高等数学 定积分的概念与性质

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

定积分的概念和性质公式

1. 曲边梯形的面积 设在区间上,则由直线、、及曲线 所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间中任意插入若干个分点将分成 n 个小区间 ,小区间的长度 在每个小区间上任取一点作乘积, 求和取极限:则面积取极限

其中,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度是上的连续函数,且,求在这段时间内物体所经过的路程。 分割求近似:在内插入若干分点将其分成 n 个小区间,小区间长度,。任取, 做 求和取极限:则路程取极限 定义设函数在上有界,在中任意插入若干个分点 将分成 n 个小区间,其长度为,在每个小区间 上任取一点,作乘积,并求和, 记,如果不论对怎样分法,也不论小区间上的点

怎样取法,只要当时,和总趋于确定的极限,则称这个极限 为函数在区间上的定积分,记作,即 ,(*) 其中叫被积函数,叫被积表达式,叫积分变量,叫积分下限, 叫积分上限,叫积分区间。叫积分和式。 说明: 1.如果(*)式右边极限存在,称在区间可积,下面两类函数在区间 可积,(1)在区间上连续,则在可积。(2)在区间 上有界且只有有限个间断点,则在上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所以 3.规定 时 , 在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积;

在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积(此时,曲边梯形在轴的下方); 例1 利用定积分的几何意义写出下列积分值 (1)(三角形面积)(2)(半圆面积)

设可积 性质1 性质2 性质3 (定积分对区间的可加性)对任何三个不同的数,有 性质4 性质5 如果在区间上,,则 推论 性质6 (定积分的估值)设 M 及 m 分别是函数在区间上的最大值及最小值,则 性质7 (定积分中值定理) 如果函数在区间上连续,则在上至少有一点, 使成立

高等数学定积分应用

第六章 定积分的应用 本章将应用第五章学过的定积分理论来分析和解决一些几何、物理中的问题,其目的不仅在于建立这些几何、物理的公式,而且更重要的还在于介绍运用元素法将一个量表达为定积分的分析方法。 一、教学目标与基本要求: 使学生掌握定积分计算基本技巧;使学生用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题; 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等) 二、本章各节教学内容及学时分配: 第一节 定积分的元素法 1课时 第二节 定积分在几何学上的应用 3课时 第三节 定积分在物理学上的应用 2课时 三、本章教学内容的重点难点: 找出未知量的元素(微元)的方法。用元素法建立这些几何、物理的公式解决实际问题。运用元素法将一个量表达为定积分的分析方法 6.1定积分的微小元素法 一、内容要点 1、复习曲边梯形的面积计算方法,定积分的定义 面积A ?∑=?==→b a n i i i dx x f x f )()(lim 1 ξλ 面积元素dA =dx x f )( 2、计算面积的元素法步骤: (1)画出图形; (2)将这个图形分割成n 个部分,这n 个部分的近似于矩形或者扇形; (3)计算出面积元素; (4)在面积元素前面添加积分号,确定上、下限。 二、教学要求与注意点 掌握用元素法解决一个实际问题所需要的条件。用元素法解决一个实际问题的步骤。 三、作业35 6.2定积分在几何中的应用

一、内容要点 1、在直角坐标系下计算平面图形的面积 方法一 面积元素dA =dx x x )]()([12??-,面积 A = x x x b a d )]()([12??-? 第一步:在D 边界方程中解出y 的两个表达式)(1x y ?=,)(2x y ?=. 第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ?)(2x ?=解出, b x a ≤≤,)()(21x y x ??≤≤,面积S =x x x b a d )]()([12??-? 方法二 面积元素dA =dy y y )]()([12??-,面积 A = y y y d c d )]()([12??-? 第一步:在D 边界方程中解出x 的两个表达式)(1y x ?=,)(2y x ?=. 第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ?)(2y ?=解出, d y c ≤≤,)()(21y x y ??≤≤,面积S =y y y d c d )]()([12??-? 例1 求22-=x y ,12+=x y 围成的面积 解?????+=-=1 222x y x y ,1222+=-x x ,1-=x ,3=x 。当31<<-x 时1222+<-x x ,于是 面积?--=+-=--+=3 1 313223 210)331 ()]2()12[(x x x dx x x 例2 计算4,22-==x y x y 围成的面积 解 由25.0y x =,4+=y x 得,4,2=-=y y ,当42<<-y 时 45.02+

定积分的概念和性质公式

1.曲边梯形的面积 设在区间*I上:;--L ,则由直线工’=■<、応匚、V 1及曲线■V °/W所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间-八「中任意插入若干个分点将宀…-分成n个小区间 兀5 5 <…,小区间的长度&广呜一為」(T三12… 在每个小区间- :-一I〕上任取一点-■■作乘积 求和取极限:则面积取极限

J=1 其中;'1 ; J L厂V '…,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度| I「是上*的连续函数,且1■求在这段时间内物体所经过的路程。 分割求近似:在「〔[内插入若干分点■- _ "将其分成 n 个小区间「—,小区间长度■- _■'.-1, ■1丄。任取? _ _ 做 求和取极限:则路程一取极限 将分成n个小区间-,其长度为2 - —,在每个小区间 上任取一点「:,作乘积■- ' ■',并求和 r , 记1■r 1,如果不论对怎样分法,也不论小区间[:■ 上的 点「怎样取法,只要当「「I;时,和总趋于确定的极限,则称这个极限 为函数-—I在区间上的定积分,记作J ',即 定义设函数」?、在L?二上有界,在-亠二中任意插入若干个分点

其中叫被积函数,一’,八叫被积表达式,'‘叫积分变量,二叫积分下限, 「叫积分上限,-’」叫积分区间。■叫积分和式。 说明: 1.如果(*)式右边极限存在,称-’’」在区间-仁丄可积,下面两类函数在区间 上…-可积,(1)」在区间-LL■- - 上连续,则■' J'-在可积。(2)-’八在区间-‘丄-上有界且只有有限个间断点,则在--"-■ 上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所 3.

高等数学(上册)教案22定积分的概念与性质

高等数学(上册)教案22定积分的概念与性 质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第5章 定积分及其应用 定积分的概念与性质 【教学目的】: 1. 理解曲边梯形的面积求法的思维方法; 2. 理解定积分的概念及其性质; 3. 掌握定积分的几何意义 ; 【教学重点】: 1. 定积分的概念及其性质; 【教学难点】: 1. 曲边梯形面积求法的思维方法; 【教学时数】:2学时 【教学过程】: 案例研究 引例5.1.1 曲边梯形的面积问题 所谓曲边梯形是指由连续曲线)(x f y =(设0)(≥x f ),直线a x =,b x =和 0=y (即x 轴)所围成的此类型的平面图形(如图5-1所示).下面来求该曲边 梯形的面积. 分析 由于“矩形面积=底?高”,而曲边梯形在底边上各点处的高()f x 在区间 [,]a b 上是变动的,故它的面积不能按矩形面积公式计算. 另一方面,由于曲线()y f x =在[,]a b 上是连续变化的,所以当点x 在区间 [,]a b 上某处变化很小时,相应的()f x 也就变化不大.于是,考虑用一组平行于 y 轴的直线把曲边梯形分割成若干个小曲边梯形,当分割得较细,每个小曲边图5-1 图5-2

梯形很窄时,其高()f x 的变化就很小.这样,可以在每个小曲边梯形上作一个 与它同底、以底上某点函数值为高的小矩形,用小矩形的面积近似代替小曲边 梯形的面积,进而用所有小曲边梯形的面积之和近似代替整个曲边梯形的面积 (如图5-2所示).显然,分割越细,近似程度越高,当无限细分时,所有小矩 形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,可按以下四步计算曲边梯形的面积A . (1)分割 在闭区间],[b a 上任意插入1n -个分点, 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将闭区间[,]a b 分成n 个小区间 ],[,],,[,],[],,[112110n n i i x x x x x x x x -- , 它们的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 过每一个分点作平行于y 轴的直线,把曲边梯形分成n 个小曲边梯形; (2)取近似 在每个小区间1[,]i i x x -(1,2,...,)i n =上任取一点 1()i i i i x x ξξ-≤≤,以小区间1i i i x x x -?=-为底,()i f ξ为高作小矩形,用小矩形的 面积()i i f x ξ?近似代替相应的小曲边梯形的面积A ?,即 ()(1,2,...,)i i A f x i n ξ?=?=, (3)求和 把这样得到的n 个小矩形的面积加起来,得和式∑=?n i i i x f 1)(ξ, 将其作为曲边梯形面积的近似值,即 11()n n i i i i i A A f x ξ===?≈?∑∑; (4)取极限 当分点个数n 无限增加,且小区间长度的最大值λ (max{}i x λ=?)趋于零时,上述和式的极限值就是曲边梯形面积的精确值, 即 01lim ()n i i i A f x λξ→==?∑. 5.1.1 定积分的定义 定义1 设函数()y f x =在闭区间[,]a b 上有界,在闭区间[,]a b 中任意插 入1n -个分点 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将区间[,]a b 分成n 个小区间 011211[,],[,],...,[,],...,[,]i i n n x x x x x x x x --, 各小区间的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 在每个小区间上任取一点)(1i i i i x x ≤≤-ξξ,作函数值)(i f ξ与小区间长度i x ?的 乘积),,2,1()(n i x f i i =?ξ,并作和∑=?n i i i x f 1)(ξ,记 }max {i x ?=λ, ),,2,1(n i =, 当n 无限增大且0→λ时,若上述和式的极限存在,则称函数()y f x =在区

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? =1 ln ax b C a ++ 2.()d ax b x μ+?=11 ()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +? =21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5.d () x x ax b +?=1ln ax b C b x +-+ 6.2 d () x x ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +? =21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2 d ()x x ax b +? = 211ln ()ax b C b ax b b x +-++ 的积分 10.x C + 11.x ?=2 2(3215ax b C a -+ 12.x x ?=2223 2 (15128105a x abx b C a -+ 13.x =22 (23ax b C a - 14.2x =2223 2(34815a x abx b C a -+

15 . =(0) (0) C b C b ?+>< 16 . 2a b - 17 .x =b +18 .x =2a x -+ (三)含有22x a ±的积分 19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22 d x x a -? =1ln 2x a C a x a -++ (四)含有2(0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23.2 d x x ax b +? =2 1ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? 25.2d ()x x ax b +?=2 2 1ln 2x C b ax b ++ 26.22d ()x x ax b +? =21d a x bx b ax b --+?

考研数学高数5定积分

第五讲:定积分 定积分的概念:设()[]b a x f ,在上有界 1) 任意分割:.,2,1n i x i =? 2) 作乘积:任取[]i i i x x ,1-∈ξ,作乘积i i x f ?).(ξ 3) 作和式: ()i n i i x f ?∑=.1 ξ 4) 取极限:()i n i i x f ?∑=→.lim 1 ξλ 若不管[]b a ,如何分割,i ξ如何选取,当{}0max 1→?=≤≤i n v x λ时,上述极限如果存在,则称()x f 在[]b a ,上是可积的,并称此极限值为()[]b a x f ,在上的定积分,记为 ()0 ()lim .n b i i a i f x dx f x λξ→= =?∑? 我们规定: ()()()b b b a a a f x dx f u du f t dt ?=?=? ()0a a f x dx ?= ()()a b b a f x dx f x dx ?=-? 函数可积的条件: 充分条件:若()[]b a x f ,在满足下列条件之一,则()[]b a x f ,在上可积: 1、()[]b a x f ,在上连续; 2、只有有限个间断点的有界函数 3、单调函数 必要条件:若()[]b a x f ,在上可积,则在[]b a ,上一定有界。 定积分的几何意义: 设()[]b a x f ,在上可积 (1) 若()0≥x f ,则();A dx x f b a =?

(2) 若()0≤x f ,则();A dx x f b a -=? (3) 若()x f 有正有负,则();321A A A dx x f b a +-=? 例: 1、用定义计算积分dx x 2 10?; 2、利用定积分表示下列和式的极限: (1)∑=∞→+n i n n i n 1 11lim (2)()021lim 1>++++∞→p n n p p p p n 3、利用几何意义求积分 ,)2(; )1()1(2220dx x a dx x a b a -?-? 4、比较大小:2121 1 ln (ln )e e I xdx I x dx ==? ? 定积分的性质: 设()()x g x f ,在所讨论的区间上都是可积的,则有 性质1 (线性性) ()()[]()()( )为常数αββαβαdx x g dx x f dx x g x f b a b a b a ?+?=+? 推论: ()()()()[]()()dx x g dx x f dx x g x f dx x f A dx x Af b a b a b a b a b a ?±?=±??=? 性质2 (区间可加性) ()()()都成立 或或注:不论b a c c b a b c a dx x f dx x f dx x f b c c a b a <<<<<

高等数学定积分复习题

1. 求 dx e x ?-2ln 01。5.解:设t e x =-1,即)1ln(2+=t x ,有dt t t dx 122+= 当0=x 时,0=t ;当2ln =x 时,1=t 。 dt t dt t t dx e x )111(21211021 0222ln 0???+-=+=- 22)1arctan 1(2)arctan (210π- =-=-=x t . 2. 求由两条曲线2x y =与2y x =围成的平面区域的面积。 .解:两条曲线的交点是)0,0(与)1,1(,则此区域的面积 31)3132()(1 0323210=-=-=?x x dx x x S 3. 求反常积分 ?+∞-+222x x dx 。 解:dx x x x x dx x x dx b b b b )2111(lim 3 12lim 222222+--=-+=-+???+∞→+∞→+∞ 4ln 3 1)4ln 21(ln lim 31)21ln(lim 312=++-=+-=+∞→+∞→b b x x b b b 5、 4. 设???≤<≤≤-+=20,02,13)(32x x x x x f ,求?-22)(dx x f 解:原式=??-+0 22 0)()(dx x f dx x f ---------5分 =14 ----------5分 6. 求由曲线32,2+==x y x y 所围成的区域绕x 轴旋转而得的旋转体体积。 解:两曲线交点为(-1,1)(3,9)-------2分 面积?--+=3122)32(dx x x S π ---------5分 =17 256 7. 计算定积分2 2π π -? 8. 设()f x 在区间[,]a b 上连续,且()1b a f x dx =?,求() b a f a b x dx +-?。 答案:解:令u a b x =+-,则当x a =时,u b =;当x b =时,u a =,且d x d u =-, 故 ()b a f a b x dx +-?=()a b f u du -? =()1b a f x dx =?。

5.1 定积分的概念与性质-习题

1.利用定积分的定义计算下列积分: ⑴ b a xdx ? (a b <); 【解】第一步:分割 在区间[,]a b 中插入1n -个等分点:k b a x k n -=,(1,2,,1k n =-),将区间[,]a b 分为n 个等长的小区间[(1),]b a b a a k a k n n --+-+, (1,2,,k n =),每个小区间的长度均为k b a n -?=, 取每个小区间的右端点k b a x a k n -=+, (1,2,,k n =), 第二步:求和 对于函数()f x x =,构造和式 1 ()n n k k k S f x ==??∑1 n k k k x ==??∑1 ()n k b a b a a k n n =--=+ ?∑ 1()n k b a b a a k n n =--=+∑1 ()n k b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1) []2 b a b a n n na n n ---=+? ^ 1()[(1)]2b a b a a n -=-+ ?-1 ()()22b a b a b a a n --=-+-? 1 ()()22b a b a b a n +-=--? 第三步:取极限 令n →∞求极限 1 lim lim ()n n k k n n k S f x →∞ →∞ ==??∑1 lim()( )22n b a b a b a n →∞ +-=--? ()(0)22 b a b a b a +-=--?()2b a b a +=-222b a -=, 即得 b a xdx ? 22 2 b a -=。

高等数学教案22定积分的概念与性质

第5章 定积分及其应用 定积分的概念与性质 【教学目的】: 1. 理解曲边梯形的面积求法的思维方法; 2. 理解定积分的概念及其性质; 3. 掌握定积分的几何意义 ; 【教学重点】: 1. 定积分的概念及其性质; 【教学难点】: 1. 曲边梯形面积求法的思维方法; 【教学时数】:2学时 【教学过程】: 案例研究 引例 曲边梯形的面积问题 所谓曲边梯形是指由连续曲线)(x f y =(设0)(≥x f ),直线a x =,b x =和 0=y (即x 轴)所围成的此类型的平面图形(如图5-1所示) .下面来求该曲边梯形的面积. 分析 由于“矩形面积=底?高”,而曲边梯形在底边上各点处的高()f x 在区间[,]a b 上是变动的,故它的面积不能按矩形面积公式计算. 另一方面,由于曲线()y f x =在[,]a b 上是连续变化的,所以当点x 在区间[,]a b 上某处变化很小时,相应的()f x 也就变化不大.于是,考虑用一组平行于y 轴的直线把曲边梯形分割成若干个小曲边梯形,当分割得较细,每个小曲边梯形很窄时,其高()f x 的变化就很小.这样,可以在每个小曲边梯形上作一个与它同底、以底上某点函数值为高的小矩形,用小矩形的面积近似代替小曲边梯形的面积,进而用所有小曲边梯形的面积之和近似代替整个曲边梯形的面积(如图5-2所示).显然,分割越细,近似程度越高,当无限细分时,所有小矩形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,可按以下四步计算曲边梯形的面积A . 图5-1 图5-2

(1)分割 在闭区间],[b a 上任意插入1n -个分点, 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将闭区间[,]a b 分成n 个小区间 ],[,],,[,],[],,[112110n n i i x x x x x x x x --ΛΛ, 它们的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 过每一个分点作平行于y 轴的直线,把曲边梯形分成n 个小曲边梯形; (2)取近似 在每个小区间1[,]i i x x -(1,2,...,)i n =上任取一点1()i i i i x x ξξ-≤≤,以小区间1i i i x x x -?=-为底,()i f ξ为高作小矩形,用小矩形的面积()i i f x ξ?近似代替相应的小曲边梯形的面积A ?,即 ()(1,2,...,)i i A f x i n ξ?=?=, (3)求和 把这样得到的n 个小矩形的面积加起来,得和式∑=?n i i i x f 1)(ξ,将 其作为曲边梯形面积的近似值,即 1 1 ()n n i i i i i A A f x ξ===?≈?∑∑; (4)取极限 当分点个数n 无限增加,且小区间长度的最大值λ(max{}i x λ=?)趋于零时,上述和式的极限值就是曲边梯形面积的精确值,即 0 1lim ()n i i i A f x λξ→==?∑. 定积分的定义 定义1 设函数()y f x =在闭区间[,]a b 上有界,在闭区间[,]a b 中任意插入1n -个分点 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将区间[,]a b 分成n 个小区间 011211[,],[,],...,[,],...,[,]i i n n x x x x x x x x --, 各小区间的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 在每个小区间上任取一点)(1i i i i x x ≤≤-ξξ,作函数值)(i f ξ与小区间长度i x ?的乘积),,2,1()(n i x f i i Λ=?ξ,并作和∑=?n i i i x f 1)(ξ,记 }max {i x ?=λ, ),,2,1(n i Λ=, 当n 无限增大且0→λ时,若上述和式的极限存在,则称函数()y f x =在区间[,]a b 上可积,并将此极限值称为函数()y f x =在[,]a b 上的定积分,记为 ?b a dx x f )(. 即 ∑?=→?=n i i i b a x f dx x f 1 )(lim )(ξλ, 其中x 称为积分变量,()f x 称为被积函数,()f x dx 称为被积表达式, a 称为积分下限,b 称为积分上限,[,]a b 称为积分区间,符号?b a dx x f )(读作函数()f x 从

定积分的概念与性质练习

第一节 定积分的概念与性质 一、选择题 1. A ; 2. C . 二、填空题 1. (1)1; (2)0; (3)4 π. 2. (1)1 2 x dx ? > 1 30 x dx ? , (2)2 1ln xdx ? > () 2 2 1ln x dx ?, (3) 20 xdx π ? < 20 sin xdx π ? , (4)4 3 ln xdx ? < () 4 2 3ln x dx ?. 三、 解 由于()3f x x =在[]0,1上连续,故积分2 21 x dx -? 是存在的,且它与分法无关,同 时也与点的取法无关. 将区间[]0,1n 等分,得1 i x n = ,取() 1,2,, i i i n n ξ== 作和 ()2 3 2 1 1 13 344 0001114 n n n n i i i i i n n i S x i n n n n ξ---===+??==== ???∑∑∑ 于是 1 lim 4n n S →∞= 即 13 014 x dx =?. 四、 细棒的质量()0 l x dx ρ?. 五、 1 13 x e dx -+? 311 x e dx +-=-?. 设()()1 1,0x x f x e f x e ++'==>,所以()f x 在[]1,3-内单调增加, 从而 ()()()13f f x f -≤≤,即1 41x e e +≤≤. 于是 3 141 44x e dx e +-≤≤? 从而 1 4 13 44x e e dx -+-≤ ≤-? . 六、 设()()2 21,41f x x x f x x '=-+=-,令()0,f x '=得驻点1 4 x = . ()17101,,1482f f f ???? === ? ????? .所以 min ()f x =1, max ()f x =78. 1≤≤ 由定积分性质,得 1 2012≤≤ ?.

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积 (1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. 第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量 注: (1) ∑ =?n i i i x f 1 )(ξ与区间的分割法x i 和取点法 i 有关; 而 ? b a dx x f )(与x i 和 i 无 关. (2) ? b a dx x f )(与a 、b 、f 有关,与x 无关,即: [][]???? ===b a b a b a b a d f du u f dt t f dx x f )()()()( 2.定积分存在定理 定理 若)(x f 在[a , b ]上有界且只有有限个间断点,则)(x f 在[a , b ]上可积. 推论 若)(x f 在[a , b ]上连续,则)(x f 在[a , b ]上可积. 例1. 求 ?1 xdx

定积分概念说课稿

定积分的概念说课稿 一、教材分析 1、教材的地位和作用 本节课选自二十一世纪普通高等教育系列教材《高等数学》第三章第二节定积分的概念与性质,是上承导数、不定积分,下接定积分在水力学、电工学、采油等其他学科中的应用。定积分的应用在高职院校理工类各专业课程中十分普遍。 2、教学目标 根据教材内容及教学大纲要求,参照学生现有的知识水平和理解能力,确定本节课的教学目标为: (1)知识目标:掌握定积分的概念,几何意义和性质 (2)能力目标:掌握“分割、近似代替、求和、取极限”的方法,培养逻辑思维能力和进行知识迁移的能力,培养创新能力。 (3)思想目标:激发学习热情,强化参与意识,培养严谨的学习态度。 3、教学重点和难点 教学重点:定积分的概念和思想 教学难点:理解定积分的概念,领会定积分的思想 二、 学情分析 一般来说,学生从知识结构上来说属于好坏差别很大,有的接受很快,有的接受很慢,有的根本听不懂,基于这些特点,综合教材内容,我以板书教学为主,多媒体课件为辅,把概念性较强的课本知识直观化、形象化,引导学生探究性学习。 三、教法和学法 1、教法方面 以讲授为主:案例教学法(引入概念)问题驱动法(加深理解)练习法(巩固知识)直观性教学法(变抽象为具体) 2、学法方面: 板书教学为主,多媒体课件为辅(化解难点、保证重点) (1)发现法解决第一个案例 (2)模仿法解决第二个案例 (3)归纳法总结出概念 (4)练习法巩固加深理解 四、教学程序 1、组织教学 2、导入新课: 我们前面刚刚学习了不定积分的一些基本知识,我们知道不定积分的概念、几何意义和性质,今天我们要学习定积分的概念、几何意义和性质。 3、讲授新课(分为三个时段) 第一时段讲授 概念: 案例1:曲边梯形的面积如何求? 首先用多媒体演示一个曲边梯形,然后提出问题 (1)什么是曲边梯形? (2)有关历史:简单介绍割圆术及微积分背景 (3)探究:提出几个问题(注意启发与探究)

高等数学不定积分总结

第5章 不定积分 一、不定积分的概念和性质 若()()F x f x '=,则()d ()f x x F x C =+?, C 为积分常数不可丢! 性质1()d ()f x x f x ' ??=???或 d ()d ()d f x x f x x =?或()d ()d f x x f x dx ??=??? 性质2()d ()F x x F x C '=+?或d ()()F x F x C =+? 性质3[()()]d f x g x x αβ±?()d ()d f x x g x x α β=±?? 或[()()]d ()d ()d f x g x x f x x g x x += +??? ;()d ()d kf x x k f x x =??. 二、基本积分公式或直接积分法 基本积分公式 d k x =?k x C +d x x μ=?111x C μμ+++(μ为常数且1μ≠-) 1d x x =?ln x C + e d x x =?e x C +d x a x =?ln x a C a + cos d x x =?sin x C +sin d x x =?cos x C -+ 2d cos x x =?2sec d x x =?tan x C +2d sin x x =?2csc d x x =?cot x C -+ sec tan d x x x =?sec x C +csc cot d x x x =?csc x C -+ 2d 1x x =+?arctan x C +(arccot x C -+)=arcsin x C +(arccos x C -+) 直接积分法:对被积函数作代数变形或三角变形,化成能直接套用基本积分公式。 代数变形主要是指因式分解、加减拆并等;三角变形主要是指三角恒等式。 三、换元积分法: 1.第一类换元法(凑微分法) ()()()d (())()d (())d () ()d [()]u x u x g x x f x x x f x x f u u F u C ??????=='====+????. 注 (1)常见凑微分: 2111(), (),2), (ln ||) 2dx d ax c xdx d x c d c dx d x c a x =+=+==+ 21(tan )(cot (arcsin )(cos )1+dx d arc x d arc x d x d arc x x ==-==-

最新定积分的概念与性质

定积分的概念与性质

第五章定积分 第一节定积分的概念与性质 教学目的:理解定积分的定义,掌握定积分的性质,特别是中值定理. 教学重点:连续变量的累积,熟练运用性质. 教学难点:连续变量的累积,中值定理. 教学内容: 一、定积分的定义 1.曲边梯形的面积 设?Skip Record If...?在?Skip Record If...?上非负,连续,由直线?Skip Record If...?,?Skip Record If...?,?Skip Record If...?及曲线?Skip Record If...? 所围成的图形,称为曲边梯形. 求面积: 在区间?Skip Record If...?中任意插入若干个分点 ?Skip Record If...?, 把?Skip Record If...?分成?Skip Record If...?个小区间[?Skip Record If...?],[?Skip Record If...?], … [?Skip Record If...?],它们的长度依次为: ?Skip Record If...? 经过每一个分点作平行于?Skip Record If...?轴的直线段,把曲边梯形分成?Skip Record If...?个窄曲边梯形,在每个小区间[?Skip Record If...?]上任取一点?Skip Record If...?,以[?Skip Record If...?]为底,?Skip Record If...?为高的窄边矩形近似替代第?Skip Record If...?个窄边梯形?Skip Record If...?,把这样得到的

同济版高等数学教案 定积分

第五章定积分 教学目的: 1、理解定积分的概念。 2、掌握定积分的性质及定积分中值定理,掌握定积分的换元积分法与分部积分法。 3、理解变上限定积分定义的函数,及其求导数定理,掌握牛顿—莱布尼茨公式。 4、了解广义积分的概念并会计算广义积分。 教学重点: 1、定积分的性质及定积分中值定理 2、定积分的换元积分法与分部积分法。 3、牛顿—莱布尼茨公式。 教学难点: 1、定积分的概念 2、积分中值定理 3、定积分的换元积分法分部积分法。 4、变上限函数的导数。 §5. 1 定积分概念与性质 一、定积分问题举例 1.曲边梯形的面积 曲边梯形:设函数y=f(x)在区间[a,b]上非负、连续.由直线x=a、x=b、y=0及曲线y=f(x)所围成天津工业大学理学院基础数学系高等数学、经济数学教研室 1

天津工业大学理学院基础数学系高等数学、经济数学教研室 2 的图形称为曲边梯形, 其中曲线弧称为曲边. 求曲边梯形的面积的近似值: 将曲边梯形分割成一些小的曲边梯形, 每个小曲边梯形都用一个等宽的小矩形代替, 每个小曲边梯形的面积都近似地等于小矩形的面积, 则所有小矩形面积的和就是曲边梯形面积的近似值. 具体方法是: 在区间[a , b ]中任意插入若干个分点 a =x 0< x 1< x 2< ? ? ?< x n -1< x n = b , 把[a , b ]分成n 个小区间 [x 0, x 1], [x 1, x 2], [x 2, x 3], ? ? ? , [x n -1, x n ], 它们的长度依次为?x 1= x 1-x 0 , ?x 2= x 2-x 1 , ? ? ? , ?x n = x n -x n -1 . 经过每一个分点作平行于y 轴的直线段, 把曲边梯形分成n 个窄曲边梯形. 在每个小区间 [x i -1, x i ]上任取一点ξ i , 以[x i -1, x i ]为底、f (ξ i )为高的窄矩形近似替代第i 个窄曲边梯形(i =1, 2, ? ? ? , n ) , 把这样得到的n 个窄矩阵形面积之和作为所求曲边梯形面积A 的近似值, 即 A ≈f (ξ 1)?x 1+ f (ξ 2)?x 2+? ? ?+ f (ξ n )?x n ∑=?=n i i i x f 1)(ξ. 求曲边梯形的面积的精确值: 显然, 分点越多、每个小曲边梯形越窄, 所求得的曲边梯形面积A 的近似值就越接近曲边梯形面积A 的精确值, 因此, 要求曲边梯形面积A 的精确值, 只需无限地增加分点, 使每个小曲边梯形的宽度趋于零. 记 λ=max{?x 1, ?x 2,? ? ?, ?x n }, 于是, 上述增加分点, 使每个小曲边梯形的宽度趋于零, 相当于令λ→0. 所以曲边梯形的面积为 ∑=→?=n i i i x f A 1 0)(lim ξλ. 2. 变速直线运动的路程

相关文档
最新文档