硫磺制酸设计说明书

硫磺制酸设计说明书
硫磺制酸设计说明书

目录

1概述 (1)

1.1系统组成 (1)

2技术规范 (1)

2.1工艺条件 (1)

2.2余热锅炉规范 (1)

2.3余热锅炉受热面积和全水容积 (1)

3系统说明 (2)

3.1烟气流程 (2)

3.2汽水流程 (2)

4主要结构说明 (2)

4.1火管锅炉 (2)

4.2高温过热器1B (3)

4.3低温过热器4A、省煤器4A/4C (4)

4.4省煤器3B (5)

5安全附件及阀门 (5)

6锅炉控制系统 (6)

6.1过热蒸汽压力控制 (6)

6.2过热蒸汽温度控制 (6)

6.3锅炉汽包液位控制 (6)

6.4汽包紧急放水联锁 (7)

6.5锅炉汽包压力控制 (7)

6.6声光报警 (7)

7公用工程条件 (7)

7.1工业冷却水用量 (7)

7.2电源 (7)

8锅炉型号编制说明 (8)

9锅炉的水质要求 (8)

10排放和清理要求 (8)

11设计和制造标准规范 (8)

12检验和试验 (9)

1概述

本套余热锅炉适用于80万吨/年硫磺制酸系统。回收制酸系统热量生产中压过热蒸汽(3.82MPa、450℃),供汽轮发电机组发电。

1.1系统组成

1.1.1火管锅炉,设在焚硫炉出口;

1.1.2高温过热器1B,设在转化器一段出口;

1.1.3省煤器3B,设在转化器三段出口;

1.1.4低温过热器4A、省煤器4A/4C,设在转化器四段出口;

2技术规范

2.1工艺条件

表1 余热锅炉工艺条件表

2.2余热锅炉规范

表2 余热锅炉规范

2.3余热锅炉受热面积和全水容积

表3 余热锅炉受热面积和全水容积

3系统说明

3.1烟气流程

来自焚硫炉出口烟道的1056℃左右高温烟气进入火管锅炉的进口烟箱,由进口烟箱分流,通过锅壳的烟管,冷却到385℃,再经焚硫炉的高温烟气混合到420℃进入转化一段;转化一段出口的烟气经高温过热器1B从617℃左右冷却到445℃后进转化器二段;转化三段出口的烟气通过热交换器冷却到280℃,再经省煤器3B冷却到170℃引出;转化四段出口的烟气依次通过低温过热器4A、省煤器4A/4C从430℃冷却到140℃进一吸塔。

3.2汽水流程

脱盐水经除氧器除氧加热后到108℃后经锅炉给水泵分别送入省煤器4A、3B、4C,加热到245℃左右进入锅炉汽包。

汽包产生的饱和蒸汽依次通过低温过热器4A、喷水减温器A、高温过热器1B低温段、喷水减温器B、高温过热器1B高温段,加热到450℃后送出界区。

本系统最终产生3.82MPa(G)、450℃的中压过热蒸汽。

4主要结构说明

4.1火管锅炉

火管锅炉为卧式并联双锅筒自然循环锅炉,露天布置。由公用汽包、锅壳、进出口烟箱和锅炉范围内管系等部件组成。

烟管固定在锅壳两端的管板上。烟气由进口烟箱分流,纵向通过烟管,在出口烟箱内汇流引出。为避免高温烟气直接冲刷锅壳的前管板,在前管板表面浇筑耐高温的耐火保护层,并在每根烟管进口处安装了锆质耐高温保护套管。进口烟箱上设有人孔,可以在计划停车期间,入内检查保护层及保护套管的完好程度。出口烟箱底部设有排酸口。

整台锅炉由八个鞍式支座支承,其中两个锅壳下面分别安置两个,前、后

烟箱下分别安置两个。汽包下的锅壳前部支座为固定支座,其余为滑动支座,在支座与土建基础之间垫2层10mm的06Cr19Ni10钢板,使锅炉在运行时均能按设计预定方向自由膨胀。

上升管兼作汽包在锅壳上方的支撑结构,使汽包与锅壳连成一体。下降管最低点设有排污口,按操作规程定期排污,保证水循环回路畅通。

在汽包内设有旋风分离器和孔板两道汽水分离装置。此外,汽包上还设有安全阀、水位计、压力表、加药管和连续排污管等接管口。

锅炉主要尺寸:

锅炉外形尺寸(长×宽×高) 17660×10400×6700 mm

汽包尺寸Φ2080×40

锅壳尺寸Φ2800×50

烟管尺寸Φ60×5

烟气进口直径(砌砖净径) Φ3200 mm

烟气出口直径Φ2618 mm

受压元件在制造厂内完成最大程度的组装,现场安装工作量大幅度减少,是火管锅炉无可比拟的优越性之一。本台锅炉除了进出口烟箱和管系外,其他所有受压部件都分别整体出厂。

4.2高温过热器1B

高温过热器1B为全不锈钢制立式矩形箱体结构,露天布置。高温过热器1B由进出口集箱和带螺旋翅片的蛇形管组成,蛇形管的直段带翅片,弯头部分是光管,直段翅片管位于箱体通道箱内,进出口集箱位于头箱外面,弯头则位于两端的弯头箱内,以方便检修。

来自转化器一段出口的烟气从下方进入,自下而上依次冲刷水平布置的高温过热器1B的管束,然后由上方出口引出去转化器二段。

高温过热器1B分高温段及低温段,根据本厂的制造经验和现场实际使用效果,低温段进出口集箱及蛇形管均采用GB5310/12Cr1MoVG,高温段进出口集箱及蛇形管均采用GB13296/0Cr18Ni10Ti,外壳采用06Cr19Ni10,螺旋片均采用06Cr19Ni10。

外形尺寸(长×宽×高) 5845×4960×8250mm

烟气进口尺寸Φ2642×12 mm

烟气出口尺寸Φ2642×12 mm

高温过热器1B主体分高、低温段两个部分出厂,上接管、下接管及箱体分别整体出厂。

高温过热器1B的高、低温段之间设有喷水减温器,以调节出口蒸汽温度不超过额定值。

高温过热器1B出口的集汽集箱上按规定装有安全阀,压力表,放空管等。

4.3低温过热器4A、省煤器4A/4C

低温过热器4A、省煤器4C、省煤器4A自上而下组成一个整体,露天布置,用来冷却转化器四段过来的烟气。

低温过热器4A由进出口集箱和带螺旋翅片的蛇形管组成,蛇形管的直段带翅片,弯头部分是光管,直段翅片管位于箱体通道箱内,进出口集箱位于头箱外面,弯头则置于两端的弯头箱内,以方便检修。

省煤器4A采用热管翅片管,省煤器4C采用普通翅片管。省煤器4A/4C 为立式矩形箱体结构,由进出口集箱和带螺旋翅片的蛇形管组成,蛇形管的直段带翅片,弯头部分是光管,直段翅片管位于箱体通道箱内,进出口集箱位于弯头箱外面,一侧弯头位于弯头箱内,另一侧弯头则位于膨胀板外,以方便检修。

来自转化器四段出口的烟气由上部进入箱体,横向冲刷受热面后由下部出口引出,进入一吸塔。

低温过热器4A蛇形管基管采用GB5310/20G,进出口集箱采用GB3087/20,螺旋片采用Q235-A,外壳则采用Q345-A。

省煤器4A/4C进出口集箱采用GB5310/20G,翅片管、热管基管采用GB5310/20G,热管外管采用GB5310/20G,螺旋片采用Q235-A,外壳采用Q235-A。

外形尺寸(长×宽×高) 6045×6845×12290 mm

烟气进口尺寸Φ2642×12 mm

烟气出口尺寸Φ2235×10 mm

在低温过热器4A与高温过热器1B之间设有喷水减温器,以调节出口蒸汽

温度不超过额定值。

低温过热器4A主体整体出厂,省煤器4A/4C主体分上下两段出厂,上接管、下箱体、出口接管分别整体出厂。

4.4省煤器3B

省煤器3B主体分上、下段。上段为高温段,采用普通翅片管,下段为低

温段,采用热管翅片管。省煤器3B为立式矩形箱体结构,由进出口集箱和带

螺旋翅片的蛇形管组成,蛇形管的直段带翅片,弯头部分是光管,直段翅片管

位于箱体通道箱内,进出口集箱位于弯头箱外面,一侧弯头位于弯头箱内,另

一侧弯头则位于膨胀板外,以方便检修。

来自转化器三段的烟气经热交换器后由上部进入箱体,横向冲刷受热面后

由省煤器3B下部出口引出。

省煤器3B进出口集箱采用GB5310/20G,翅片管、热管基管采用GB5310/20G,热管外管采用GB5310/20G,螺旋片采用Q235-A,外壳采用

Q235-A。

外形尺寸(长×宽×高) 6585×6905×7500 mm

烟气进口尺寸Φ2438×10 mm

烟气出口尺寸Φ2235×10 mm

省煤器3B主体分上下两段出厂,上接管、出口接管、下箱体分别整体出厂。5安全附件及阀门

锅炉安全附件包括(详见50CG208-3-0阀门、仪表及附件图):

(1)汽包上的二只安全阀,高温过热器出口集汽集箱上一只安全阀;

(2)汽包上两只就地压力表和一个压力变送接口;高温过热器出口集汽集

箱上一只压力表和一个压力变送接口;

(3)两只就地水位计其中一只为单色,另一只为双色;

(4)两只水位平衡容器,供汽包液位自控和讯号远传用;

(5)在汽包的最低安全水位和正常水位之间设有紧急放水管,一旦发生满

水能及时放水。锅炉配置设计时,紧急放水阀采用电动或气动阀门,在操作室

进行自动或手动操作。

6锅炉控制系统

建议在进行锅炉配置设计时应该设有下列三条控制回路:两个联锁系统和一些必要的声光报警装置。

6.1过热蒸汽压力控制

过热蒸汽压力通过蒸汽管线上的调节阀进行调节,当送出的主蒸汽压力降低时,调节阀关小;当主蒸汽压力升高时,调节阀开大;但在开停车时要依靠放空阀来控制压力。

表4 过热蒸汽压力控制范围表

6.2过热蒸汽温度控制

过热蒸汽的温度靠安装在高温过热器进口处的喷水调节阀调节,当汽温降低时,调节阀关小;当汽温升高时,调节阀开大;但在开停车时要依靠旁路阀来控制温度。

表5 过热蒸汽温度控制范围表

6.3锅炉汽包液位控制

本回路是由汽包液位、过热蒸汽流量、给水流量组成的三冲量调节系统、维持汽包正常水位。

当汽包液位超出正常液位±60mm,锅炉需报警,当汽包液位低于正常液位-60mm,锅炉需低低报警,同时联锁系统启动。

表6 锅炉汽包液位控制范围表

6.4汽包紧急放水联锁

当汽包发生满水事故,即汽包水位超过正常水位+75mm,通过汽包液位信号,紧急放水阀(配电动或气动时)将会自动打开,反之自动关闭。

6.5锅炉汽包压力控制

当汽包发生超压时,接到远程控制室的压力取样装置需报警,联锁装置需减少锅炉前面焚烧炉燃料的给量,如继续超压,安全阀会起跳。在汽包上第一台安全阀起跳前,需停止焚烧炉燃料的给量。

表7 汽包压力控制范围表

6.6声光报警

锅炉应配有以下声光报警装置:

(1)给水压力低;

(2)过热蒸汽压力高(低);

(3)过热蒸汽温度高(低);

(4)汽包水位高(低)。

7公用工程条件

7.1工业冷却水用量

取样冷却器 4 t/h

7.2电源

汽包液位计4×150W 220 V 50 HZ

8锅炉型号编制说明

锅炉型号QF-123.0-3.82/450

型号意义QF-123.0-3.82/450

过热蒸汽温度℃

过热蒸汽压力MPa

锅炉设计蒸发量t/h

废热烟气

9锅炉的水质要求

锅炉给水应经过除盐和除氧处理,并遵循GB12145《火力发电机组及蒸汽动力设备水汽质量》。

10排放和清理要求

本台锅炉有如下排放口和清理口:

(1)汽包上有1个连续排污口;

(2)每只锅壳底部有3个定期排污口;

(3)每根下降管最低点有1个清理口;

(4)出口烟箱底部有1个放酸口,应定期检查,防止酸液积聚腐蚀设备。11设计和制造标准规范

整套锅炉受压元件的强度计算,按GB/T9222-2008《水管锅炉受压元件强度计算》和GB/T16508-1996《锅壳锅炉受压元件强度计算》标准进行。

整套锅炉的设计、制造和使用管理严格按照如下相关国家法规执行:

《固定式压力容器安全技术监察规程》(国家质监总局2009年版)

《蒸汽锅炉安全技术监察规程》(劳动部1996年版)

GB/T9222-2008 《水管锅炉受压元件强度计算》

GB/T16508-1996 《锅壳锅炉受压元件强度计算》

JB/T1613-1993 《锅炉受压元件焊接技术条件》

JB/T1609-1993 《锅炉锅筒制造技术条件》

JB/T1619-2002 《锅壳锅炉本体制造技术条件》

ZBG93010-1993 《高频电阻焊螺旋翅片管技术条件》

JB/T1620-1993 《锅炉钢结构制造技术条件》

JB/T4730-2005 《承压设备无损检测》

JB/T1612-1994 《锅炉水压试验技术条件》

JB/T1615-1991 《锅炉油漆和包装技术条件》

GB50264-1997 《工程设备及管道绝热工程设计规范》

DL/T 5047-1995 《电力建设施工及验收技术规范(锅炉机组篇)》

DL 5007-1995 《电力建设施工及验收技术规范(火力发电厂焊接篇)》12检验和试验

锅炉在制造过程中以及出厂发运前进行必要的检验与试验,并形成文件。检验包括焊接接头的X光探伤、磁粉探伤、着色探伤和超声波探伤,试验包括水压试验、气密性试验及通球试验等,均按有关标准和设计图纸要求由检验部门实施,出具焊接质量报告和水压试验报告等产品制造质量检验数据报告,提供出厂合格证。

硫磺制酸转化工段工艺的设计说明

200kt/a硫磺制酸转化工段工艺设计

目录 第一章绪论 (1) 1.1.硫酸的性质与用途 (1) 1.2.硫酸的工业发展史 (2) 1.3.硫酸的工业概况及其发展趋势 (3) 1.3.1.国外硫酸工业概况及其发展趋势 (3) 1.3.2.中国硫酸工业概况及其发展趋势 (4) 第二章厂址的选择 (7) 第三章原料的选择 (9) 3.1.原料的选择 (9) 3.2.硫磺制酸的优点 (9) 3.3.硫磺的来源 (10) 第四章转化工段工艺设计 (12) 4.1.基本原理 (12) 4.1.1.二氧化硫氧化热力学 (12) 4.1.2.二氧化硫氧化动力学 (12) 4.2.工艺流程 (14) 4.2.1.工艺流程的确定 (14) 4.2.1.1.二转二吸与一转一吸 (14) 4.2.1.2."3+1"与"3+2"转化工艺的主要区别 (15) 4.2.1.3.工艺流程的确定 (17) 4.2.2.工艺条件 (18) 4.2.2.1.转化器一段入口条件中二氧化硫含量 (18) 4.3.工艺设备 (20) 4.3.1.转化工段的主要工艺设备 (20) 4.3.2.自动控制方案 (22) 4.4工艺计算 (23) 4.4.1.物料衡算 (24) 4.4.2.能量衡算 (26) 第五章环境保护与安全生产 (33) 5.1.环境保护 (33) 5.2.安全生产 (33) 第六章总结 (34) 致 (36) 参考文献 (38)

第一章 绪论 1.1 硫酸的性质和用途[1,2] 硫酸(H 2SO 4)相对分子质量98.078,是指SO 3与H 2O 的摩尔比等于1的化和物, 或指100% H 2SO 4。外观为无色透明油状液体,密度(20℃)为1.8305g/cm 3。工 业上使用的硫酸是硫酸的水溶液,即SO 3与H 2O 摩尔比≤1的物质。发烟硫酸是 SO 3的硫酸溶液,SO 3与H 2O 的摩尔比≥1的物质,亦为无色油状液体,因其暴露 于空气中,逸出的SO 3与空气中的水分结合形成白色酸雾,固称之为发烟硫酸。 硫酸或发烟硫酸的浓度均可用H 2SO 4质量分数表示。但发烟硫酸的浓度常用 其中所含游离SO 3(即除H 2SO 4也外的SO 3)或全部的SO 3质量分数表示。不同表达 方式的硫酸浓度可用也下公式相互换算: C H 2SO 4=1.225C SO 3 (t)=100+0.225C SO 3 (f) C H 2SO 4——H 2SO 4的质量分数,%; C SO 3 (t)——SO 3的质量分数,%; C SO 3 (f)——游离SO 3质量分数,%。 表1.1 硫酸的组成 几种典型浓度硫酸的组成如上表1.1所示。 硫酸是强酸之一,具有酸的通性。但浓酸有其特殊的性质。物理性质方面,有相对密度大,沸点高,液面上水蒸汽的平衡分压极低等特性;化学方面,有氧化,脱水和磺化的特性,有关物理,化学性质及有关数据可查阅文献。

硫磺制酸工艺流程说明

硫磺制酸工艺流程说明 (1)原料工段 固体硫磺由火车运至硫磺仓库,采用人工上料方式,通过一大倾角胶带式输送机将硫磺输送至快速熔硫槽加料口处。 (2)熔硫工段 来自原料工段的固体散装硫磺由胶带输送机送入快速熔硫槽内熔化,经熔化后的熔融液硫自溢流口自流至过滤槽中,由过滤泵送入带助滤剂预涂层的液硫过滤器内过滤后流入液硫中间槽内,再由液硫输送泵输送到液硫贮罐内,液硫由液硫贮罐经精硫 泵(屏蔽泵)送到焚硫转化工段的焚硫炉内燃烧。快速熔硫槽、助滤槽、液硫贮罐、精硫槽等内均设有蒸汽加热管,用0.5?0.6MPa蒸汽间接加热,使硫磺保持熔融状态。助滤槽内设有助滤泵将助滤剂硅藻土预涂到液硫过滤器上。 (3)焚硫及转化工段 液硫由精硫泵加压经磺枪机械雾化而喷入焚硫炉焚烧,硫磺燃烧所需的空气经空气过滤器过滤后,再经空气鼓风机加压、干燥塔干燥后送入焚硫炉。 (4)干吸及成品工段 空气鼓风机设在干燥塔上游,即硫磺焚烧及转化所需空气经过滤器过滤、鼓风机加压后进入干燥塔塔底,用98%硫酸吸收 掉空气中的水分使出塔干燥空气中水分0.1g/Nm3,经塔顶除雾 器除去酸雾后的干燥空气进入焚硫炉。从干燥塔出来的浓度约

97.8%的硫酸流入干吸塔循环槽中,与来自第一吸收塔的吸收酸混合后,经干燥塔酸循环泵加压后送入干燥塔酸冷却器中,经冷却至约70C后送到塔顶进行喷淋。 由转化器第三段出口的气体经冷热换热器和省煤器II回收热量、温度降为172 C后一部分进入第一吸收塔塔底,塔顶用来温度75C、浓度为98.0%的硫酸喷淋,吸收气体中S03后的酸自塔底流出进入干吸塔循环槽中,与来自干燥塔的干燥酸进行混合并用工艺水调节循环酸浓度至98%后,再由一吸塔酸循环泵依 次送入一吸塔酸冷却器冷却后,送至一吸塔塔顶进行喷淋。另一部分一次转化气进入烟酸塔。塔内用104.5%发烟硫酸进行喷淋,吸收转化器中的SO3后,由塔底流入发烟酸循环槽,通过来自一吸塔酸冷却器出口的98%硫酸调节浓度为104.5%,然后经烟酸塔循环泵送入烟酸塔酸冷却器,冷却后的发烟酸一部分作为产 品送至成品工段,另一部分送入烟酸塔塔顶进行喷淋。吸收后的 炉气与另一部分气体混合后再进入第一吸收塔。 由转化器四段出来的二次转化气经低温过热器/省煤器I换热降 温后进入第二吸收塔塔底。该塔用温度为75 C,浓度为98%的 硫酸喷淋,吸收SO3后的硫酸自塔底流入吸收塔循环槽。而后经二吸塔酸循环泵加压,并经二吸塔酸冷却器冷却后进入第二吸收塔喷淋。 98%成品硫酸由干燥酸循环泵出口引出,再经成品酸冷却器冷却至40 C后进入成品酸贮罐。

硫磺制酸工艺流程及风机的应用教程文件

硫磺制酸工艺流程及风机的应用 【摘要】硫磺制酸风机是我公司轴流鼓风机涉及的一个新的领域。本文主要针对硫酸工艺和风机的应用谈一些体会,特别是近期云南富瑞机组在执行过程中出现的技术性问题还需完善。 【关键词】硫磺制酸防喘振系统逆流金属钝化现象密封 1.硫酸生产的原料组成: 硫酸生产的原料是指能够产生SO2的含硫物质。工业原料主要有: 硫磺:用硫磺制造硫酸是使用最早而又最好的原料,该原料制造硫酸流程简单、投资省、产品纯、成本低,是一种理想的制酸原料。 硫铁矿:硫铁矿是硫元素在地壳中存在的主要形态之一。主要成分为FeS2(理论含硫量53.45%、含铁量46.55%),矿石品位按实际含硫量多少而分。开采出来的矿石呈块状,必须经过破碎和筛分,同时对浮选硫铁矿和尾砂烘干,对不同成分原料进行混合配料等。在制酸的同时,矿渣可用来生产铁、水泥等。 含硫气体:石油气、焦炉气和煤气中都含有硫化氢,将其分离燃烧可得到二氧化硫。 硫酸盐:用硫酸盐制取硫酸的同时可以制得其它化工产品。如用硫酸钠可联合生产硫酸和纯碱。 此外,有色金属冶炼过程中产生大量的含二氧化硫的烟气、煤燃烧时排出的烟气中均含有二氧化硫,这些气体中的硫化物都是制硫酸的原料,不但回收资源而且还消除了公害。 我国主要以硫铁矿为原料,其次为硫磺和有色金属冶炼废气。我公司目前的AV71-4和 AV80-4轴流压缩机组主要应用于国内硫磺制酸行业规模在30万吨/年以上的装置中。 2.硫磺制酸的工艺 下图为硫磺制酸工艺流程图。工艺流程中同时出现了两种流程的风机配置形式: 2.1在干燥塔前、后均设置风机,塔前为开车风机,塔后为正常生产时使用的风机。2.2只在干燥塔前设置风机,用来开机及生产(或另有备机)。

硫磺制酸

目录 绪论 (2) 1 熔硫岗位操作规程 (3) 1.1岗位任务与治理范围 (3) 1.2工艺流程与操作指标 (3) 1.3开、停车方法 (4) 1.4岗位操作要点 (6) 1.5不正常现象及处理方法 (7) 2 焚硫及转化岗位操作法 (8) 2.1岗位任务及治理范围 (8) 2.2工艺流程与操作指标 (8) 3 干吸岗位操作法 (11) 3.1岗位任务与治理范围 (11) 3.2工艺流程与操作指标 (11) 4 锅炉岗位操作法 (14) 4.1岗位任务与治理范围 (14) 4.2工艺流程与操作指标 (14) 5 汽轮机、风机岗位操作法 (16) 5.1岗位任务与治理范围 (16) 5.2操作指标 (16) 6 脱盐水岗位操作法 (17) 6.1岗位任务与治理范围 (17) 6.2工艺流程与操作指标 (17) 结论 ................................................ 错误!未定义书签。参考文献 .............................................. 错误!未定义书签。

绪论 硫酸是重要的化工原料,生产硫酸的原料主要有硫磺,冶炼烟气和硫铁矿。硫磺是当前世界硫酸生产的主要原料,全世界硫磺制酸约占75%,硫铁矿制酸约占16%。与硫铁矿制酸相比,硫磺制酸具有投资省,流程简单,能源利用率高和操作人员少等优点,比硫铁矿制酸更经济,并可减少废水和废渣排放,更好的达到环保要求。 由于天然硫资源缺乏,近几年由于国际硫磺价格降低,国内硫铁矿供应紧张,促使国内硫磺制酸得到很快发展(见附图1)。 我国硫磺制酸发展需要注意以下几点: 1﹑装置大型化 对于硫磺制酸来说,由于工艺流程短,操作控制容易,装置易大型化。 2﹑采用两转两吸新工艺,选用新型催化剂 两转两吸流程在工艺﹑设备上日趋成熟,新建装置应尽量采用两转两吸流程,同时应选用高活性﹑低燃点和低压降的新型钒催化剂,从而提高转化率,降低能耗和减少二氧化硫排放。 3﹑综合利用余热资源 应充分利用硫磺制酸过程中产生的大量高﹑中﹑低温余热,用于产生次高压蒸汽或中压蒸汽以及低压蒸汽。 4﹑提高装置自动化水平 硫磺制酸流程简单﹑操作方便﹑工艺稳定,容易实现微机自动控制。在新建的或改建硫磺制酸装置时,应采用微分集散控制系统,提高自动化水平。

硫磺制酸工艺流程

硫磺制酸工艺流程 硫磺制酸工艺流程说明 (1)原料工段 固体硫磺由火车运至硫磺仓库,采用人工上料方式,通过一大倾角胶带式输送机将硫磺输送至快速熔硫槽加料口处。 (2)熔硫工段 来自原料工段的固体散装硫磺由胶带输送机送入快速熔硫槽内熔化,经熔化后的熔融液硫自溢流口自流至过滤槽中,由过滤泵送入带助滤剂预涂层的液硫过滤器内过滤后流入液硫中间槽内,再由液硫输送泵输送到液硫贮罐内,液硫由液硫贮罐经精硫泵(屏蔽泵)送到焚硫转化工段的焚硫炉内燃烧。快速熔硫槽、助滤槽、液硫贮罐、精硫槽等内均设有蒸汽加热管,用0.5~0.6MPa蒸汽间接加热,使硫磺保持熔融状态。助滤槽内设有助滤泵将助滤剂硅藻土预涂到液硫过滤器上。 (3)焚硫及转化工段 液硫由精硫泵加压经磺枪机械雾化而喷入焚硫炉焚烧,硫磺燃烧所需的空气经空气过滤器过滤后,再经空气鼓风机加压、干燥塔干燥后送入焚硫炉。 (4)干吸及成品工段 空气鼓风机设在干燥塔上游,即硫磺焚烧及转化所需空气经过滤器过滤、鼓风机加压后进入干燥塔塔底,用98%硫酸吸收掉空气中的水分使出塔干燥空气中水分0.1g/Nm3,经塔顶除雾器除去酸雾后的干燥空气进入焚硫炉。从干燥塔出来的浓度约97.8%的硫酸流入干吸塔循环槽中,与来自第一吸收塔的吸收酸混合后,经干燥塔酸循环泵加压后送入干燥塔酸冷却器中,经冷却至约70℃后送到塔顶进行喷淋。 由转化器第三段出口的气体经冷热换热器和省煤器II回收热量、温度降为172℃后一部分进入第一吸收塔塔底,塔顶用来温度75℃、浓度为98.0%的硫酸喷淋,吸收气体中SO3后的酸自塔底流出进入干吸塔循环槽中,与来自干燥塔的干燥酸进行混合并用工艺水调节循环酸浓度至98%后,再由一吸塔酸循环泵依次送入一吸塔酸冷却器冷却后,送至一吸塔塔顶进行喷淋。另一部分一次转化气进入烟酸塔。塔内用104.5%发烟硫酸进行喷淋,吸收转化器中的SO3后,由塔底流入发烟酸循环槽,通过来自一吸塔酸冷却器出口的98%硫酸调节浓度为104.5%,然后经烟酸塔循环泵送入烟酸塔酸冷却器,冷却后的发烟酸一部分作为产品送至成品工段,另一部分送入烟酸塔塔顶进行喷淋。吸收后的炉气与另一部分气体混合后再进入第一吸收塔。 由转化器四段出来的二次转化气经低温过热器/省煤器I换热降温后进入第二吸收塔塔底。该塔用温度为75℃,浓度为98%的硫酸喷淋,吸收SO3后的硫酸自塔底流入吸收塔循环槽。而后经二吸塔酸循环泵加压,并经二吸塔酸冷却器冷却后进入第二吸收塔喷淋。 98%成品硫酸由干燥酸循环泵出口引出,再经成品酸冷却器冷却至40℃后进入成品酸贮罐。

硫磺为原料制硫酸工艺流程

硫磺为原料生产硫酸 工艺 设计人:赵东波 学号:10074120 原料:硫磺 完成时间:2012年4月

一.硫磺制硫酸工艺 以硫磺为原料制硫酸,其炉气无需净化,经适当降温后便可进入转化工段,转化后经吸收即可成酸。该流程无废渣、污水排出,流程简单,成本低。 二.硫磺制酸工艺流程 以硫磺制酸工艺流程主要有:原料预处理、熔硫、焚硫及转化、干燥及成品。 硫磺制酸工艺流程说明 (1)原料工段 固体硫磺由火车运至硫磺仓库,采用人工上料方式,通过一大倾角胶带式输送机将硫磺输送至快速熔硫槽加料口处。 (2)熔硫工段 来自原料工段的固体散装硫磺由胶带输送机送入快速熔硫槽内熔化,经熔化后的熔融液硫自溢流口自流至过滤槽中,由过滤泵送入带助滤剂预涂层的液硫过滤器内过滤后流入液硫中间槽内,再由液硫输送泵输送到液硫贮罐内,液硫由液硫贮罐经精硫泵(屏蔽泵)送到焚硫转化工段的焚硫炉内燃烧。快速熔硫槽、助滤槽、液硫贮罐、精硫槽等内均设有蒸汽加热管,用0.5~0.6MPa蒸汽间接加热,使硫磺保持熔融状态。助滤槽内设有助滤泵将助滤剂硅藻土预涂到液硫过滤器上。 (3)焚硫及转化工段 液硫由精硫泵加压经磺枪机械雾化而喷入焚硫炉焚烧,硫磺燃烧所需的空气经空气过滤器过滤后,再经空气鼓风机加压、干燥塔干燥后送入焚硫炉。 (4)干吸及成品工段 空气鼓风机设在干燥塔上游,即硫磺焚烧及转化所需空气经过滤器过滤、鼓风机加压后进入干燥塔塔底,用98%硫酸吸收掉空气中的水分使出塔干燥空气中水分0.1g/Nm3,经塔顶除雾器除去酸雾后的干燥空气进入焚硫炉。从干燥塔出来的浓度约97.8%的硫酸流入干吸塔循环槽中,与来自第一吸收塔的吸收酸混合后,经干燥塔酸循环泵加压后送入干燥塔酸冷却器中,经冷却至约70℃后送到塔顶进行喷淋。 由转化器第三段出口的气体经冷热换热器和省煤器II回收热量、温度降为172℃后一部分进入第一吸收塔塔底,塔顶用来温度75℃、浓度为98.0%的硫酸喷淋,吸收气体中SO3后的酸自塔底流出进入干吸塔循环槽中,与来自干燥塔的干燥酸进行混合并用工艺水调节循环酸浓度至98%后,再由一吸塔酸循环泵依次送入一吸塔酸冷却器冷却后,送至一吸塔塔顶进行喷淋。另一部分一次转化气进入烟酸塔。塔内用104.5%发烟硫酸进行喷淋,吸收转化器中的SO3后,由塔底流入发烟酸循环槽,通过来自一吸塔酸冷却器出口的98%硫酸调节浓度为104.5%,然后经烟酸塔循环泵送入烟酸塔酸冷却器,冷却后的发烟酸一部分作为产品送至成品工段,另一部分送入烟酸塔塔顶进行喷淋。吸收后的炉气与另一部分气体混合后再进入第一吸收塔。 由转化器四段出来的二次转化气经低温过热器/省煤器I换热降温后进入第二吸收塔塔底。该塔用温度为75℃,浓度为98%的硫酸喷淋,吸收SO3后的硫酸自塔底流入吸收塔循环槽。而后经二吸塔酸循环泵加压,并经二吸塔酸冷却器冷却后进入第二吸收塔喷淋。 98%成品硫酸由干燥酸循环泵出口引出,再经成品酸冷却器冷却至40℃后进入成品酸贮罐。 三.尾气处理 目前,处理硫酸装置尾气(低浓度SO2烟气)的方法较多,有氨法、钙法、钠碱法、氧化锌法等。 氨法脱硫是根据氨与SO2、水反应生成脱硫产物的基本机理进行的,氨是一种良好的碱

硫磺制酸设计说明书

目录 1概述 (1) 1.1系统组成 (1) 2技术规范 (1) 2.1工艺条件 (1) 2.2余热锅炉规范 (1) 2.3余热锅炉受热面积和全水容积 (1) 3系统说明 (2) 3.1烟气流程 (2) 3.2汽水流程 (2) 4主要结构说明 (2) 4.1火管锅炉 (2) 4.2高温过热器1B (3) 4.3低温过热器4A、省煤器4A/4C (4) 4.4省煤器3B (5) 5安全附件及阀门 (5) 6锅炉控制系统 (6) 6.1过热蒸汽压力控制 (6) 6.2过热蒸汽温度控制 (6) 6.3锅炉汽包液位控制 (6) 6.4汽包紧急放水联锁 (7) 6.5锅炉汽包压力控制 (7) 6.6声光报警 (7) 7公用工程条件 (7) 7.1工业冷却水用量 (7) 7.2电源 (7)

8锅炉型号编制说明 (8) 9锅炉的水质要求 (8) 10排放和清理要求 (8) 11设计和制造标准规范 (8) 12检验和试验 (9)

1概述 本套余热锅炉适用于80万吨/年硫磺制酸系统。回收制酸系统热量生产中压过热蒸汽(3.82MPa、450℃),供汽轮发电机组发电。 1.1系统组成 1.1.1火管锅炉,设在焚硫炉出口; 1.1.2高温过热器1B,设在转化器一段出口; 1.1.3省煤器3B,设在转化器三段出口; 1.1.4低温过热器4A、省煤器4A/4C,设在转化器四段出口; 2技术规范 2.1工艺条件 表1 余热锅炉工艺条件表 2.2余热锅炉规范 表2 余热锅炉规范 2.3余热锅炉受热面积和全水容积 表3 余热锅炉受热面积和全水容积

3系统说明 3.1烟气流程 来自焚硫炉出口烟道的1056℃左右高温烟气进入火管锅炉的进口烟箱,由进口烟箱分流,通过锅壳的烟管,冷却到385℃,再经焚硫炉的高温烟气混合到420℃进入转化一段;转化一段出口的烟气经高温过热器1B从617℃左右冷却到445℃后进转化器二段;转化三段出口的烟气通过热交换器冷却到280℃,再经省煤器3B冷却到170℃引出;转化四段出口的烟气依次通过低温过热器4A、省煤器4A/4C从430℃冷却到140℃进一吸塔。 3.2汽水流程 脱盐水经除氧器除氧加热后到108℃后经锅炉给水泵分别送入省煤器4A、3B、4C,加热到245℃左右进入锅炉汽包。 汽包产生的饱和蒸汽依次通过低温过热器4A、喷水减温器A、高温过热器1B低温段、喷水减温器B、高温过热器1B高温段,加热到450℃后送出界区。 本系统最终产生3.82MPa(G)、450℃的中压过热蒸汽。 4主要结构说明 4.1火管锅炉 火管锅炉为卧式并联双锅筒自然循环锅炉,露天布置。由公用汽包、锅壳、进出口烟箱和锅炉范围内管系等部件组成。 烟管固定在锅壳两端的管板上。烟气由进口烟箱分流,纵向通过烟管,在出口烟箱内汇流引出。为避免高温烟气直接冲刷锅壳的前管板,在前管板表面浇筑耐高温的耐火保护层,并在每根烟管进口处安装了锆质耐高温保护套管。进口烟箱上设有人孔,可以在计划停车期间,入内检查保护层及保护套管的完好程度。出口烟箱底部设有排酸口。 整台锅炉由八个鞍式支座支承,其中两个锅壳下面分别安置两个,前、后

硫磺制酸(30万吨)和硫铁矿制酸(35万吨)工艺流程图及说明

硫磺制酸(30万吨/年)工艺流程 硫磺制酸(30万吨/年)工艺流程图 低压饱和蒸汽 脱盐水

硫磺制酸(30万吨/年)生产线工艺流程说明: 硫磺制酸生产原理:①硫磺燃烧生成SO2,其反应为:S + O2→SO2 ②SO2 经“转化”和“吸收”可得硫酸,一般用98.3%的浓硫酸吸收SO3 制硫酸,其反应为:2SO2+ O2→2SO3SO3+ H2O →H2SO4 (1)熔硫工段 原料硫磺室内储存,由带式输送机送入快速熔硫槽内熔融,加热介质为低压蒸汽,生成的粗制液硫经预涂槽、预涂槽泵送入叶片式液硫过滤器制取精制液硫并贮入地下精硫槽,再由液硫输送泵输入液硫贮罐储存,由精硫泵送至焚硫炉内的雾化磺枪。 (2)焚硫和SO2转化工段 液硫由精硫泵加压后经硫磺喷枪机械雾化而喷入焚硫炉,空气经干燥塔干燥并经空气鼓风机加压后与液硫一起燃烧,出焚硫炉的是含10~10.5%SO2、1000~1050℃左右的高温炉气,该高温炉气首先进入余热锅炉回收热量,温度降至425℃再进入转化器的第一段触媒层进行转化。经反应后,温度升至约600~610℃进入高温过热器回收热量,高温过热器换热后温度降至440℃的炉气进入转化器第二段触媒层进行催化反应,转化器后的温度510℃左右的烟气进入第二热交换器(II 换)的管程空间,与来自第一吸收塔经过第三热交换器(III换)预热的SO2气体进行换热,温度降至440℃后进入转化器三段触媒层继续转化,转化后的烟气温度约在457℃左右,进入III换管程空间,与来自一吸塔出口含SO2的工艺烟气换热,降至240℃后进入第一省煤器与余热锅炉给水进行换热,再继续降温至165℃后进入第一吸收塔进SO3吸收,以上的工艺为SO2气体的第一次转化。

硫磺制酸工艺规程与操作规程

硫磺制酸工艺规程与操作规程 1

硫磺制酸工艺规程与操作规程 第一部分:工艺规程: 一:产品说明: 硫酸是三氧化硫(SO3)和水(H2O)的化合物,硫酸的分子式:H2SO4, 纯硫酸的分子量为98.08,是无色、无臭而透明的油状液体。 工业上生产的硫酸都是纯硫酸(100%)的水溶液。其性质如下:(一)硫酸的浓度与比重: 商品硫酸的浓度为≥92.5%,浓度较高的硫酸比重与浓度对照表见下表。 在同一温度下,硫酸水溶液的比重随着它的浓度的增加而增加,当浓度达到97%时比重达到最大值,过此则递减至100%时为止。 同一浓度的硫酸,它的比重随温度的升高而降低。 20℃时硫酸的比重与浓度对照表 (二)硫酸的结晶温度: 在浓硫酸(指浓度在90%以上)范围内,98%硫酸结晶温度- 2

0.7℃,93%硫酸结晶温度-27℃。因此,商品硫酸为93%的硫酸。(三)硫酸的沸点和蒸汽压: 当硫酸浓度在98.3%以下时,它的沸点随浓度的升高而增加,浓度为98.3%的硫酸,沸点最高(336.6℃),以后则开始下降。100%硫酸的沸点为296.2℃。 硫酸水溶液上面的总蒸汽压,随其浓度的增加而逐渐下降,当浓度增加到98.3%时,蒸汽压降至最小值。 硫酸上面的蒸汽是由H2O、H2SO4和SO3分子的混合物所组成。在这种情况下,仅98.3%硫酸的蒸汽成分与液体成分相同。 水蒸汽压小是硫酸的重要性质。温度越低、浓度越高,酸液面上的水蒸气平衡分压越小。用浓硫酸来干燥气体就是利用了这一性质。 (四)硫酸的稀释热: 硫酸能以任何比例与水混合。硫酸中加入水就有热量放出,用水稀释的浓度越低,放出的热量越多。 如果将硫酸无限稀释下去,直到再加水也不会有热量发生,这样整个过程放出热量的总和称为溶解热或无限稀释热,它等于 2 卡/摩尔。 由于浓硫酸的稀释热很大,同时由于酸、水比重上的差异,因此,在实验室中稀释浓硫酸时,不能将水倒入硫酸,必须将硫酸慢慢 3

硫磺制酸工艺流程说明

硫磺制酸工艺流程说明 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

硫磺制酸工艺流程说明 (1)原料工段 固体硫磺由火车运至硫磺仓库,采用人工上料方式,通过一大倾角胶带式输送机将硫磺输送至快速熔硫槽加料口处。 (2)熔硫工段 来自原料工段的固体散装硫磺由胶带输送机送入快速熔硫槽内熔化,经熔化后的熔融液硫自溢流口自流至过滤槽中,由过滤泵送入带助滤剂预涂层的液硫过滤器内过滤后流入液硫中间槽内,再由液硫输送泵输送到液硫贮罐内,液硫由液硫贮罐经精硫泵(屏蔽泵)送到焚硫转化工段的焚硫炉内燃烧。快速熔硫槽、助滤槽、液硫贮罐、精硫槽等内均设有蒸汽加热管,用~蒸汽间接加热,使硫磺保持熔融状态。助滤槽内设有助滤泵将助滤剂硅藻土预涂到液硫过滤器上。 (3)焚硫及转化工段 液硫由精硫泵加压经磺枪机械雾化而喷入焚硫炉焚烧,硫磺燃烧所需的空气经空气过滤器过滤后,再经空气鼓风机加压、干燥塔干燥后送入焚硫炉。 (4)干吸及成品工段

空气鼓风机设在干燥塔上游,即硫磺焚烧及转化所需空气经过滤器过滤、鼓风机加压后进入干燥塔塔底,用98%硫酸吸收掉空气中的水分使出塔干燥空气中水分0.1g/Nm3,经塔顶除雾器除去酸雾后的干燥空气进入焚硫炉。从干燥塔出来的浓度约%的硫酸流入干吸塔循环槽中,与来自第一吸收塔的吸收酸混合后,经干燥塔酸循环泵加压后送入干燥塔酸冷却器中,经冷却至约70℃后送到塔顶进行喷淋。 由转化器第三段出口的气体经冷热换热器和省煤器II回收热量、温度降为172℃后一部分进入第一吸收塔塔底,塔顶用来温度75℃、浓度为%的硫酸喷淋,吸收气体中SO3后的酸自塔底流出进入干吸塔循环槽中,与来自干燥塔的干燥酸进行混合并用工艺水调节循环酸浓度至98%后,再由一吸塔酸循环泵依次送入一吸塔酸冷却器冷却后,送至一吸塔塔顶进行喷淋。另一部分一次转化气进入烟酸塔。塔内用%发烟硫酸进行喷淋,吸收转化器中的SO3后,由塔底流入发烟酸循环槽,通过来自一吸塔酸冷却器出口的98%硫酸调节浓度为%,然后经烟酸塔循环泵送入烟酸塔酸冷却器,冷却后的发烟酸一部分作为产品送至成品工段,另一部分送入烟酸塔塔顶进行喷淋。吸收后的炉气与另一部分气体混合后再进入第一吸收塔。 由转化器四段出来的二次转化气经低温过热器/省煤器I换热降温后进入第二吸收塔塔底。该塔用温度为75℃,浓度为98%的

300kta硫磺制酸装置焚硫转化工段-焚硫炉工艺设计_毕业设计

毕业论文(设计) (2013年) 焚硫转化工段-焚硫炉工艺设计 I

300kt/a硫磺制酸装置焚硫转化工段-焚硫炉工艺设计 摘要 本文论述了硫磺制酸生产装置的工艺流程与建设意义。本文介绍了使用Aspen Plus流程模拟软件模拟主要装置的方法,并对整个流程进行了模拟,对整个流程进行了物料衡算和能量衡算。焚硫工段是本文的重点研究对象,本文给出了焚硫炉的主体尺寸的计算方法和过程,并对焚硫炉进行了详细设计。此外,本文对主要设备进行了选型,介绍了焚硫工段的设备布置和配管设计,以及该工段的DCS控制系统。

300 kt / a sulfuric acid plant burning sulfur conversion section - burning sulfur furnace process design Abstract This article discusses the sulfuric acid production plant processes and construction of importance. This paper describes the use of Aspen Plus process simulation software to simulate the main device, and the entire process was simulated, the entire process has been the material balance and energy balance. Burning sulfur section is the focus of this study, this paper presents the sulfur burning furnace body size calculation method and process, and the burning of sulfur furnace designed in detail. In addition, this paper conducted a selection of major equipment, burning sulfur section describes the equipment layout and piping design, and the section of the DCS control system. Key words: Sulfuric acid production; Aspen Plus process simulation; burning sulfur furnace III

30万吨年硫磺制酸项目设计方案

30万吨/年硫磺制酸项目设计方案1.1任务来源及目的 飞源化工是由鲁泰道路工程投资兴办的氟化工高新技术企业。飞源化工坐落于市高青县高城经济园区,始建于2004年8月。近年来,随着技术进步和需求的增长,氟产品的应用领域开始从传统行业向建筑、电子、能源、环保、信息、生物医药等新领域渗透,无机氟化物等产品的需求增长迅速。飞源化工主要产品是工业无水氟化氢,年产氟化氢35000吨,每年需外购硫酸约10万吨,新上硫磺制酸项目可满足公司硫酸需求。 硫磺制酸项目工艺技术先进,原料转化率高、成本低、无污染、副产蒸汽;主要原料本地区供应方便,市场供应充足、有很好的保障;项目所在地为市高青县清河工业园,水、电、汽等公用工程配套齐全;项目所在地交通发达,地理位置优越,运输方便。 该项目将为飞源化工改善产品结构、降低运行成本、扩大企业规模、扩展市场提供了有利条件;同时,也能为公司形成新的经济增长点,还可以解决地方部分人员的就业问题,因此该项目不但对于企业的发展具有积极的经济意义,而且也具有一定的社会意义。 根据《中华人民国职业病防治法》及国家相关法律、法规、标准、规规定:对于产生或可能产生职业病危害的建设项目,在初步设计(含基础设计)阶段,由建设单位委托具有资质的设计单位对该项目依据国家职业卫生相关法律、法规、规和标准,编制《职业病防护设施设计专篇》,针对建设项目存在的职业病危害因素的种类和危害程度,提出职业病防护设施的设计方案与具体技术参数,为建设单位落实职业病防护措施提供依据。

建设单位已委托市职业病防治院职业卫生检测评价中心对飞源化工30万吨/年硫磺制酸项目职业病危害预评价报告书进行编写。 天景工程设计【资质等级:化工石化医药行业(化学工程、石油及化工产品储运)专业乙级,证书编号:A237018160】接受建设单位委托,根据建设单位提供的相关资料(见1.2.3)并依据相关法律、法规、标准及规对建设项目进行职业病防护设施设计。 1.2 设计依据 设计依据详见附件1。 1.3 设计围和设计容 本次设计主要针对飞源化工30万吨/年硫磺制酸项目施工和生产过程中产生或可能产生的职业病危害因素进行分析,对应采取的职业病防护设施、措施进行设计并对其预期效果进行分析评价,设计围包括:30万吨/年硫磺制酸项目主生产装置及罐区、鼓风机房、脱盐水厂房、循环水站、尾气处理房、分析化验室、维修、控制室、给排水、污水处理站、供电、电信、供热等。 设计容包括设计围产生或者可能产生的职业病危害因素所应采取的防尘、防毒、防暑、防寒、防噪、减振、防非电离辐射与电离辐射等防护设施的类型、设备选型,设置场所和相关技术参数的设计方案,总体布局、厂房及设备布局、建筑卫生学的设计方案,配套的辅助卫生设施、应急救援设施设计方案,以及职业病防护设施投资预算,并对职业病防护设施的预期效果进行评价。

硫磺制酸工艺流程说明

硫磺制酸工艺流程说明 (1)原料工段 固体硫磺由火车运至硫磺仓库,采用人工上料方式,通过一大倾角胶带式输送机将硫磺输送至快速熔硫槽加料口处。 (2)熔硫工段 来自原料工段的固体散装硫磺由胶带输送机送入快速熔硫槽内熔化,经熔化后的熔融液硫自溢流口自流至过滤槽中,由过滤泵送入带助滤剂预涂层的液硫过滤器内过滤后流入液硫中间槽内,再由液硫输送泵输送到液硫贮罐内,液硫由液硫贮罐经精硫泵(屏蔽泵)送到焚硫转化工段的焚硫炉内燃烧。快速熔硫槽、助滤槽、液硫贮罐、精硫槽等内均设有蒸汽加热管,用0.5~0.6MPa蒸汽间接加热,使硫磺保持熔融状态。助滤槽内设有助滤泵将助滤剂硅藻土预涂到液硫过滤器上。 (3)焚硫及转化工段 液硫由精硫泵加压经磺枪机械雾化而喷入焚硫炉焚烧,硫磺燃烧所需的空气经空气过滤器过滤后,再经空气鼓风机加压、干燥塔干燥后送入焚硫炉。 (4)干吸及成品工段 空气鼓风机设在干燥塔上游,即硫磺焚烧及转化所需空气经过滤器过滤、鼓风机加压后进入干燥塔塔底,用98%硫酸吸收掉空气中的水分使出塔干燥空气中水分0.1g/Nm3,经塔顶除雾器除去酸雾后的干燥空气进入焚硫炉。从干燥塔出来的浓度约

97.8%的硫酸流入干吸塔循环槽中,与来自第一吸收塔的吸收酸混合后,经干燥塔酸循环泵加压后送入干燥塔酸冷却器中,经冷却至约70℃后送到塔顶进行喷淋。 由转化器第三段出口的气体经冷热换热器和省煤器II回收热量、温度降为172℃后一部分进入第一吸收塔塔底,塔顶用来温度75℃、浓度为98.0%的硫酸喷淋,吸收气体中SO3后的酸自塔底流出进入干吸塔循环槽中,与来自干燥塔的干燥酸进行混合并用工艺水调节循环酸浓度至98%后,再由一吸塔酸循环泵依次送入一吸塔酸冷却器冷却后,送至一吸塔塔顶进行喷淋。另一部分一次转化气进入烟酸塔。塔内用104.5%发烟硫酸进行喷淋,吸收转化器中的SO3后,由塔底流入发烟酸循环槽,通过来自一吸塔酸冷却器出口的98%硫酸调节浓度为104.5%,然后经烟酸塔循环泵送入烟酸塔酸冷却器,冷却后的发烟酸一部分作为产品送至成品工段,另一部分送入烟酸塔塔顶进行喷淋。吸收后的炉气与另一部分气体混合后再进入第一吸收塔。 由转化器四段出来的二次转化气经低温过热器/省煤器I换热降温后进入第二吸收塔塔底。该塔用温度为75℃,浓度为98%的硫酸喷淋,吸收SO3后的硫酸自塔底流入吸收塔循环槽。而后经二吸塔酸循环泵加压,并经二吸塔酸冷却器冷却后进入第二吸收塔喷淋。 98%成品硫酸由干燥酸循环泵出口引出,再经成品酸冷却器冷却至40℃后进入成品酸贮罐。

年产20万吨硫磺制酸工艺设计

目录 1.1.1设计规模 设计规模:20万吨/年 1.1.2 产品及规格: 原料: 硫磺规格: 含水:0.24% 灰分:0.72% 产品:98%的浓硫酸 规格:产品质量标准执行中华人民共和国工业硫酸标准(GB / T 534-2002)一等品规格,硫酸质量符合下表要求。 表1.1 硫酸质量指标表 指标名称浓硫酸 1 硫酸(H2so4)≥98.0 2 灰粉%≤0.03 3 铁(Fe)含量≤0.01 4 砷(As)含量%≤0.005 5 透明度mm≥50 6 色度ml≤ 2.0 1.1.3 硫酸的性质及基本用途 硫酸纯品为无色油状液体。工业品因含杂质而呈黄、棕等色。密度(液态)1.831g/cm3。凝固点10.36。沸点(330±0.5)℃。98.3%的硫酸水溶液为恒沸混合物,沸点339℃。一种活泼的二元无机强酸。能与许多金属、金属氧化物或其他酸的盐类反应生成硫酸盐。浓硫酸具有强烈的脱水作用和氧化性。能使木材、纸张、棉麻织物等强烈脱水而炭化。与水混合反应激烈,放出大量

热。用水稀释时应在不断搅拌下将硫酸缓缓注入水中,切勿将水注入酸中造成溅酸伤人。低于76%的硫酸与金属反应放出氢气。生产方法有接触法和硝化法。主要用于生产磷酸,磷肥,各种硫酸盐,二氧化钛(硫酸法),洗涤剂,染料,药物,合成纤维等。也可用作搪瓷、金属的酸洗剂,有机合成的磺化剂和脱水剂,以及用于金属冶炼,石油精制和电子工业等。用工业硫酸在石英设备中蒸馏提纯,或以去离子水吸收三氧化硫制成纯品,再经微孔过滤膜进行超净过滤而得半导体及硫酸。超净高纯试剂。是半导体工业用量最大的化学品。一般和过氧化氢一起用于除去晶体上已完成屏蔽作用的光刻胶,或作腐蚀剂。还可用作电子产品的清洗剂和腐蚀剂。用纯净水吸收洁净三氧化硫气体制得蓄电池硫酸。也可用蒸馏法、吹出法对工业硫酸提纯制得。用作铅酸蓄电池中的电解液和电镀等。 1.1.4 我国硫酸工业的发展状况【1】 我国硫磺制酸工业随着国民经济的发展得到了快速发展。据统计,1994 年全国硫酸总产量15 300kt ,硫磺制酸只占总产量的1. 0 % ;而2002 年全国硫酸总产量30 510. 93 kt ,硫磺制酸产量已占总产量的36. 4 %。预计至2005 年、2010 年硫磺制酸产量将占当年总产量的41. 4 %、42.1%。不但产量增加,硫酸生产技术的进步也很显著。在生产发展中技术不断进取是我国硫酸工业的特点。特别是20 世纪80年代以来,加强与国外技术交流和国际合作,引进部分工艺技术和先进设备,通过消化和吸收国外先进技术,开发了许多新设备、新材料,使我国的硫酸生产技术水平有了很大的提高,逐步缩小了与世界先进水平的差距。采用国产化技术建设硫酸装置一直是我国硫酸工业的主体。 从生产硫酸的原料看,硫磺是世界硫酸生产的从生产硫酸的原料看,硫磺是

(完整版)硫磺制酸操作规程.docx

保靖县宇宏化工公司硫酸制酸 操 作 规 程

宇宏化工公司硫磺制酸生产工艺流程说明 宇宏公司 6 万吨硫磺制酸工程年产量 98% 酸 6 万吨,按年工作日 333 天计算日需硫磺 60 吨,每班需投用硫磺 20 吨,工作制为三班倒。 一、硫磺制酸简硫磺制酸与铁矿制酸相比工艺和设备基本一样,但 有较大差别:①硫磺制酸气浓高含氧量多,产酸能力强,硫磺制酸触媒 起始温度405 — 415 ℃,在相同SO2浓度下,最终转化率高;②用纯硫磺燃烧制得的炉气不含矿尘杂物,所以设备及制酸的流程比较简单,操 作简便效率高。 二、本公司硫磺制酸生产工艺流程简介工艺流程:为“ 3+2 ”二转二 吸流程。①固体硫磺通过蒸气盘管加热至 130 — 150 ℃熔融后,溢流至澄清 槽,沉淀杂质后溢流至精硫槽《熔硫工序》→②〈焚硫工序〉精硫槽的 液硫通过磺泵打入焚硫炉,液硫通过磺枪喷嘴的雾化与干燥塔过来的空 气混合燃烧生成 800 — 1000 ℃左右的 SO2浓度为 8— 10.5% 的炉气。③SO2 炉气经过余热锅炉的降温冷却至 420 ℃左右进入转化器。锅炉产生和饱和蒸气( 170 ℃)用于熔硫化磺。锅炉进口与出口有一连接旁路,

用来调节进转化器的炉气温度。④炉气进入转化器一段,经一段转化温 度升至 580 —590 ℃,经过第Ⅰ换热器使炉气温度降至 460—475℃,进入转化二段进行反应反应后的气体进入第Ⅱ换热器换热后进入转化三 段,经过反应后的SO3气体经第Ⅲ换热器换热后进入一吸塔〈一次转化 一次吸收〉。⑤吸收后的炉气经过第Ⅲ换热器和第Ⅰ换热器转化四段,反 应后的气体通过四段与五段之间的内换热器进入转化五段进行反应,反 应后的气体通过第V 换热器进入二吸塔,吸收后的尾气通过 2 吸塔丝网除雾器除雾后经烟囱放空。(2 转 2 吸) 三、硫酸及硫磺的物理化学性质 硫酸是一种无色、无臭、透明的油状液体是主要的化工原料,是“工业之母”。硫酸是 SO3与 H 2O 的化合物。硫酸的分子量为98 。浓硫酸具有强酸性强腐蚀性的强脱水性, 98.3% 的硫酸比重约为 1.84g/cm3。 硫酸为本公司生产的基本原料。硫的着火点为248 —266℃,硫在空气中有微弱的升华现象,液太硫具有一定粘度, 一般随温度升高而下降,当温度超过159 ℃后粘度随温度升高而下降,硫磺粉尘超标会爆炸。 岗位操作规程 熔硫岗位 一、生产原理 将固体硫磺人工送到熔硫槽,经蒸气盘管加热使其熔化成 液硫,通地澄清槽沉清除杂溢硫至精硫槽备用。 二、工艺指标

80万吨硫磺制酸工艺设计

800Kt/a硫磺制酸装置 工艺设计 设计者:邓小东 学号:007 班级:黔化本041 指导老师:刘珍贤 2009年5月16日

毕业设计(论文)任务书 设计(论文)题目:800KT/a 硫磺制酸装置工艺设计 函授站:北京化工大学专业:化学工程与工艺 班级:黔化本041班学生姓名:邓小东 指导教师(含职称):刘珍贤 1.设计(论文)的主要任务及目标 设计的主要任务:根据毕业设计课题要求,结合设计条件,主要完成800KT/a硫磺制酸装置设计说明书、气体流量及组成计算、液体流量及组成计算、气体热量计算、循环酸温计算、主要设备尺寸核算、主要管道尺寸核算。 设计目标:采用先进成熟的工艺设备,节能措施和环保措施,达到高效、节能、环保的要求,取得好的经济效益。 2.设计(论文)的基本要求和内容 硫磺制酸装置的物料衡算和热量衡算,及主要设备的尺寸计算、定型型号的选择,原辅材料的消耗计算,和带工艺控制点的工艺流程图和设备装备图的绘制,设计说明书的编制。 3.主要参考文献 (1)南京化学工业(集团)公司设计院编写、化工部硫酸工业信息站出版的《硫酸工艺设计手册之工艺计算篇》; (2)南京化学工业(集团)公司设计院编写、化工部硫酸工业信息站出版的《硫酸工艺设计手册之物化数据篇》; (3)南化公司设计院一室供稿、南化公司研究院《硫酸工业》编辑部编印的《接触法硫酸工艺设计常用参考资料选编之试用稿第三分册》; (4)汤桂华主编,《化肥工学丛书、硫酸》,化学工业出版社出版发行。 4.进度安排 设计(论文)各阶段名称起止日期 1 设计安排查询资料和参观考察2009年1-2月份 2 设计实施阶段2009年3月1日-25日 3 设计中期检查209年3月28日 4 设计完善阶段2009年4月1日-5月15 日 5 设计毕业答辩2009年5月16日

年产30万吨硫磺制酸工艺参数确认过程

年产30万吨硫磺制酸工艺参数确认过程 1.1.1设计规模 设计规模30万吨/年 1.1.2 产品及规格: 原料: 硫磺规格: 含水:0.24% 灰分:0.72% 产品:98%的浓硫酸 规格:产品质量标准执行中华人民共和国工业硫酸标准(GB / T 534-2002)一等品规格,硫酸质量符合下表要求。 表1.1 硫酸质量指标表 指标名称浓硫酸 1 硫酸(H2so4)≥98.0 2 灰粉%≤0.03 3 铁(Fe)含量≤0.01 4 砷(As)含量%≤0.005 5 透明度mm≥50 6 色度ml≤ 2.0 1.1.3 硫酸的性质及基本用途 硫酸纯品为无色油状液体。工业品因含杂质而呈黄、棕等色。密度(液态)1.831g/cm3。凝固点10.36。沸点(330±0.5)℃。98.3%的硫酸水溶液为恒沸混合物,沸点339℃。一种活泼的二元无机强酸。能与许多金属、金属氧化物或其他酸的盐类反应生成硫酸盐。浓硫酸具有强烈的脱水作用和氧化性。能使木材、纸张、棉麻织物等强烈脱水而炭化。与水混合反应激烈,放出大量热。用水稀释时应在不断搅拌下将硫酸缓缓注入水中,切勿将水注入酸中造成溅酸伤人。低于76%的硫酸与金属反应放出氢气。生产方法有接触法和硝化法。主要用于生产磷酸,磷肥,各种硫酸盐,二氧化钛(硫酸法),洗涤剂,染料,药物,合成纤维等。也可用作搪瓷、金属的酸洗剂,有机合成的磺化剂和脱水剂,以及用于金属冶炼,石油精制和电子工业等。用工业硫酸在石英设备中蒸馏提纯,或以去离子水吸收三氧化硫制成纯品,再经微孔过滤膜进行超净过滤而得半导体及硫酸。超净高纯试剂。是半导体工业用量最大的化学品。一般和过氧化氢一起用于除去晶体上已完成屏蔽作用的光刻胶,或作腐蚀剂。还可用作电子产

相关文档
最新文档