 、标准层框架梁上内隔墙线荷载(层高 3.6m,梁高 0.5m) 2.2× 3.1=6.82 KN/m 取值 7 KN/m 1.2 、标准层次梁上内隔墙线荷载(层高 3.6m,梁高 0.4m) 2.2× 3.2=7.04 KN/m 取值 7.5 KN/m 1.3 、四层梁上内隔墙线荷载(层高 3.4m,梁高 0.4m) 2.2×3=6.6 KN/m 取值 7 KN/m 2、外墙(200 厚),使用加气砼砌块,容重 7.0 KN/m3 内墙找平粉刷 0.02×20=0.4 KN/m2 加气砼砌块 0.2×7=1.4 KN/m2 20厚水泥砂浆 0.02×20=0.4 KN/m2 30厚挤塑聚苯板 0.1KN/m2 12 厚 1:3:1 中砂水泥抗裂砂浆 0.012×20=0.24KN/m2 8 厚 1:3 聚合物防水砂浆 0.008×20=0.16KN/m2 真石漆 0.04KN/m2 恒载合计 2.74 KN/m2 2.1 、标准层框架梁上墙线荷载(层高 3.6m,梁高 0.65m) 2.95×2.74=8.08KN/m 取值 8.5 KN/m

[整理]MIDAS连续梁桥建模.

该过程是将三垮桥的运营状态进行有限元分析,下面介绍了本人在对模型模拟的主要步骤,若中间出现的错误,请读者朋友们指出修改。 注:“,”表示下一个过程 “()”该过程中需做的内容 一.结构 1.单元及节点建立的主桁:因为桥面具有一定纵坡,故将《桥跨布置》图的桥面线复制到《节段划分》图对应桥跨位置,然后进行单元划分,将该线段存入新的图层,以便下步导入,将文件保存为.dxf格式文件。 2.打开midas运行程序,将程序里的单位设置成《节段划分》图的单位,这里为cm。导入上步的.dxf文件。将节点表格中的z坐标与y坐标交换位置(midas中的z与cad中的y对应)。结构建立完成。模型如图: 二.特性值 1.材料的定义:在特性里面定义C50的混凝土及Strand1860(添加预应力钢筋使用) 2.截面的赋予: 1).在《截面尺寸》和《预应力束锚固》图里,做出截面轮廓文件,保存为.dxf 文件 2).运行midas,工具,截面特性计算器,统一单位cm。导入上步的.dxf文件 先后运行generate,calculate property,保存文件为.sec文件,截面文件完成 3)运行midas,特性,截面,添加,psc,导入.sec文件。根据图例,将各项特性值填入;验算扭转厚度为截面腹板之和;剪切验算,勾选自动;偏心,中上部4)变截面的添加:进入添加截面界面,变截面,对应单元导入i端和j端(i为左,j为右);偏心,中上部;命名(注:各个截面的截面号不能相同)

5)变截面赋予单元:进入模型窗口,将做好的变截面拖给对应的单元。 注:1.建模资料所给的《预应力束锚固图》的0-0和14-14截面与《节段划分》图有出入,这里采用《截面尺寸》做这两个截面,其余截面按照《预应力束锚固图》做 2.定义材料先定义混凝土,程序自动将C50赋予所建单元(C50是定义的第一个材料,程序将自动赋予给所建单元) 三.边界条件 1.打开《断面》图,根据I、II断面可知,支座设置位置。根据途中所给数据,在模型窗口中建立支座节点(12点) 2.点击节点,输入对应坐标,建立12个支座节点 3.建立弹性连接:模型,边界条件,弹性连接,连接类型(刚性),两点(分别点击支座点与桥面节点)共12个弹性连接 4.边界约束:中间桥墩,约束Dx,Dz;Dx,Dy,Dz;Dx,Dz, 两边桥墩,约束Rx,Dz;Rx,Dy,Dz;Rx,Dz 如表 四.添加预应力钢筋 1.定义钢束特性:打开《预应力筋布置及材料表》、《预应力束几何要素》。荷载,

连续梁桥计算

第一章混凝土悬臂体系和连续体系梁桥的计算 第一节结构恒载内力计算 一、恒载内力计算特点 对于连续梁桥等超静定结构,结构自重所产生的内力应根据它所采用的施工方法来确定其计算图式。 以连续梁为例,综合国内外关于连续梁桥的施工方法,大体有以下几种: (一)有支架施工法; (二)逐孔施工法; (三)悬臂施工法; (四)顶推施工法等。 上述几种方法中,除有支架施工一次落梁法的连续梁桥可按成桥结构进行分析之外,其余几种方法施工的连续梁桥,都存在一个所谓的结构体系转换和内力(或应力)叠加的问题,这就是连续梁桥恒载内力计算的一个重要特点。 本节着重介绍如何结合施工程序来确定计算图式和进行内力分析以及内力叠加等问题,并且仅就大跨径连续梁桥中的后两种的施工方法——悬臂浇筑法和顶推施工法作为典型例子进行介绍。理解了对特例的分析思路以后,就可以容易地掌握当采用其它几种施工方法时的桥梁结构分析方法了。 二、悬臂浇筑施工时连续梁的恒载内力计算 为了便于理解,现取一座三孔连续梁例子进行阐明,如图1-1所示。该桥上部结构采用挂篮对称平衡悬臂浇筑法施工,从大的方面可归纳为五个主要阶段,现按图分述如下。 (一)阶段1 在主墩上悬臂浇筑混凝土 首先在主墩上浇筑墩顶上面的梁体节段(称零号块件),并用粗钢筋及临时垫块将梁体与墩身作临时锚固,然后采用施工挂篮向桥墩两侧分节段地进行对称平衡悬臂施工。此时桥墩上支座暂不受力,结构的工作性能犹如T型刚构。对于边跨不对称的部分梁段则采用有支架施工。 此时结构体系是静定的,外荷载为梁体自重q自(x)和挂篮重量P挂,其弯矩图与一般悬臂梁无异。 (二)阶段2 边跨合龙 当边跨梁体合龙以后,先拆除中墩临时锚固,然后便可拆除支架和边跨的挂篮。 此时由于结构体系发生了变化,边跨接近于一单悬臂梁,原来由支架承担的边段梁体重量转移到边跨梁体上。由于边跨挂篮的拆除,相当于结构承受一个向上的集中力P挂。 (三)阶段3 中跨合龙 当中跨合龙段上的混凝土尚未达到设计强度时,该段混凝土的自重q及挂篮重量2P 将以2个集中力 挂 R0的形式分别作用于两侧悬臂梁端部。

混凝土梁板结构设计计算书

混凝土梁板结构课程 设计计算书
姓名: 学号: 专业:

混凝土梁板结构设计课程设计计算书
目录
1 设计题目 ................................................................................................................. 1 1.1 基本条件 ....................................................................................................... 1 1.2 基本条件 ....................................................................................................... 1 2 结构布置及截面尺寸 ............................................................................................. 1 2.1 结构的布置 ................................................................................................... 1 2.2 板的截面尺寸确定 ....................................................................................... 2 2.3 次梁截面尺寸确定 ....................................................................................... 2 3 板的设计计算 ......................................................................................................... 3 4 次梁的设计计算 ..................................................................................................... 5 5 主梁的设计计算 ..................................................................................................... 7 6 施工图 ................................................................................................................... 15
I

MIDAS例题---连续梁教学内容

4×30m连续梁结构分析 对4*30m结构进行分析的第一步工作是对结构进行分析,确定结构的有限元离散,确定各项参数和结构的情况,并在此基础上进行建模和结构计算。 建立斜连续梁结构模型的详细步骤如下。 1. 设定建模环境 2. 设置结构类型 3. 定义材料和截面特性值 4. 建立结构梁单元模型 5. 定义结构组 6. 定义边界组 7.定义荷载组 8.定义移动荷载 9. 定义施工阶段 10. 运行结构分析 11. 查看结果 12.psc设计 13. 取一个单元做横向分析

概要: 在城市桥梁建设由于受到地形、美观等诸多方面的限制,连续梁结构成为其中应用的最多的桥梁形式。同时,随着现代科技的发展,连续梁结构也变得越来越轻盈,更能满足城市对桥梁的景观要求。 本文中的例子采用一座4×30m的连续梁结构(如图1所示)。 1、桥梁基本数据 桥梁跨径布置:4×30m=120; 桥梁宽度:0.25m(栏杆)+2.5m(人行道)+15.0m(机动车道)+2.5m(人行道)+0.25(栏杆)=20.5m; 主梁高度:1.6m;支座处实体段为1.8m; 行车道数:双向四车道+2人行道 桥梁横坡:机动车道向外1.5%,人行道向内1.5%; 施工方法:满堂支架施工; 图1 1/2全桥立面图和1.6m标准断面

2、主要材料及其参数 2.1 混凝土各项力学指标见表1 表1 2.2低松弛钢绞线(主要用于钢筋混凝土预应力构件) 直径:15.24mm 弹性模量:195000 MPa 标准强度:1860 MPa 抗拉强度设计值:1260 MPa 抗压强度设计值: 390 MPa 张拉控制应力:1395 MPa 热膨胀系数:0.000012 2.3普通钢筋 采用R235、HRB335钢筋,直径:8~32mm 弹性模量:R235 210000 MPa / HRB335 200000 MPa 标准强度:R235 235 MPa / HRB335 335 MPa 热膨胀系数:0.000012 3、设计荷载取值: 3.1恒载: 一期恒载包括主梁材料重量,混凝土容重取25 KN/m 3。 二期恒载:人行道、护栏及桥面铺装等(该桥梁上不通过电信管道、水管等)。 其中: 桥面铺装:采用10cm的沥青混凝土铺装层;沥青混凝土安每立方24kN计算,则计算铺装宽度为15m,桥面每米铺装沥青混凝土重量为:0.16×24×15=57.6kN/m;

连续梁 下部结构计算书

**公路二期工程*大桥 3×30m连续梁下部结构计算书 1.工程概况 桥梁上部为3×30m跨预应力混凝土连续梁,主梁总宽度为12m,梁高为1.6m。主梁采用单箱双室断面,其中主梁悬臂长 2.0m,标准断面箱室顶板厚0.22m,底板厚0.2m,腹板厚0.45m,中支点及边支点断面箱室顶板厚0.37m,底板厚0.32m,腹板厚0.65m,两断面间设长2.5m的渐变段。混凝土主梁采用C50混凝土现场浇注,封端采用C45混凝土。主梁中墩采用两根直径1.6m圆柱,下接直径1.8m桩基,左侧中墩高7m,右侧墩柱高8.5m。主梁边墩采用盖梁+直径1.6m双柱中墩,下接直径1.8m桩基形式;中、边墩横桥向中心距均为5.6m。 主梁边支点采用普通板式橡胶支座,中墩与主梁固结。 2.设计规范 《城市桥梁设计准则》(CJJ11—93); 《城市桥梁设计荷载标准》(CJJ77—98); 《公路工程技术标准》(JTGB01-2003); 《公路桥涵设计通用规范》(JTG D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)); 《公路桥涵地基与基础设计规范》(JTG D63—2007); 《公路桥梁抗震设计细则》(JTG/T B02-01-2008); 《公路桥涵施工技术规范》(JTJ041-2000); 3.静力计算 3.1 计算模型 由于主梁支撑中心与其中心线斜正交,且主梁平面基本为直线,因此建立平面杆系模型计算结构的内力及变形。桥梁内力及位移的计算均采用桥梁博士3.0有限元程序进行,其中边支点仅采用竖向支撑,中墩底部采用弹性支撑,其支撑刚度根据m法计算(m0=1.2×105kN/m4,K水平=2.4×106kN/m,K弯曲=1.1×107kN.m/rad)。 根据桥梁结构受力特点,其计算模型见下图。

预应力混凝土连续梁桥设计 计算书

目录 第一章概述 (4) 1.1 地质条件 (4) 1.2 主要技术指标 (4) 1.3 设计规范及标准 (4) 第二章方案比选 (5) 2.1 概述 (5) 2.2 比选原则 (5) 2.3 比选方案 (5) 2.3.1 预应力混凝土连续梁桥 (5) 2.3.2 预应力混凝土连续刚桥桥 (7) 2.3.3 普通上承式拱桥 (8) 2.4 方案比较 (9) 第三章预应力混凝土连续梁桥总体布置 (12) 3.1 桥型布置 (12) 3.2 桥孔布置 (12) 3.3 桥梁上部结构尺寸拟定 (12) 3.4 桥梁下部结构尺寸拟定 (13) 3.5 本桥使用材料 (14) 3.6 毛界面几何特性计算 (14) 第四章荷载内力计算 (16) 4.1 模型简介 (16) 4.2 全桥结构单元的划分 (16) 4.2.1 划分单元原则 (16) 4.2.2 桥梁具体单元划分 (17) 4.3 全桥施工节段的划分 (17) 4.3.1 桥梁划分施工分段原则 (17) 4.3.2 施工分段划分 (17) 4.4 恒载、活载内力计算 (17) 4.4.1 恒载内力计算 (17) 4.4.2 悬臂浇筑阶段内力 (18) 4.4.3 边跨合龙阶段内力 (19)

4.4.4 中跨合龙阶段内力 (20) 4.4.5 活载内力计算 (21) 4.5 其他因素引起的内力计算 (23) 4.5.1 温度引起的内力计算 (23) 4.5.2 支座沉降引起的内力计算 (25) 4.5.3 收缩、徐变引起的内力计算 (26) 4.6 内力组合 (28) 4.6.1 正常使用极限状态的内力组合 (28) 4.6.2 承载能力极限状态的内力组合 (29) 第五章预应力钢束的估算与布置 (32) 5.1 钢束估算 (32) 5.1.1 按承载能力极限计算时满足正截面强度要求 (32) 5.1.2 按正常使用极限状态的应力要求计算 (33) 5.2 预应力钢束布置 (39) 5.3 预应力损失计算 (40) 5.3.1 预应力与管道壁间摩擦引起的应力损失 (40) 5.3.2 锚具变形、钢筋回缩和接缝压缩引起的应力损失 (41) 5.3.3 混凝土的弹性压缩引起的应力损失 (41) 5.3.4 钢筋松弛引起的应力损失 (42) 5.3.5 混凝土收缩徐变引起的应力损失 (42) 5.3.6 有效预应力计算 (44) 5.4 预应力计算 (45) 第六章强度验算 (48) 6.1 正截面承载能力验算 (48) 6.2 斜截面承载能力验算 (51) 第七章应力验算 (55) 7.1 短暂状况预应力混凝土受弯构件应力验算 (55) 7.1.1 压应力验算 (55) 7.1.2 拉应力验算 (55) 7.2 持久状况正常使用极限状态应力验算 (60) 7.2.1 持久状况(使用阶段)预应力混凝土受压区混凝土最大压应力验算 60 7.2.2 持久状况(使用阶段)混凝土的主压应力验算 (62) 7.2.3 持久状况(使用阶段)预应力钢筋拉应力验算 (65) 第八章抗裂验算 (68) 8.1 正截面抗裂验算 (68)

midas_连续梁计算书

第1章89#~92#预应力砼连续梁桥 1.1结构设计简述 本桥为27+27+25.94现浇连续箱梁,断面型式为弧形边腹板大悬臂断面,根据道路总体布置要求,主梁上下行为整体断面,变宽度32.713m -35m,单箱5室结构变截面。箱梁顶板厚度为0.22m,底板厚度0.2m;支点范围腹板厚度0.7m,跨中范围腹板厚度0.4m。主梁单侧悬臂长度为 4.85m,箱梁悬臂端部厚度为0.2m,悬臂沿弧线一直延伸至主梁底板。主梁两侧悬臂设置0.1m后浇带,与防撞护栏同期进行浇筑。 本桥平、立面构造及断面形式如图11.1.1和图11.1.2所示。 图11.1.1 箱梁构造图

图11.1.2 箱梁断面图 纵向预应力采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强f=1860MPa。中支点断面钢束布置如图11.1.3所示。 度 pk 图11.1.3 中支点断面钢束布置图 主要断面预应力钢束数量如下表 墩横梁预应力采用采用φs15-19,单向张拉,如下图。 1.2主要材料 1.2.1主要材料类型 (1) 混凝土:主梁采用C50砼;

(2) 普通钢筋:R235、HRB335钢筋; (3) 预应力体系:采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度 f=1860MPa;预应力锚具采用符合GB/T14370-2002《预应力筋锚具、 pk 夹具和连接器》中Ⅰ类要求的优质锚具;波纹管采用符合JT/T529-2004标准的塑料波纹管。 1.2.2主要材料用量指标 本桥上部结构主要材料用量指标如表11.2.2-1所示,表中材料指标均为每平米桥面的用量。 表11.2.2-1 上部结构主要材料指标 1.3结构计算分析 1.3.1计算模型 结构计算模型如下图所示。 图11.3.1-1 结构模型图

单向板肋梁楼盖设计计算书.

单向板肋梁楼盖设计 计算书 姓名: 学号: 班级: 宁波大学建筑工程与环境学院 2013年12 月12日

目录 一.某多层工业建筑楼盖设计任务书 1 (1)设计要求 1 (2)设计资料 1 二.某多层工业建筑楼盖设计计算书 1 (1)楼盖结构平面布置及截面尺寸确定 1 (2)板的设计 1 (3)次梁的设计 3 (4)主梁的设计 6 附图1.厂房楼盖结构平面布置图 附图2.板的配筋示意图 附图3.次梁配筋示意图 附图4.主梁配筋示意图 附图5.板平法施工图示例 附图6.梁平法施工图示例

单向板肋梁楼盖设计任务书 (1)设计要求 ①板、次梁内力按塑性内力重力分布计算。 ②主梁内力按弹性理论计算。 ③绘出结构平面布置图、板、次梁和主梁的施工图。 本设计主要解决的问题有:荷载计算、计算简图、内力分析、截面配筋计算。 构造要求、施工图绘制。 (2)设计资料 ①楼面均布活荷载标准值 q k =5.2KN/m 2 ②楼面做法 楼面面层用15mm 厚水磨石(3/25m KN =γ ),找平层用20mm 厚水泥砂浆(3/20m KN =γ ),板底、梁底及其两侧用15mm 厚混合砂浆顶棚 抹灰(3/17m KN =γ) 。 ③材料 混凝土强度等级采用30C ,主梁和次梁的纵向受力钢筋采用HRB400, 箍筋采用HPB400级。 单向板肋梁楼盖设计计算书 1.楼盖结构平面布置及截面尺寸确定 确定主梁(L 1)的跨度为6.0m ,次梁(L 2)的跨度为6.0m 主梁每跨内布置 两根次梁,板的跨度为2.0m 。楼盖结构的平面布置图见附图1。 按高跨比条件,要求板厚h ≥l/40=2000/30=67mm ,对于工业建筑的楼板, 按要求h ≥80mm ,所以板厚取h=80mm 。 次梁截面高度应满足h=l/18~l/12=333~500mm ,取h=500mm ,截面宽b= (1/2~1/3)h ,取b=200。 主梁截面高度应满足h=l/15~l/10=400~600mm ,取h=600mm ,截面宽b= (1/2~1/3)h ,取b=300mm 。 柱的截面尺寸b×h=400mm×400mm 。 2.板的设计——按考虑塑性内力重分布设计 ①.荷载计算 恒荷载标准值(自上而下) 15mm 水磨石面层 0.015×25=0.375KN/㎡ 20mm 水泥砂浆找平层 0.020×20=0.40KN/㎡ 80mm 钢筋混凝土板 0.080×25=2.00KN/㎡ 15mm 板底混合砂浆 0.015×17=0.255KN/㎡ 小计: 3.03KN/㎡ 活荷载标准值: 5.2KN/㎡

MIDAS连续梁计算书

目录 第1 章设计原始资料.................. 错误! 未定义书签 设计概况. ................... 错误!未定义书签 技术标准. ................... 错误!未定义书签 主要规范. ................... 错误!未定义书签 第2 章桥跨总体布置及结构尺寸拟定. ......... 错误! 未定义书签尺寸拟定. ................... 错误!未定义书签 桥孔分跨..................... 错误!未定义书签 截面形式..................... 错误! 未定义书签 梁高. .................... 错误!未定义书签 细部尺寸..................... 错误!未定义书签 主要材料及材料性能................ 错误!未定义书签 模型建立与分析 ................... 错误!未定义书签 计算模型错误!未定义书签

第3 章荷载内力计算.................. 错误! 未定义书签荷载工况及荷载组合.................. 错误!未定义书签作用效应计算. ................. 错误!未定义书签 永久作用计算 .................... 错误!未定义书签 作用效应组合. ................. 错误!未定义书签第4 章预应力钢束的估算与布置. .......... 错误! 未定义书签力筋估算. ................... 错误!未定义书签 计算原理...................... 错误!未定义书签预应力钢束的估算 ................. 错误!未定义书签预应力钢束的布置(具体布置图见图纸).......... 错误!未定义书签第5 章预应力损失及有效应力的计算. ........ 错误! 未定义书签预应力损失的计算................... 错误!未定义书签 摩阻损失. .................. 错误!未定义书签 锚具变形损失 .................... 错误!未定义书签

框架梁模板计算书

框架梁模板(扣件钢管高架)计算书 本高支撑架计算采用PKPM施工安全设施计算软件计算。计算书中钢管全部按照Φ48×3.0计算。 本高支撑架的计算依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)、《混凝土结构设计规范》GB50010-2002、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等规范编制。 计算梁段:BKL-407(3A)。高支架搭设高度为18.08米,基本尺寸为:梁截面B×D=500mm×700mm,梁支撑立杆的横距(跨度方向) l=1.00米,立杆的步距h=1.50米,梁底增加1道承重立杆。 一、参数信息 1.模板支撑及构造参数 梁截面宽度 B(m):0.50;梁截面高度 D(m):0.70; 混凝土板厚度(mm):120.00;立杆沿梁跨度方向间距La(m):1.00; 立杆上端伸出至模板支撑点长度a(m):0.10; 立杆步距h(m):1.50;板底承重立杆横向间距或排距Lb(m):1.00;

梁支撑架搭设高度H(m):18.28;梁两侧立柱间距(m):0.80; 承重架支设:1根承重立杆,方木支撑垂直梁截面; 采用的钢管类型为Φ48×3; 扣件连接方式:单扣件,考虑扣件质量及保养情况,取扣件抗滑承载力折减系数:0.85; 2.荷载参数 模板自重(kN/m2):0.35;钢筋自重(kN/m3):1.50; 施工均布荷载标准值(kN/m2):2.5;新浇混凝土侧压力标准值(kN/m2):18.0; 倾倒混凝土侧压力(kN/m2):2.0;振捣混凝土荷载标准值(kN/m2):2.0; 3.材料参数 木材品种:杉木;木材弹性模量E(N/mm2):10000.0; 木材抗弯强度设计值fm(N/mm2):17.0;木材抗剪强度设计值fv(N/mm2):1.7; 面板类型:胶合面板;面板弹性模量E(N/mm2):9500.0; 面板抗弯强度设计值fm(N/mm2):13.0; 4.梁底模板参数 梁底方木截面宽度b(mm):50.0;梁底方木截面高度h(mm):100.0; 梁底纵向支撑根数:4;面板厚度(mm):18.0; 5.梁侧模板参数 主龙骨间距(mm):500;次龙骨根数:4; 主龙骨竖向支撑点数量为:2; 支撑点竖向间距为:100mm; 穿梁螺栓水平间距(mm):500; 穿梁螺栓直径(mm):M12; 主龙骨材料:钢管;截面类型为圆钢管Φ48×3.0; 主龙骨合并根数:2; 次龙骨材料:木枋,宽度50mm,高度100mm; 二、梁模板荷载标准值计算 1.梁侧模板荷载

MIDAS连续梁计算书

目录 第1章设计原始资料 (1) 设计概况 (1) 技术标准 (1) 主要规范 (1) 第2章桥跨总体布置及结构尺寸拟定 (2) 尺寸拟定 (2) 桥孔分跨 (2) 截面形式 (2) 梁高 (3) 细部尺寸 (4) 主要材料及材料性能 (6) 模型建立与分析 (7) 计算模型 (8) 第3章荷载内力计算 (9) 荷载工况及荷载组合 (9) 作用效应计算 (10) 永久作用计算 (10) 作用效应组合 (16) 第4章预应力钢束的估算与布置 (20) 力筋估算 (20)

计算原理 (20) 预应力钢束的估算 (24) 预应力钢束的布置(具体布置图见图纸) (27) 第5章预应力损失及有效应力的计算 (29) 预应力损失的计算 (29) 摩阻损失 (29) 锚具变形损失 (30) 混凝土的弹性压缩 (30) 钢束松弛损失 (31) 收缩徐变损失 (31) 有效预应力的计算 (32) 第6章次内力的计算 (33) 徐变次内力的计算 (33) 预加力引起的次内力 (33) 第7章内力组合 (35) 承载能力极限状态下的效应组合 (35) 正常使用极限状态下的效应组合 (38) 第8章主梁截面验算 (41) 正截面抗弯承载力验算 (41) 持久状况正常使用极限状态应力验算 (44) 正截面抗裂验算(法向拉应力) (44)

斜截面抗裂验算(主拉应力) (46) 混凝土最大压应力验算 (49) 预应力钢筋中的拉应力验算 (50) 挠度的验算 (51) 小结 (53)

第1章设计原始资料 设计概况 设计某预应力混凝土连续梁桥模型,标准跨径为35m+50m+35m。施工方式采用满堂支架现浇,采用变截面连续箱梁。 技术标准 公路等级:一级公路,双向2车道; 设计荷载:公路-I级; 桥面宽度:×2+×2; 安全等级:二级; 主要规范 1)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004); 2)《公路桥涵设计通用规范》(JTG D60-2004); 3)《公路工程技术标准》(JTG B01-2003); 4)《公路桥梁抗震设计细则》(JTG/T B02-01-2008); 5)《公路桥涵地基与基础设计规范》(JTG D63-2007); 6)《城市桥梁设计规范》(CJJ11-2011);

梁、板木模板及支撑计算书

梁、板木模板及支撑计算书

楼板模板扣件钢管高支撑架计算书 高支撑架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》( JGJ130-2001) 本计算书还参照《施工技术》2002.3.《扣件式钢管模板高支撑架设计和使用安全》。 模板支架搭设高度为8.05米, 搭设尺寸为:立杆的纵距 b=0.80米,立杆的横距1=0.80米,立杆的步距h=1.50米 k b L 采用的钢管类型为'-48X 3.5。 、模板面板计算 面板为受弯结构,需要验算其抗弯强度和刚度。模板面板的按照三跨连续梁计算 ■5 5 匚 纵向钢昔 僑向钢背 板底方木 图楼板支撑架立面简图 图楼板支撑架立杆稳定性荷载计算单元

静荷载标准值q1 = 25.000 X 0.120 X 1.000+0.350 X 1.000=3.350kN/m 活荷载标准值q2 = (2.000+1.000) X 1.000=3.000kN/m 面板的截面惯性矩I和截面抵抗矩V分别为: 本算例中,截面惯性矩I和截面抵抗矩V分别为: W = 100.00 X 1.80 X 1.80/6 = 54.00cm 3; I = 100.00 X 1.80 X 1.80 X 1.80/12 = 48.60cm 4; (1) 强度计算 f = M / W < [f] 其中f ――面板的强度计算值(N/mm2); M ---- 面板的最大弯距(N.mm); W——面板的净截面抵抗矩; [f] ―― 面板的强度设计值,取15.00N/mm2; M = 0.100ql 2 其中q ---- 荷载设计值(kN/m); 经计算得到M = 0.100 X (1.2 X 3.350+1.4 X 3.000) X 0.450 X 0.450=0.166kN.m 经计算得到面板强度计算值f = 0.166 X 1000X 1000/54000=3.083N/mm2 面板的强度验算f < [f], 满足要求! (2)抗剪计算 T = 3Q/2bh < [T] 其中最大剪力Q=0.600 X (1.2 X 3.350+1.4 X 3.000) X 0.450=2.219kN 截面抗剪强度计算值T=3 X 2219.0/(2 X 1000.000 X 18.000)=0.185N/mm2 截面抗剪强度设计值[T]=1.40N/mm 2 抗剪强度验算T < [T],满足要求! (3)挠度计算

地下室外墙的计算书(理正工具箱,连续梁)

地下车库外墙WQ1计算书 ============================================ 一.配筋计算 1 计算简图: 2 计算条件: 荷载条件: 均布恒载标准值: 0.00kN/m 活载准永久值系数: 0.50 均布活载标准值: 0.00kN/m 支座弯矩调幅系数: 100.0% 梁容重 : 25.00kN/m3计算时考虑梁自重: 不考虑 恒载分项系数: 1.35 活载分项系数 : 1.40 配筋条件: 抗震等级 : 非抗震纵筋级别 : HRB400 混凝土等级 : C30 箍筋级别 : HRB400 配筋调整系数: 1.0 上部保护层厚度 : 40mm 面积归并率 : 0.0% 下部保护层厚度 : 25mm 最大裂缝限值: 0.000mm 挠度控制系数C : 200 截面配筋方式: 双筋 3 计算结果: 单位说明: 弯矩:kN.m 剪力:kN 纵筋面积:mm2箍筋面积:mm2/m 裂缝:mm 挠度:mm ----------------------------------------------------------------------- 梁号 1: 跨长 = 4100 B×H = 1000 × 300 左中右弯矩(-) : 0.000 0.000 -97.487 弯矩(+) : 0.000 47.163 0.000 剪力: 48.639 -14.322 -134.016 上部as: 50 50 50 下部as: 35 35 35

上部纵筋: 600 600 1184 下部纵筋: 600 608 600 箍筋Asv: 953 953 953 ----------------------------------------------------------------------- 4 所有简图:

30+45+30m预应力连续梁计算书(桥梁博士)

目录 一、预应力钢筋砼上部结构纵向计算书 (1) (一)工程概况: (1) (二)设计荷载 (2) (三)主要计算参数 (2) (四)计算模型 (3) (五)主要计算结果 (4) 1、施工阶段简明内力分布图和位移图 (4) 2、支承反力 (5) 3、承载能力极限状态内力图 (6) 4、正常使用极限状态应力图 (7) (六)主要控制截面验算 (8) 1、截面受弯承载能力计算 (8) 2、斜截面抗剪承载能力计算 (16) 3、活载位移计算 (17) (七)结论 (17)

30+45+30米连续梁计算书 一、预应力钢筋砼上部结构纵向计算书 (一)工程概况: 本计算书是针对标段中的30+45+30米的预应力混凝土连续梁桥进行。桥宽为9.5m,采用单箱单室,单侧翼板长2.5米;梁高为1.6~2.3米,梁底按二次抛物线型变化。 箱梁腹板采用斜腹板,腹板的厚度随着剪力的增大而从跨中向支点逐渐加大,箱梁边腹板厚度为50~70cm。箱梁顶板厚22cm。为了满足支座布置及承受支点反力的需要,底板的厚度随着负弯矩的增大而逐渐从跨中向支点逐渐加大,厚度为22~35cm。其中跨跨中断面形式见图1.1,支承横梁边的截面形式见图1.2。结构支承形式见图1.3。主梁设纵向预应力。钢束采用?j15.24低松弛预应力钢绞线,标准强度为1860MPa,弹性模量为1.9X105 MPa,公称面积为140mm2。预应力钢束采用真空吸浆工艺,管道采用与其配套的镀锌金属波纹管。纵向钢束采用大吨位锚。钢束为19?s15.24的钢绞线,均为两端张拉,张拉控制应力为1339MPa。 图1.1 中跨跨中截面形式

梁板柱配筋计算书

截面设计 本工程框架抗震等级为三级。根据延性框架设计准则,截面设计时,应按照“强柱弱梁”、“强剪弱弯”原则,对力进行调整。 框架梁 框架梁正截面设计 非抗震设计时,框架梁正截面受弯承载力为: 2 0c s 1u bh f M αα= (9-1-1) 抗震设计时,框架梁正截面受弯承载力为: RE 2 0c s 1E u /γααbh f M = (9-1-2) 因此,可直接比较竖向荷载作用下弯矩组合值M 和水平地震作用下弯矩组合值M 乘以抗震承载力调整系数后RE 的大小,取较大值作为框架梁截面弯矩设计 值。即 {}uE RE u ,Max M M M γ= (9-1-3) 比较39和表43中的梁端负弯矩,可知,各跨梁端负弯矩均由水平地震作用控制。故表39中弯矩设计值来源于表43,且为乘以RE γ后的值。 进行正截面承载力计算时,支座截面按矩形截面计算;跨中截面按T 形截面计算。T 形截面的翼缘计算宽度应按下列情况的最小值取用。 AB 跨及CD 跨: f 31l b ='=7.5/3=2.5m ; m 2.4)]3.025.0(5.02.4[3.0n f =+?-+=+='s b b m h b b f f 86.13.0123.012=?+='+=' 1 .00f ≥'h h , 故取f b '=1.86m 判别各跨中截面属于哪一类T 型截面: 一排钢筋取0h =700-40=660mm ,

两排钢筋取0h =700-65=635mm, 则 ()2f 0f f c h h h b f '-''=14.3×1860×130×(660-130/2)=2057.36kN.m 该值大于跨中截面弯矩设计值,故各跨跨中截面均属于第一类T 形截面。 BC 跨: f 31l b ='=3.0/3=1.0m ; n f s b b +='=0.3+8.4-0.3=8.4m ; m h b b f f 86.113.0123.012=?+='+='; 1 .00f ≥'h h , 故取f b '=1m 判别各跨中截面属于哪一类T 型截面: 取0h =550-40=510mm , 则 () 2f 0f f c h h h b f '-''=14.3×1000×130×(510-130/2)=827.26kN.m 该值大于跨中截面弯矩设计值,故各跨跨中截面均属于第一类T 形截面。 各层各跨框架梁纵筋配筋计算详见表49及表50。 表格49 各层各跨框架梁上部纵筋配筋计算

相关文档
最新文档