物理竞赛知识点总结 (1)(良心出品必属精品)

物理竞赛知识点总结 (1)(良心出品必属精品)
物理竞赛知识点总结 (1)(良心出品必属精品)

一、理论基础

力学

1、运动学

参照系。质点运动的位移和路程,速度,加速度。相对速度。

矢量和标量。矢量的合成和分解。

匀速及匀速直线运动及其图象。运动的合成。抛体运动。圆周运动。

刚体的平动和绕定轴的转动。

2、牛顿运动定律

力学中常见的几种力

牛顿第一、二、三运动定律。惯性参照系的概念。

摩擦力。

弹性力。胡克定律。

万有引力定律。均匀球壳对壳内和壳外质点的引力公式(不要求导出)。开普勒定律。行星和人造卫星的运动。

3、物体的平衡

共点力作用下物体的平衡。力矩。刚体的平衡。重心。

物体平衡的种类。

4、动量

冲量。动量。动量定理。

动量守恒定律。

反冲运动及火箭。

5、机械能

功和功率。动能和动能定理。

重力势能。引力势能。质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)。弹簧的弹性势能。

功能原理。机械能守恒定律。

碰撞。

6、流体静力学

静止流体中的压强。

浮力。

7、振动

简揩振动。振幅。频率和周期。位相。

振动的图象。

参考圆。振动的速度和加速度。

由动力学方程确定简谐振动的频率。

阻尼振动。受迫振动和共振(定性了解)。

8、波和声

横波和纵波。波长、频率和波速的关系。波的图象。

波的干涉和衍射(定性)。

声波。声音的响度、音调和音品。声音的共鸣。乐音和噪声。

热学

1、分子动理论

原子和分子的量级。

分子的热运动。布朗运动。温度的微观意义。

分子力。

分子的动能和分子间的势能。物体的内能。

2、热力学第一定律

热力学第一定律。

3、气体的性质

热力学温标。

理想气体状态方程。普适气体恒量。

理想气体状态方程的微观解释(定性)。

理想气体的内能。

理想气体的等容、等压、等温和绝热过程(不要求用微积分运算)。

4、液体的性质

流体分子运动的特点。

表面张力系数。

浸润现象和毛细现象(定性)。

5、固体的性质

晶体和非晶体。空间点阵。

固体分子运动的特点。

6、物态变化

熔解和凝固。熔点。熔解热。

蒸发和凝结。饱和汽压。沸腾和沸点。汽化热。临界温度。

固体的升华。

空气的湿度和湿度计。露点。

7、热传递的方式

传导、对流和辐射。

8、热膨胀

热膨胀和膨胀系数。

电学

1、静电场

库仑定律。电荷守恒定律。

电场强度。电场线。点电荷的场强,场强叠加原理。均匀带电球壳壳内的场强和壳外的场强公式(不要求导出)。匀强电场。

电场中的导体。静电屏蔽。

电势和电势差。等势面。点电荷电场的电势公式(不要求导出)。电势叠加原理。均匀带电球壳壳内和壳外的电势公式(不要求导出)。

电容。电容器的连接。平行板电容器的电容公式(不要求导出)。

电容器充电后的电能。

电介质的极化。介电常数。

2、恒定电流

欧姆定律。电阻率和温度的关系。

电功和电功率。

电阻的串、并联。

电动势。闭合电路的欧姆定律。

一段含源电路的欧姆定律。

电流表。电压表。欧姆表。

惠斯通电桥,补偿电路。

3、物质的导电性

金属中的电流。欧姆定律的微观解释。

液体中的电流。法拉第电解定律。

气体中的电流。被激放电和自激放电(定性)。

真空中的电流。示波器。

半导体的导电特性。P型半导体和N型半导体。

晶体二极管的单向导电性。三极管的放大作用(不要求机理)。超导现象。

4、磁场

电流的磁场。磁感应强度。磁感线。匀强磁场。

安培力。洛仑兹力。电子荷质比的测定。质谱仪。回旋加速器。

5、电磁感应

法拉第电磁感应定律。

楞次定律。

自感系数。

互感和变压器。

6、交流电

交流发电机原理。交流电的最大值和有效值。

纯电阻、纯电感、纯电容电路。

整流和滤波。

三相交流电及其连接法。感应电动机原理。

7、电磁振荡和电磁波

电磁振荡。振荡电路及振荡频率。

电磁场和电磁波。电磁波的波速,赫兹实验。

电磁波的发射和调制。电磁波的接收、调谐,检波。

光学

1、几何光学

光的直进、反射、折射。全反射。

光的色散。折射率与光速的关系。

平面镜成像。球面镜成像公式及作图法。薄透镜成像公式及作图法。眼睛。放大镜。显微镜。望远镜。

2、波动光学

光的干涉和衍射(定性)

光谱和光谱分析。电磁波谱。

3、光的本性

光的学说的历史发展。

光电效应。爱因斯坦方程。

波粒二象性。

原子和原子核

1、原子结构

卢瑟福实验。原子的核式结构。

玻尔模型。用玻尔模型解释氢光谱。玻尔模型的局限性。

原子的受激辐射。激光。

2、原子核

原子核的量级。

天然放射现象。放射线的探测。

质子的发现。中子的发现。原子核的组成。

核反应方程。

质能方程。裂变和聚变。

基本粒子。

数学基础

1、中学阶段全部初等数学(包括解析几何)。

2、矢量的合成和分解。极限、无限大和无限小的初步概念。

3、不要求用微积分进行推导或运算。

二、实验基础

1、要求掌握国家教委制订的《全日制中学物理教学大纲》中的全部学生实验。

2、要求能正确地使用(有的包括选用)下列仪器和用具:米尺。游标卡尺。螺旋测微器。天平。停表。温度计。量热器。电流表。电压表。欧姆表。万用电表。电池。电阻箱。变阻器。电容器。变压器。电键。二极管。光具座(包括平面镜、球面镜、棱镜、透镜等光学元件在内)。

3、有些没有见过的仪器。要求能按给定的使用说明书正确使用仪器。例如:电桥、电势差计、示波器、稳压电源、信号发生器等。

4、除了国家教委制订的《全日制中学物理教学大纲》中规定的学生实验

外,还可安排其它的实验来考查学生的实验能力,但这些实验所涉及到的原理和方法不应超过本提要第一部分(理论基础),而所用仪器就在上述第2、3指出的范围内。

5、对数据处理,除计算外,还要求会用作图法。关于误差只要求:直读示数时的有效数字和误差;计算结果的有效数字(不做严格的要求);主要系统误差来源的分析。 三、其它方面

物理竞赛的内容有一部分要扩及到课外获得的知识。主要包括以下三方面:

1、物理知识在各方面的应用。对自然界、生产和日常生活中一些物理现象的解释。

2、近代物理的一些重大成果和现代的一些重大信息。

3、一些有重要贡献的物理学家的姓名和他们的主要贡献。 1.重力

物体的重心与质心

重心:从效果上看,我们可以认为物体各部分受到的重力作用集中于一点,这一点叫做物体的重心。 质心:物体的质量中心。

设物体各部分的重力分别为G 1、G 2……G n ,且各部分重力的作用点在oxy 坐标系中的坐标分别是(x 1,y 1)(x 2,y 2)……(x n ,y n ),物体的重心坐标x c ,y c 可表示为 x c =∑∑

i

i

i G

x G =

n n

n G G G x G x G x G ++++++ 212211, y c =∑∑i

i i G y G =n n n G G G y G y G y G ++++++ 212211

2.弹力

胡克定律:在弹性限度内,弹力F 的大小与弹簧伸长(或缩短)的长度x 成正比,即F=k x ,k 为弹簧的劲度系数。

两根劲度系数分别为k 1,k 2的弹簧串联后的劲度系数可由k

1=11k +2

1

k 求得,并联后劲度系数为k=k 1+k 2. 3.摩擦力

最大静摩擦力:可用公式F m =μ0F N 来计算。F N 为正压力,μ0为静摩擦因素,对于相同的接触面,应有μ0>μ(μ为动摩擦因素) 摩擦角:若令μ0=

N

m

F F =tan φ,则φ称为摩擦角。摩擦角是正压力F N 与最大静摩擦力F m 的合力与接触面法线间的夹角。 4.力的合成与分解

余弦定理:计算共点力F 1与F 2的合力F

F=θcos 2212221F F F F ++ φ=arctan

θ

θ

cos sin 212F F F +(φ为合力F 与分力F 1的夹角)

三角形法则与多边形法则:多个共点共面的力合成,可把一个力的始端依次画到另一个力的终端,则从第一个力的始端到最后一个力的终端的连线就表示这些力的合力。

拉密定理:三个共点力的合力为零时,任一个力与其它两个力夹角正弦的比值是相等的。

5.有固定转动轴物体的平衡

力矩:力F 与力臂L 的乘积叫做力对转动轴的力矩。即M=FL , 单位:N ·m 。

平衡条件:力矩的代数和为零。即M 1+M 2+M 3+……=0。 6.刚体的平衡

刚体:在任何情况下形状大小都不发生变化的力学研究对象。

力偶、力偶矩:二个大小相等、方向相反而不在一直线上的平行力称为力偶。力偶中的一个力与力偶臂(两力作用线之间的垂直距离)的乘积叫做力偶矩。在同一平面内各力偶的合力偶矩等于各力偶矩的代数和。 平衡条件:合力为零,即∑F=0;对任一转动轴合力矩为零,即∑M=0。 7.物体平衡的种类

分为稳定平衡、不稳定平衡和随遇平衡三种类型。

稳度及改变稳度的方法:处于稳定平衡的物体,靠重力矩回复原来平衡位置的能力,叫稳度。降低重心高度、加大支持面的有效面积都能提高物体的稳度;反之,则降低物体的稳度。

一.质点运动的基本概念

1.位置、位移和路程位置指运动质点在某一时刻的处所,在直角坐标系中,可用质点在坐标轴上的投影坐标(x,y,z )来表示。在定量计算时,为了使位置的确定与位移的计算一致,人们还引入位置矢量(简称位矢)的概念,在直角坐标系中,位矢r 定义为自坐标原点到质点位置P(x,y,z)所引的有向线段,故有222z y x r ++=,r 的方向为自原点O 点指向质点P ,如图所示。

位移指质点在运动过程中,某一段时间t ?内的位置变化,即位矢的增量

t t t r r s _)(?+=,它的方向为自始位置指向末位置,如图2所示,路程指质点

在时间内通过的实际轨迹的长度。

2.平均速度和平均速率

平均速度是质点在一段时间内通过的位移和所用时间之比

t

s

v ?=

平,平均速度是矢量,方向与位移s 的方向相同。 平均速率是质点在一段时间内通过的路程与所用时间的比值,是标量。 3.瞬时速度和瞬时速率

瞬时速度是质点在某一时刻或经过某一位置是的速度,它定义为在时的平均速度的极限,简称为速度,即t

s

v t ?=→?0

lim

。 瞬时速度是矢量,它的方向就是平均速度极限的方向。瞬时速度的大小叫瞬时速率,简称速率。 4.加速度

加速度是描述物体运动速度变化快慢的物理量,等于速度对时间的变化

率,即t

v

a ??=

,这样求得的加速度实际上是物体运动的平均加速度,瞬时加速度应为t

v

a t ??=→?0lim 。加速度是矢量。

二、运动的合成和分解 1.标量和矢量

物理量分为两大类:凡是只须数值就能决定的物理量叫做标量;凡是既有大小,又需要方向才能决定的物理量叫做矢量。标量和矢量在进行运算是遵守不同的法则:标量的运算遵守代数法则;矢量的运算遵守平行四边形法则(或三角形法则)。 2.运动的合成和分解

在研究物体运动时,将碰到一些较复杂的运动,我们常把它分解为两个或几个简单的分运动来研究。任何一个方向上的分运动,都按其本身的规律进行,不会因为其它方向的分运动的存在而受到影响,这叫做运动的独立性原理。运动的合成和分解包括位移、速度、加速度的合成和分解,他们都遵守平行四边形法则。

三、竖直上抛运动

定义:物体以初速度

v向上抛出,不考虑空气阻力作用,这样的运动叫做竖直上抛运动。

四、相对运动

物体的运动是相对于参照系而言的,同一物体的运动相对于不同的参照系其运动情况不相同,这就是运动的相对性。我们通常把物体相对于基本参照系(如地面等)的运动称为“绝对运动”,把相对于基本参照系运动着的参照系称为运动参照系,运动参照系相对于基本参照系的运动称为“牵连运动”,而物体相对于运动参照系的运动称为“相对运动”。显然绝对速度和相对速度一般是不相等的,它们之间的关系是:绝对速度等于相对速度与牵连速度的矢量和。即

v

v

v+

=

绝或

乙对地

甲对乙

甲对地

v

v

v+

=

【扩展知识】非惯性参照系

凡牛顿第一定律成立的参照系叫惯性参照系,简称惯性系。凡相对于惯性系静止或做匀速直线运动的参照系,都是惯性系。在不考虑地球自转,且在研究较短时间内物体运动的情况下,地球可看成是近似程度相当好的惯性系。凡牛顿第一定律不成立的参照系统称为非惯性系,一切相对于惯

性参照系做加速运动的参照系都是非惯性参照系。在考虑地球自转时,地球就是非惯性系。在非惯性系中,物体的运动也不遵从牛顿第二定律,但在引入惯性力的概念以后,就可以利用牛顿第二定律的形式来解决动力学问题。

一,直线系统中的惯性力

简称惯性力,例如在加速前进的车厢里,车里的乘客都觉得自己好象受到一个使其向后倒得力,这个力就是惯性力,其大小等于物体质量m

与非惯性系相对于惯性系的加速度大小a的乘积,方向于a相反。用公式表示,这个惯性力F惯=-ma,不过要注意:惯性力只是一种假想得力,实际上并不存在,故不可能找出它是由何物所施,因而也不可能找到它的反作用力。惯性力起源于物体惯性,是在非惯性系中物体惯性得体现。

二,转动系统中的惯性力

简称惯性离心力,这个惯性力的方向总是指向远离轴心的方向。它的大小等于物体的质量m与非惯性系相对于惯性系的加速度大小a的乘积。如果在以角速度ω转动的参考系中,质点到转轴的距离为r,则:

F惯=mω2r.

假若物体相对于匀速转动参照系以一定速度运动,则物体除了受惯性离心力之外,还要受到另一种惯性力的作用,这种力叫做科里奥利力,简称科氏力,这里不做进一步的讨论。

一、斜抛运动

(1)定义:具有斜向上的初速

v且只受重力作用的物体的运动。

(2)性质:斜抛运动是加速度a=g的匀变速曲线运动。

(3)处理方法:正交分解法:将斜抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动,然后用直角三角形求解。如图所示 (4)斜抛运动的规律如下:

任一时刻的速度 θcos 0v v x =, θsin 0v v y =-gt. 任一时刻的位置 t v x θcos 0=, 202

1sin gt t v y -=θ.

竖直上抛运动、平抛运动可分别认为是斜抛运动在00090==θθ和时的特例.

斜抛运动在最高点时g

v t t t t t g v t v y θ

θsin 2,sin ,000=+===

=下上总下上上, 水平方向的射程斜抛物体具有最大的射程g v t v s θ

θ2sin cos 2

00==总

斜抛物体的最大高度g

v H 2sin 22

=

斜抛运动具有对称性,在同一段竖直位移上,向上和向下运动的时间相等;在同一高度上的两点处速度大小相等,方向与水平方向的夹角相等;向上、向下的运动轨迹对称。

(二)、圆周运动 1.变速圆周运动

在变速圆周运动中,物体受到的合外力一般不指向圆心,这时合外力可以

分解在法线(半径方向)和切线两个方向上。在法线方向有R m R

mv F n 22

ω==

充当向心力(即向F F n =),产生的法向加速度n a 只改变速度的方向;切向分力ττma F =产生的切向加速度τa 只改变速度的大小。也就是说,n F 是合F 的一个分力,合F F n ?,且满足τ

22F F F n +=合

2.一般的曲线运动:在一般的曲线运动中仍有法向力R

v m F n 2

=式中R 为研

究处曲线的曲率半径,即在该处附近取一段无限小的曲线,并视为圆弧,R 为该圆弧的曲率半径,即为研究处曲线的曲率半径。 【扩展知识】

1.均匀球壳的引力公式

由万有引力定律可以推出,质量为M 、半径为R 的质量均匀分布的球壳,对距离球心为r 、质量为m 的质点的万有引力为

F=0 (r

2

r

GMm

(r>R)

2.开普勒三定律 1.动量定理的分量表达式

I 合x =mv 2x -mv 1x , I 合y =mv 2y -mv 1y , I 合z =mv 2z -mv 1z .

2.质心与质心运动

2.1质点系的质量中心称为质心。若质点系内有n 个质点,它们的质量分别为m 1,m 2,……m n ,相对于坐标原点的位置矢量分别为r 1,r 2,……r n ,则质点系的质心位置矢量为

rc=n n n m m m r m r m r m ++++++ 211211=M

r m n

i i

i ∑=1 若将其投影到直角坐标系中,可得质心位置坐标为

x c =

M

x

m n

i i

i

∑=1

, y c =

M

y

m n

i i

i

∑=1

, z c =

M

z

m n

i i

i ∑=1

.

2.2质心速度与质心动量

相对于选定的参考系,质点位置矢量对时间的变化率称为质心的速度。

vc=t r c ??=M p 总=M v m n

i i

i ∑=1

, p c =Mv c =∑=n

i i i v m 1

.

作用于质点系的合外力的冲量等于质心动量的增量

I 合=∑=n

i i I 1=p c -p c0=mv c -mv c0 .

2.3质心运动定律

作用于质点系的合外力等于质点总质量与质心加速度的乘积。F合=Ma c.。 对于由n 个质点组成的系统,若第i 个质点的加速度为a i ,则质点系的质心加速度可表示为

a c =

M

a

m n

i i

i

∑=1

一、功 1.

恒力做功 W=Fscos α 当物体不可视为质点时,s 是力的作用点的

位移。 2.变力做功

(1)平均值法 如计算弹簧的弹力做功,可先求得F =)(2

121x x k +,再求出

弹力做功为

W=F (x 2-x 1)= 21222

12

1

kx kx -

(2)图像法 当力的方向不变,其大小随在力的方向上的位移成函数关

变化时,作出力—位移图像(即F —s 图),则图线与位移坐标轴围成的“面积”就表示力做的功。如功率—时间图像。

(3)等效法 通过因果关系,如动能定理、功能原理或Pt 等效代换可求变力做功。 (4)微元法

二、动能定理 1.

对于单一物体(可视为质点) ∑-=12k k E E W 只有在同一惯性参

照系中计算功和动能,动能定理才成立。当物体不能视为质点时,则不能应用动能定理。 2.

对于几个物体组成的质点系,因内力可以做功,则

∑∑∑∑-=+12k k E E W W

内外

同样只适用于同一惯性参照

系。 3.

在非惯性系中,质点动能定理除了考虑各力做的功外,还要考虑惯

性力做的功,其总和对应于质点动能的改变。此时功和动能中的位移、速度均为相对于非惯性参照系的值。

三、势能 1. 弹性势能 22

1kx E p = 2.

引力势能

(1) 质点之间 r

m m G

Ep 2

1-= (2) 均匀球体(半径为R )与质点之间 r

Mm

G E p -= (r ≥R ) (3) 均匀球壳与质点之间 r Mm

G

E p -= (r ≥R ) R

Mm

G E p -= (r <R )

四、功能原理 物体系外力做的功与物体系内非保守力做的功之和,等于物体系机械能的增量。即

∑∑∑∑-=+12E E W W

非保守外

1.参考圆

可以证明,做匀速圆周运动的质点在其直径上的投影的运动,是以圆心为平衡位置的简谐运动。通常称这样的圆为参考圆。 2. 简谐运动的运动方程及速度、加速度的瞬时表达式

振动方程:x=Acos(ωt +φ). 速度表达式: v =-ωAsin(ωt +φ). 加速度表达式:a =-ω2Acos(ωt +φ). 3. 简谐运动的周期和能量

振动的周期:T =2π

k

m . 振动的能量:E =2

1

mv 2+21kx 2=2

1kA 2.

4.多普勒效应

设v 为声速,v s 为振源的速度,v 0是观察者速度,f 0为声音实际频率,f 为相对于观察者的频率. (1)声源向观察者:s v v v f f -=0;(2)声源背观察者:s

v v v

f f +=0; (3)观察者向声源:v v v f f 00+=;(4)观察者背声源:v

v v f f 0

0-=; (5)两者相向:s v v v v f f -+=00

; (6)两者相背:s

v v v v f f +-=00. 5.平面简谐波的振动方程

设波沿 x 轴正方向传播,波源在原点O 处,其振动方程为y = Acos(ωt +φ).x 轴上任何一点P (平衡位置坐标为x )的振动比O 点滞后v

x

t =',因此P 点的振动方程为

y = Acos 〔ω(t –t ˊ) +φ〕= Acos 〔ω(t –v

x ) +φ〕. 6.乐音与噪音

乐音的三要素:音调、响度和音品。

音调:乐音由一些不同频率的简谐波组成,频率最低的简谐波称为基音。音调由基音频率的高低决定,基音频率高的乐音音调高。

响度:响度是声音强弱的主观描述,跟人的感觉和声强(单位时间内通过垂直于声波传播方向上的单位面积的能量)有关。

音品:音品反映出不同声源、发出的声音具有不同的特色,音品由声音的强弱和频率决定。 物态变化

固体、液体和气体是通常存在的三种物质状态。在一定条件下,这三

种物质状态可以相互转化,即发生物态变化。如:熔化、凝固、汽化、液化、升华和凝华。 饱和汽和饱和汽压

液化和汽化处于动态平衡的汽叫做饱和汽,没有达到饱和状况的汽叫做未饱和汽。

某种液体的饱和汽具有的压强叫这种液体的饱和汽压。饱和汽压具有下列重要性质:

(1)同一温度下,不同液体的饱和汽压一般下同,挥发性大的液体其饱和汽压大。

(2)温度一定时,液体的饱和汽压与饱和汽的体积无关,与液体上方有无其它气体无关。

(3)同一种液体的饱和汽压随温度的升高而迅速增大。 空气的湿度、露点

表示空气干湿程度的物理量叫湿度。湿度分为绝对湿度和相对湿度。空气中含水蒸气的压强叫做空气的绝对湿度。在某一温度时,空气的绝对湿度跟该温度下饱和汽压的百分比,叫做空气的相对湿度。用公式表示为

%100?=

s

p p

B . 空气中的未饱和水蒸气,在温度降低时逐渐接近饱和。当气温降低到某一温度时水蒸气达到饱和,这时有水蒸气凝结成水,即露水。使水蒸气刚好达到饱和的温度称为露点。 气体的功、热量与内能的增量

大学物理1(上)知识点总结

一 质 点 运 动 学 知识点: 1. 参考系 为了确定物体的位置而选作参考的物体称为参考系。要作定量描述,还应在参考系上建立坐标系。 2. 位置矢量与运动方程 位置矢量(位矢):是从坐标原点引向质点所在的有向线段,用矢量r 表示。位矢用于确定质点在空间的位置。位矢与时间t 的函数关系: k ?)t (z j ?)t (y i ?)t (x )t (r r ++== 称为运动方程。 位移矢量:是质点在时间△t 内的位置改变,即位移: )t (r )t t (r r -+=?? 轨道方程:质点运动轨迹的曲线方程。 3. 速度与加速度 平均速度定义为单位时间内的位移,即: t r v ?? = 速度,是质点位矢对时间的变化率: dt r d v = 平均速率定义为单位时间内的路程:t s v ??= 速率,是质点路程对时间的变化率:ds dt υ= 加速度,是质点速度对时间的变化率:dt v d a = 4. 法向加速度与切向加速度 加速度 τ?a n ?a dt v d a t n +==

法向加速度ρ=2 n v a ,方向沿半径指向曲率中心(圆心),反映速度方向的变化。 切向加速度dt dv a t =,方向沿轨道切线,反映速度大小的变化。 在圆周运动中,角量定义如下: 角速度 dt d θ = ω 角加速度 dt d ω= β 而R v ω=,22 n R R v a ω== ,β==R dt dv a t 5. 相对运动 对于两个相互作平动的参考系,有 ''kk pk pk r r r +=,'kk 'pk pk v v v +=,'kk 'pk pk a a a += 重点: 1. 掌握位置矢量、位移、速度、加速度、角速度、角加速度等描述质点运动和运动变化的 物理量,明确它们的相对性、瞬时性和矢量性。 2. 确切理解法向加速度和切向加速度的物理意义;掌握圆周运动的角量和线量的关系,并能灵活运用计算问题。 3. 理解伽利略坐标、速度变换,能分析与平动有关的相对运动问题。 难点: 1.法向和切向加速度 2.相对运动问题 三、功和能 知识点: 1. 功的定义 质点在力F 的作用下有微小的位移d r (或写为ds ),则力作的功定义为力和位移的标积即 θθcos cos Fds r d F r d F dA ==?= 对质点在力作用下的有限运动,力作的功为 ? ?=b a r d F A 在直角坐标系中,此功可写为 ???++=b a z b a y b a x dz F dy F dx F A

高中物理竞赛知识系统整理

物理知识整理 知识点睛 一.惯性力 先思考一个问题:设有一质量为m 的小球,放在一小车光滑的水平面上,平面上除小球(小球的线度远远小于小车的横向线度)之外别无他物,即小球水平方向合外力为零。然后突然使小车向右对地作加速运动,这时小球将如何运动呢? 地面上的观察者认为:小球将静止在原地,符合牛顿第一定律; 车上的观察者觉得:小球以-a s 相对于小车作加速运动; 我们假设车上的人熟知牛顿定律,尤其对加速度一定是由力引起的印象至深,以致在任何场合下,他都强烈地要求保留这一认知,于是车上的人说:小球之所以对小车有 -a s 的加速度,是因为受到了一个指向左方的作用力,且力的大小为 - ma s ;但他同时又熟知,力是物体与物体之间的相互作用,而小球在水平方向不受其它物体的作用, 物理上把这个力命名为惯性力。 惯性力的理解 : (1) 惯性力不是物体间的相互作用。因此,没有反作用。 (2)惯性力的大小等于研究对象的质量m 与非惯性系的加速度a s 的乘积,而方向与 a s 相反,即 s a m f -=* (3)我们把牛顿运动定律成立的参考系叫惯性系,不成立的叫非惯性系,设一个参考系相对绝对空间加速度为a s ,物体受相对此参考系 加速度为a',牛顿定律可以写成:a m f F '=+* 其中F 为物理受的“真实的力”,f*为惯性力,是个“假力”。 (4)如果研究对象是刚体,则惯性力等效作用点在质心处, 说明:关于真假力,绝对空间之类的概念很诡异,这样说牛顿力学在逻辑上都是显得很不严密。所以质疑和争论的人比较多。不过笔者建议初学的时候不必较真,要能比较深刻的认识这个问题,既需要很广的物理知识面,也需要很强的物理思维能力。在这个问题的思考中培养出爱因斯坦2.0版本的概率很低(因为现有的迷惑都被1.0版本解决了),在以后的学习中我们的同学会逐渐对力的概念,空间的概念清晰起来,脑子里就不会有那么多低营养的疑问了。 极其不建议想不明白这问题的同学Baidu 这个问题,网上的讨论文章倒是极其多,不过基本都是民哲们的梦呓,很容易对不懂的人产生误导。 二.惯性力的具体表现(选讲) 1.作直线加速运动的非惯性系中的惯性力 这时惯性力仅与牵连运动有关,即仅与非惯性系相对于惯性系的加速度有关。惯性力将具有与恒定重力相类似的特性,即与惯性质量正比。记为: s a m f -=* 2.做圆周运动的非惯性系中的惯性力 这时候的惯性力可分为离心力以及科里奥利力: 1)离心力为背向圆心的一个力: r m f 2ω=*

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

大学物理知识点总结汇总

大学物理知识点总结汇总 大学物理知识点总结汇总 大学物理知识点总结都有哪些内容呢?我们不妨一起来看看吧!以下是小编为大家搜集整理提供到的大学物理知识点总结,希望对您有所帮助。欢迎阅读参考学习! 一、物体的内能 1.分子的动能 物体内所有分子的动能的平均值叫做分子的平均动能. 温度升高,分子热运动的平均动能越大. 温度越低,分子热运动的平均动能越小. 温度是物体分子热运动的平均动能的标志. 2.分子势能 由分子间的相互作用和相对位置决定的能量叫分子势能. 分子力做正功,分子势能减少, 分子力做负功,分子势能增加。 在平衡位置时(r=r0),分子势能最小. 分子势能的大小跟物体的体积有关系. 3.物体的内能

(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能. (2)分子平均动能与温度的关系 由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的`平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。 (3)分子势能与体积的关系 分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。而分子力与分子间距有关,分子间距的变化则又影响着大量分子所组成的宏观物体的体积。这就在分子势能与物体体积间建立起某种联系。因此分子势能分子势能跟体积有关系, 由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加; 体积变化时,分子势能发生变化,因而物体的内能发生变化. 此外, 物体的内能还跟物体的质量和物态有关。 二.改变物体内能的两种方式 1.做功可以改变物体的内能.

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

关于高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物 理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.610-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

高中物理竞赛功和能知识点讲解

高中物理竞赛功和能知识点讲解 一、知识点击 1.功、功率和动能定理 ⑴功 功是力对空间的积累效应.如果一个恒力F 作用在一个物体上,物体发生的位移是s ,那么力F 在这段位移上做的功为 W=Fscos θ 在不使用积分的前提下,我们一般只能计算恒力做的功.但有时利用一些技巧也能 求得一些变力做的功. ⑵功率:作用在物体上的力在单位时间内所做的功. 平均功率:W P t = 瞬时功率:cos lim lim cos W Fs P F t t θ υθ===?? ⑶动能定理 ①质点动能定理: 22 2101122 Kt K K W F s m m E E E υυ== -=-=?外外 ②质点系动能定理:若质点系由n 个质点组成,质点系内任何一个质点都会受到来 自于系统以外的作用力(外力)和系统内其他质点对它的作用力(内力),在质点运动时这些力都将做功. 2 201122i it i i i i W W m m υυ+=-∑∑∑∑外内 即0Kt K K W W E E E +=-=?系外系内 2. 虚功原理:许多平衡状态的问题,可以假设其状态发生了一个微小的变化,某一力 做了一个微小的功△W ,使系统的势能发生了一个微小的变化ΔE ,然后即可由ΔW=△E 求出我们所需要的量,这就是虚功原理. 3.功能原理与机械能守恒 ⑴功能原理:物体系在外力和内力(包括保守内力和非保守内力)作用下,由一个状态变到另一个状态时,物体系机械能的增量等于外力和非保守内力做功之和. 因为保守力的功等于初末势能之差,即 0P Pt P W E E E =-=-?保

K P W W E +=??外非保内(E +E )= ⑵机械能守恒:当质点系满足:0W W +=外非保内,则ΔE =0即E K + E P = E K0 + E P0=常量 机械能守恒定律:在只有保守力做功的条件下,系统的动能和势能可以相互转化,但其总量保持不变. 说明:机械能守恒定律只适用于同一惯性系.在非惯性系中,由于惯性力可能做功,即使满足守恒条件,机械能也不一定守恒.对某一惯性系W 外=0,而对另一惯性系W 外 ≠0,机械能守恒与参考系的选择有关。 4.刚体定轴转动的功能原理 若刚体处于重力场中,则:M 外=M 其外+M G (M 其外表示除重力力矩M G 以外的其他外力矩) W=W 其外+W G =(M 其外+M G )θ= E Kr 而21G P P P W E =-?=-(E -E ) 2211 2 P Kr C M E E mgh J θω=?+?=+ 其外() 即为重力场中刚体定轴转动的功能原理. 若呱0M θ=其外,即M 其外=0,则: 21 2 C mgh J ω+=常量 刚体机械能守恒. 二、方法演练 类型一、动力学中有些问题由于是做非匀变速运动,用牛顿运动定律无法直接求解,用动能定理,计算细杆对小环做的功也比较困难,因此 有时在受力分析时必须引入一个惯性力,这样就可以使问题简化很多。 例1.如图4—2所示,一光滑细杆绕竖直轴以匀 角速度ω转动,细杆与竖直轴夹角θ保持不变,一 个相对细杆静止的小环自离地面h 高处沿细杆下滑. 求小球滑到细杆下端时的速度. 分析和解:本题中由于小环所需向心力不断减小,

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高中物理竞赛相对运动知识点讲解

高中物理竞赛相对运动知识点讲解 任何物体的运动都是相对于一定的参照系而言的,相对于不同的参照系,同一物体的运动往往具有不同的特征、不同的运动学量。 通常将相对观察者静止的参照系称为静止参照系;将相对观察者运动的参照系称为运动参照系。物体相对静止参照系的运动称为绝对运动,相应的速度和加速度分别称为绝对速度和绝对加速度;物体相对运动参照系的运动称为相对运动,相应的速度和加速度分别称为相对速度和相对加速度;而运动参照系相对静止参照系的运动称为牵连运动,相应的速度和加速度分别称为牵连速度和牵连加速度。 绝对运动、相对运动、牵连运动的速度关系是:绝对速度等于相对速度和牵连速度 的矢量和。牵连 相对绝对v v v 这一结论对运动参照系是相对于静止参照系作平动还是转动都成立。 当运动参照系相对静止参照系作平动时,加速度也存在同样的关系: 牵连 相对绝对a a a 位移合成定理:S A 对地=S A 对B +S B 对地 如果有一辆平板火车正在行驶,速度为 火地 v (脚标“火地”表示火车相对地面,下 同)。有一个大胆的驾驶员驾驶着一辆小汽车在火车上行驶,相对火车的速度为汽火 v ,那么很明显,汽车相对地面的速度为: 火地 汽火汽地v v v (注意: 汽火 v 和 火地 v 不一定在一条直线上)如果汽车中有一只小狗,以相对汽车 为狗汽v 的速度在奔跑,那么小狗相对地面的速度就是 火地 汽火狗汽狗地v v v v 从以上二式中可看到,上列相对运动的式子要遵守以下几条原则: ①合速度的前脚标与第一个分速度的前脚标相同。合速度的后脚标和最后一个分速度的后脚标相同。 ②前面一个分速度的后脚标和相邻的后面一个分速度的前脚标相同。 ③所有分速度都用矢量合成法相加。 ④速度的前后脚标对调,改变符号。 以上求相对速度的式子也同样适用于求相对位移和相对加速度。

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

大学物理1知识总结

一 质 点 运 动 学 知识点: 1. 参考系 为了确定物体的位置而选作参考的物体称为参考系。要作定量描述,还应在参考系上建立坐标系。 2. 位置矢量与运动方程 位置矢量(位矢):是从坐标原点引向质点所在的有向线段,用矢量r 表示。位矢用于确定质点在空间的位置。位矢与时间t 的函数关系: k ?)t (z j ?)t (y i ?)t (x )t (r r ++== 称为运动方程。 位移矢量:是质点在时间△t 内的位置改变,即位移: )t (r )t t (r r -+=?? 轨道方程:质点运动轨迹的曲线方程。 3. 速度与加速度 平均速度定义为单位时间内的位移,即:t r v ?? = 速度,是质点位矢对时间的变化率:dt r d v = 平均速率定义为单位时间内的路程:t s v ??= 速率,是质点路程对时间的变化率:ds dt υ= 加速度,是质点速度对时间的变化率: dt v d a = 4. 法向加速度与切向加速度 加速度 τ?a n ?a dt v d a t n +==

法向加速度ρ =2 n v a ,方向沿半径指向曲率中心(圆心),反映速度方向的变化。 切向加速度dt dv a t = ,方向沿轨道切线,反映速度大小的变化。 在圆周运动中,角量定义如下: 角速度 dt d θ= ω 角加速度 dt d ω= β 而R v ω=,22n R R v a ω==,β==R dt dv a t 5. 相对运动 对于两个相互作平动的参考系,有 'kk 'pk pk r r r +=,'kk 'pk pk v v v +=,'kk 'pk pk a a a += 重点: 1. 掌握位置矢量、位移、速度、加速度、角速度、角加速度等描述质点运动和运动变化的 物理量,明确它们的相对性、瞬时性和矢量性。 2. 确切理解法向加速度和切向加速度的物理意义;掌握圆周运动的角量和线量的关系,并能灵活运用计算问题。 3. 理解伽利略坐标、速度变换,能分析与平动有关的相对运动问题。 难点: 1.法向和切向加速度 2.相对运动问题

高中物理竞赛力知识点讲解

高中物理竞赛力知识点讲解 力的概念 惯性定律指出,一个物体,如果没有受到其他物体作用,它就保持其相对于惯性参照系的速度不变,也就是说,如果物体相对于惯性参照系的速度有所改变,必是由于受到其他物体对它的作用,在力学中将这种作用称为力。凡是讲到一个力的时候,应当说清楚讲到的是哪一物体施了哪一个物体的力。 一个物体,受到了另一物体施于它的力,则它相对于惯性参照系的速度就要变化,或者说,它获得相对于惯性参照系的加速度,很自然以它作用于一定的物体所引起的加速度作为力的大小的量度。实际进行力的量度的时候,用弹簧秤来测量。 1、力的效应 (1)内、外效应: 力的作用效果有两种:一是受力物发生形变;二是使受力物的运动状态发生变化。前者表现为受力物各部分的相对位置发生变化,故称为力的内效应;后者表现为受力物的运动方向或快慢发生变化,故称为力的外效应。 众所周知,当物体同时受到两个或多个力作用时,它的运动状态也可能保持不变,这说明力对同一物体的外效应可能相互抵消。 (2)合力与分力 合力与它的那组分力之间,在力学效果上必须具有“等效代换”的关系。 2、力的作用方式 力是物体间的一种相互作用,又是一并具有大小、方向和作用点的一种矢量。根据研究和解决实际问题的需要,可以从不同的角度对力进行区分。 (1)体力、面力和点力 按照力的作用点在受力物上的分布情况,可将力可将力分为体力、面力和点力三种。 外力的作用点连续分布在物体表面和内部的一定(或全部)区域,这种力就是体力。重力就是一种广泛存在的体力。 作用点连续分布在物体某一面(或全部表面)上,这种力就是面力。压力和摩擦力就是一种广泛存在的面力。 当面力和体力作用的区域远比受力物小,或可以不考虑作用点的分布情况时,就可

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

相关文档
最新文档