流变学在聚合物研究中的应用

流变学在聚合物研究中的应用
流变学在聚合物研究中的应用

流变学在聚合物研究中的应用

概述

高分子熔体的流变行为是由其长链分子的拓扑结构决定的。当高分子主链上引入一定数量和长度的支链后,其粘弹性质与线形高分子会有明显不同。长链支化聚合物剪切条件下会表现出与线形高分子类似的应变软化,但由于支链的限制将有更长的末端松弛时间,并在拉伸条件下表现出与线形高分子完全不同的应变硬化松弛过程。支化对聚合物粘弹性质的影响,无论对工业界还是科学研究都是一个十分重要和基础的课题。近年来的一系列研究表明:一方面通过引入相同或相似结构单元的长支链可以明显提高聚合物的熔体强度(这对于熔融纺丝、吹膜等熔体拉伸加工过程是十分有利的);另一方面也可以通过含有特征官能团支链的引入对聚合物进行改性,提高其光学、热学和力学性能。目前,随着控制聚合反应和机理研究的进一步深入,人们已能够直接得到各种具有明确拓扑结构的支化聚合物,如梳形[1]、星形、H形聚合物[2]等,这对支化聚合物流变学的深入研究与探索起了极大的推动作用。

与线形高分子不同,支化高分子熔体是热流变复杂的,其流变学特性主要表现在: (1)支化减小了高分子的流体力学体积,降低了零切粘度,支链松弛过程的加入使得整个高分子的末端松弛时间延长; (2)长链支化聚合物在拉伸过程中会表现出明显的应变硬化,并使得时- 温叠加原理不再有效; (3)支化高分子的拓扑结构对其整个松弛过程有显著的影响,支化密度和支链长度存在临界值,超过此临界值,支链松弛过程将会清晰地反映在动态粘弹谱上; (4)支化聚合物流变行为的温度依赖性是复杂的,多数支化聚合物的流变行为比相应线形聚合物有更强的温度依赖性,但也有一些支化聚合物和其相应线形高分子具有同样的温度依赖性,如聚异丁烯。

本文简介流变学在不同聚合物研究中的应用,并对流变学的发展方向做了展望。

1、流变学在聚乙烯研究中的应用

聚乙烯基本分为三大类,即低密度聚乙烯(LDPE)!高密度聚乙烯(HDPE)和线型低密度聚乙烯(LLDPE),三种聚乙烯分子结构见图如下

明显可以看出三种聚乙烯具有不同的支化程度,研究支化结构对其性能造成的影响一直是研究者感兴趣的课题。

对聚乙烯的支链结构的研究,是对聚烯烃进行微观结构精细控制和分子剪裁的一项基础研究,分子链的支链结构是影响聚乙烯性能的重要因素之一,支链一般分为长支链和短支链,它们对共聚物的性能影响各不相同,大量无规分布的短支链的存在,破坏了聚乙烯分子链的规整性,使其难于结晶甚至不能结晶,从而也影响到共聚物材料的密度!软化点和硬度等性质,长支链的存在,对结晶性能无显著影响,但影响高分子的流动性能和加工性能,对力学性能也有很大影响,因此,聚乙烯支链的结构表征和测定在理论和实际应用上都具有重要意义。

张洁[3]研究了支化密度及支链长度不同的三种高密度聚乙烯的流变性能,研究表明(1)支化密度对粘度的影响大于支链长度对粘度的影响,温度越高对于支化密度高的产品来说,剪切变稀行为越显著(2)支链长度会影响结晶速度,支链长度增加,结晶速度加快,而支化密度对结晶速度影响不大,支化密度和支化链结构在一定范围内不会对高聚物的结晶形态造成影响"(3)支化密度和支链长度均会影响ESCR值,但是支链长度的影响更为显著"。

翟元明[4]等研究了丁烯共聚和己烯共聚两个系列的LLDPE样品的流变行为,研究表明相对分子质量、相对分子质量分布、长链支化和短链支化对LLDPE的动态流变行为都会产生不同程度的影响。对丁烯共聚和己烯共聚LLDPE:(1)两个系列的LLDPE样品所得到的动态交点Gx随着中均相对分子质量的增大,其对应的频率越低;(2)两个系列的复数粘度和重均相对分子质量的关系式不符合Raju 的经验方程;(3)一定含量的长支链可以加剧剪切变稀的程度,而动态粘度在聚合物重均相对分子质量相差不大的情况下,随着分子量分布的加宽而增大。

于茂赏[5]等人研究了线性双峰聚乙烯(LBPE)与低密度聚乙烯烯(LDPE)不同质量比例共混物熔体的流变行为,研究表明(1 ) L B PE/ LDPE共混物熔体的假塑性流动随LB PE 含量的增加向更高剪切应力或更高剪切速率方向移动。当L BP E含量达到2 0 % 时,就可明显提高LDPE 的拉伸强度、屈服应力及断裂伸长率,而且膨胀比变化不大;当L B P E 含量超过 4 0 % 后,力学性能改善不明显,但粘度增加很快。当L B P E 含量超过7 0 %后,膨胀比明显下降。( 2 ) 共混物的粘流活化能并不高,表观粘度的温度敏感性小,提高加工温度有利于降低熔体的流动阻力,但不

能解决根本问题,还应考虑提高剪切速率以改善加工条件。

Ibnelwaleed A. Hussein[6]等人用流变仪研究了支化度和支链分布对m-LLDPE和ZN-LLDPE 与LDPE共混物熔体的相容性。研究表明:Z-N引发剂制备的LLDPE,本身就存在支链分布不均匀,出现相分离的可能;低支化度的LLDPE与LDPE相容性差,支化度增加,相容性提高;支链分布均匀程度对共混物相容性影响很大,m-LLDPE 比ZN-LLDPE支链分布更均匀,所以前者与LDPE的相容性比后者要好;在共混物中,随LLDPE所占比例的增加,相容性提高。

Yang Chen[7]等人研究了LDPE/UHMWPE和LLDPE/UHMWPE共混合金的流变性能,得出了相应的Cole-Cole曲线、Han曲线和Van Gurp曲线,研究表明:LDPE/UHMWPE的共混合金熔体相容性良好;LLDPE/UHMWPE的共混合金熔体的相容性依赖于组成比例。

2、流变学在聚丙烯研究中的应用

普通PP 的链结构为线形,其相对分子质量分布相对较窄,导致其软化点与熔点较接近,熔程较短,这一缺点限制了其在工业上的进一步广泛应用。在PP分子链中存在少量的长支链结构可以显著改善其熔体性能, 从而克服PP在成型过程中出现的抗熔垂性能差、热成型制品壁厚不均、挤出发泡时泡孔塌陷等一系列问题。因此近10 年来,LCBPP的制备及其结构和性能研究成为PP改性研究的重要方向。反应挤出法制备LCBPP 具有操作简单、实施方便、特别适合工业化生产等优点。为此,反应挤出法制备LCBPP被很多研究者所重视,但LCBPP 的支化程度及性能受反应物的种类、含量和反应条件的影响。聚合物的流变性能对LCB 结构非常敏感,流变学方法是研究和表征聚合物LCB 结构的有效手段。同时,聚合物结构的改变会显著影响其热力学等性能。

苏峰华[8]等研究了长链支化聚丙烯(LCBPP)的流变行为,研究发现,过氧化引发剂/ PETA 改性的PP ,其流变性能呈现如低频处储能模量增大、剪切变稀行为明显、损耗角随频率变化出现平台区、零剪切黏度增大等特点,证明改性PP 存在长链支化结构,通过计算发现改性PP的支化度较高。

Sugimoto[9, 10]研究了含有少量超高分子质量的聚乙烯的高熔体强度聚丙烯的剪切流变和拉伸流变行为。尽管GPC和DSC数据未能显示少量超高分子质量的聚乙烯的存在,但是透射电镜照片显示了聚乙烯畴的存在。作者通过分级的方法舍去了聚乙烯的部分,然后将其余的部分混合并测试其剪切流变行为,仍旧发现了不同与线性聚丙烯的高弹性的特点。因此,作者认为聚乙烯畴的存在不是影响聚丙烯流变性能的主要因素,溶解于聚丙烯的少量的高分子量的聚乙烯是导致高弹性和拉伸应变硬化的主要因素。这种高熔体强度的聚丙烯的优点是没有复杂的自由基反应和未知结构的聚合物的生成。如果作者能给出小角光散射的数据就更好了。

3、流变学在其他聚合物研究中的应用

Miao Hu[11]等人研究了一系列高支化刷型聚合物(主链为聚降冰片烯,支链为聚乳酸,主链具有一系列不同的聚合度,支链具有一系列不同的分子量)线性流变行为,研究表明:此聚合物的动态模量主曲线氛围三个区域,链端区、支链区和末端区,三区之间出现两个平台,一个出现在支链区,与侧链松弛有关,另一个出现在末端区,与主链运动有关;侧链影响整个刷型高分子的松弛行为;虽然分子量很大,且支链很长,但没有现象表明该分子有缠结出现。

王十庆[12]等人对流变学的理论和实验均有很深入的研究和发展,他们的研究表明:缠结聚合物流体有三种主要屈服变形模式: (i) 初始形变, (ii) 大振幅震荡剪切, (iii) 阶跃应变. 缠结聚合物作为一种瞬态固体经不起持续增长的弹性变形, 而遭遇断裂. 缠结聚合物在快速的外部变形下, 最终从弹性(可逆)形变转为流动态(不可逆形变). 在这种屈服过程中, 缠结结构受非均匀破裂而发生随后的流动, 与教科书中的均匀变形假设不一致。观测到阶跃大应变后的宏观运动是其中重大的发现之一。实验证明由于链缠结产生的内聚力可以被瞬时大变形所产生的弹性应力破坏。这种弹性屈服现象表明有必要把缠结聚合物看做一个多链系统,以管形理论为基础的单链平均场的描述似乎并不充分。至少管形理论既不能预测弹性屈服, 也不能真实预知初始剪切时出现的剪切带。

展望

支化聚合物的熔体流变行为是丰富且又复杂的,这使得人们对于它的认识和理解还有许多方面需要进一步完善和发展,概括起来,有如下几个方面:(1)进一步明确支化高分子拓扑结构对其流变松弛行为的影响,包括多臂星形、超支化结构的影响等,建立相应的分子松弛理论; (2)进一步明确不同种类支化高分子和不同拓扑结构支化高分子粘弹行为的温度依赖性;(3)研究用于接枝改性目的的、含有不同类型支链的支化聚合物的熔体流变行为,如含有刚性、半刚性支链的柔性链、含有极性支链和非极性主链高分子等;(4)反应接枝过程中的化学流变行为研究等。

参考文献

[1] Yurasova T A, Mcleish T C B, Semenov A N. Stress Relaxation in Entangled Comb Polymer Melts[J]. Macromolecules. 1994, 27(24): 7205-7211.

[2] Mcleish T C B, Allgaier J, Bick D K, et al. Dynamics of Entangled H-Polymers:?Theory, Rheology, and Neutron-Scattering[J]. Macromolecules. 1999, 32(20): 6734-6758.

[3] 张洁. 高密度聚乙烯结构与其流变性能及相关性能的研究[D]. 兰州大学, 2010.

[4] 翟元明,杨伟,王宇,等. 分子结构对LLDPE动态流变行为的影响[J]. 高分子材料科学与工程. 2010(01): 88-91.

[5] 于茂赏,闰明涛,高俊刚,等. 线性双峰聚乙烯/低密度聚乙烯共混物的流变行为与力学性能[J]. 中国塑料. 2002(02): 31-35.

[6] Hussein I A, Williams M C. Rheological Study of the Influence of Branch Content on the Miscibility of Octene m-LLDPE and ZN-LLDPE in LDPE[J]. Polymer Engineering and Science. 2004, 44(4): 660-672.

[7] Chen Y, Zou H, Liang M, et al. Rheological, thermal, and morphological properties of low-density polyethylene/ultra-high-molecular-weight polyethylene and linear low-density polyethylene/ultra-high-molecular-weight polyethylene blends[J]. Journal of Applied Polymer Science. 2013, 129(3): 945-953.

[8] 苏峰华,黄汉雄,邹余敏. 长链支化聚丙烯的反应挤出制备及其流变和热力学性能研究[J]. 中国塑料. 2009(08): 31-34.

[9] Sugimoto M, Masubuchi Y, Takimoto J, et al. Melt rheology of polypropylene containing small amounts of high molecular weight chain. I. Shear flow[J]. Journal of Polymer Science Part B: Polymer Physics. 2001, 39(21): 2692-2704.

[10] Sugimoto M, Masubuchi Y, Takimoto J, et al. Melt Rheology of Polypropylene Containing Small Amounts of High-Molecular-Weight Chain. 2. Uniaxial and Biaxial Extensional Flow[J]. Macromolecules. 2001, 34(17): 6056-6063.

[11] Hu M, Xia Y, Mckenna G B, et al. Linear Rheological Response of a Series of Densely Branched Brush Polymers[J]. Macromolecules. 2011, 44(17): 6935-6943.

[12] 王十庆. 挑战与机遇:聚合物流变学在中国的前途[J]. 中国科学:化学. 2010(01): 16-21.

聚合物流变学复习题参考答案

1聚合物流变学复习题参考答案 一、名词解释(任选5小题,每小题2分,共10分): 1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。 应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。 或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象. 2.端末效应:流体在管子进口端一定区域内剪切流动与收敛流动会产生较大压力降,消耗于粘性液体流动的摩擦以及大分子流动过程的高弹形变,在聚合物流出管子时,高弹形变恢复引起液流膨胀,管子进口端的压力降和出口端的液流膨胀都是与聚合物液体弹性行为有密切联系的现象。 2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。 3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。 挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。

4、.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。 5、非牛顿流体:凡不服从牛顿粘性定律的流体。 牛顿流体:服从牛顿粘性定律的流体。 6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。 膨胀性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。 7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。 8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。 10、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。

聚合物流变学复习题参考答案2资料

高分子流变学复习题参考答案 一、名词解释: 1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。 应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。 或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象。 2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。 3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。 挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。 4、.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。 5、非牛顿流体:凡不服从牛顿粘性定律的流体。 牛顿流体:服从牛顿粘性定律的流体。 6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。 胀塑性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。 7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。 8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。 9、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。 或拉伸流动:质点速度仅沿流动方向发生变化的流动。 剪切流动:质点速度仅沿着与流动方向垂直的方向发生变化的流动。 10、法向分量:作用力的方向与作用面垂直即称为应力的法向分量。 剪切分量:作用力的方向与作用面平行即称为应力的剪切分量。 11、粘流态:是指高分子材料处于流动温度(T f)和分解温度(T d)之间的一种凝聚态。 12、宾汉流体:在流动前存在一个剪切屈服应力σy。只有当外界施加的应力超过屈服应力才开始流动的流体。 13、稳定流动:流动状态不随时间而变化的流动。 14、零切黏度——剪切速率趋向于零时的熔体黏度,即流动曲线的初始斜率。 15、非牛顿性指数:幂律公式 ? =n s Kγ σ中的n是表征流体偏离牛顿流动的程度的指数,

流变学在聚合物研究中的应用

流变学在聚合物研究中的应用 概述 高分子熔体的流变行为是由其长链分子的拓扑结构决定的。当高分子主链上引入一定数量和长度的支链后,其粘弹性质与线形高分子会有明显不同。长链支化聚合物剪切条件下会表现出与线形高分子类似的应变软化,但由于支链的限制将有更长的末端松弛时间 ,并在拉伸条件下表现出与线形高分子完全不同的应变硬化松弛过程。支化对聚合物粘弹性质的影响,无论对工业界还是科学研究都是一个十分重要和基础的课题。近年来的一系列研究表明:一方面通过引入相同或相似结构单元的长支链可以明显提高聚合物的熔体强度(这对于熔融纺丝、吹膜等熔体拉伸加工过程是十分有利的);另一方面也可以通过含有特征官能团支链的引入对聚合物进行改性,提高其光学、热学和力学性能。目前,随着控制聚合反应和机理研究的进一步深入,人们已能够直接得到各种具有明确拓扑结构的支化聚合物 ,如梳形[1]、星形、 H形聚合物[2]等 ,这对支化聚合物流变学的深入研究与探索起了极大的推动作用。 与线形高分子不同 ,支化高分子熔体是热流变复杂的 ,其流变学特性主要表现在: (1)支化减小了高分子的流体力学体积 ,降低了零切粘度 ,支链松弛过程的加入使得整个高分子的末端松弛时间延长; (2)长链支化聚合物在拉伸过程中会表现出明显的应变硬化 ,并使得时 - 温叠加原理不再有效; (3)支化高分子的拓扑结构对其整个松弛过程有显著的影响 ,支化密度和支链长度存在临界值 ,超过此临界值 ,支链松弛过程将会清晰地反映在动态粘弹谱上; (4)支化聚合物流变行为的温度依赖性是复杂的 ,多数支化聚合物的流变行为比相应线形聚合物有更强的温度依赖性 ,但也有一些支化聚合物和其相应线形高分子具有同样的温度依赖性 ,如聚异丁烯。 本文简介流变学在不同聚合物研究中的应用,并对流变学的发展方向做了展望。 1、流变学在聚乙烯研究中的应用 聚乙烯基本分为三大类,即低密度聚乙烯(LDPE)!高密度聚乙烯(HDPE)和线型低密度聚乙烯(LLDPE),三种聚乙烯分子结构见图如下

聚合物研究进展

聚合物阻垢剂研究进展* 朱亿杨天祥李宏 摘要:聚合物阻垢剂在水处理中良好的性能使其成为研究的重点。本文从聚合物的官能团的角度概述了不同官能团在防垢过程中的作用特点,以官能团的种类对聚合物阻垢剂进行了大致的分类及指出了每类阻垢剂的优缺点,并介绍了目前绿色阻垢剂的发展及天然高分子聚合物阻垢剂的改性研究进展,以及对聚合物阻垢剂的发展予以展望。 关键词:聚合物;阻垢剂;官能团;展望 Research progress in the scale inhibitors of different functional groups* Abstract:The good perfoermance of the polymeric scale inhibitors in watertreatment to make it become the focus of research. This paper, from the angle of the functional groups of the polymer,intruduced the effect characteristics of antiscale on the differengt functional groups, slao have classified polymeric scale inhibitors accrording to the diffirent groups, pointed out the advantages and disadvantages of each type of scale inhibitors, and reviewed the development of the environment-friendly polymeric scale inhibitors and the modified natural polymer scale inhibitors. The development of polymeric scale inhibitors is proposed. Key words: polymer; scale inhibitors; functional groups; expectation 聚合物类的阻垢剂可分为天然型聚合物和合成型聚合物,其作用主要归结为聚合物中的官能团,不同的功能性具有不同的功效。而官能团可以通过不饱和化合物的特征反应(聚合、加成、取代、加聚、缩聚及酯化等反应)来引入聚合物分子中。新合成的聚合物中同时拥有两个、三个或多个功能性官能团[1],这样的合成型新型共聚物会比兼有分散、增溶、凝聚、静电斥力及缓蚀等多种功能,同时能对多种物质具有阻垢能力,最主要的是此类阻垢剂能满足较为复杂的水质条件、适应于众多的行业要求。再加上环保问题的日益重视,因此,拥有多种官能团具有多种功效的绿色聚合物阻垢剂成为关注的焦点。 1.基础性功能基团的阻垢特性 基础性功能基团担负起阻垢剂的主要功能,下面介绍一些常见的基础性功能性基团:羟基、酯基、羧基、膦酸基、磺酸基官能团在防垢中所具有的不同功能。

专升本《工程传热学》_试卷_答案

专升本《工程传热学》 一、 (共18题,共156分) 1. 说明得出导热微分方程所依据的基本定律。 (8分) 标准答案:能量守恒方程和傅利叶定律。 2. 写出肋效率的定义。对于等截面直肋,肋效率受哪些因素影响? (8分) 标准答案: 3. 在液体沸腾过程中一个球形汽泡存在的条件是什么?为什么需要这样的条件? (8分) 标准答案:在液体沸腾过程中一个球形汽泡存在的条件是液体必须有一定的过热度。这是因为从汽泡的力平衡条件得出 ,只要汽泡半径不是无穷大,蒸汽压力就大于液体压力,它们 各自对应的饱和温度就不同有 ;又由汽泡热平衡条件有 ,而汽泡存在必须保持其 饱和温度,那么液体温度,即大于其对应的饱和温度,也就是液体必须过热。 4. 什么是速度边界层?动量方程在热边界层中得到简化所必须满足的条件是什么?这样的简化有何好处? (8分) 标准答案:流体流过壁面时流体速度发生显著变化的一个薄层。 动量方程得以在边界层中简化,必须存在足够大的Re 数,也就是具有的数量级。 此时动量扩散项才能够被忽略。从而使动量微分方程变为抛物型偏微分方程,成为可求解的形式。 5. 在导热过程中产生了Bi 数,而在对流换热过程中产生了Nu 数,写出它们的物理量组成,并指出它们之间的差别是什么? (8分) 标准答案: 从物理量的组成来看,Bi 数的导热系数 为固体的值,而 Nu 数的则为流体的值;Bi 数的特征尺寸Ls 在固体侧定义,而Nu 数的Lf 则在流体侧定义。从物理意义上看,前者反映了导热系统同环境之间的换热性能与其导热性能的对比关系,而后者则反映了换热系统中流体与壁面地换热性能与其自身的导热性能的对比关系。 6. 外径为50mm ,表面温度为180 的圆筒,在它的外面用导热系数为0.14W/ 的保温材料 包扎起来,保温材料的厚度为 30mm 。要求外表面温度小于60,试计算每米管道的散热量。如 果将保温材料换成导热系数为0.034 W/的保温材料,导热量同上,其它条件也不变。试计算 新保温材料的厚度。 (12分) 标准答案: 7. 针对如下导热微分方程写出方程各项的含义,并说明得出导热微分方程所依据的基本定律? (8 分) 标准答案: 导热微分方程所依据的基本定律是傅里叶定律和导热微分方程。 8. 写出Bi 数的定义式并解释其意义。在Bi 0 的情况下,一初始温度为t0的平板突然置于温度为的流体中冷却(如图1 ),粗略画出τ=τ1>0和 时平板附近的流体和平板的温度分布。 (8分) 标准答案:反映了导热系统同环境之间的换热性能与其导热性能的对比关系。

聚合物流变学

6流变学方法在聚合物研究中的应用 6.1 测量分子量及其分布的流变学方法 分子量(MW)和分子量分布(MWD)在确定聚合物的物理性质时起了很重要的作用,因此得到聚合物的分子量和分子量分布对聚合物工业是必不可少的。如果已知某种可测量的物理性质对分子量的依赖性,原则上就可以通过测量这种物理性质来确定分子量。而且对分子量的依赖性越强,确定分子量的敏感度就越高。通常所采用的确定聚合物分子量及其分布的方法有凝胶渗透色谱法(GPC)、光散射和本征粘度法等。表6-1列出了几种常用方法对分子量的依赖性及敏感度(Mead 1994)。虽然这些方法(如GPC)得到了广泛的应用,但是实验中样品的准备时间和测试时间使它们不适用于在线过程控制,而且要求所测试的聚合物能在室温下很容易地溶解于溶剂中,但是许多工业上大量应用的聚合物,如聚乙烯、聚丙烯和含氟聚合物(聚四氟乙烯)等,在室温下可能只能部分地溶解于普通的溶剂。有时即使传统的方法可行,这些方法的灵敏度和精度都不高,特别是对于分子量分布有高分子量尾部的样品,而高分子量尾部对聚合物加工性能的表征有很大影响。鉴于传统方法的不足,又由于聚合物的分子量及其分布与聚合物的粘弹性质有密切的关系,因此就有了利用聚合物粘弹性质来确定分子量分布的流变学方法。与传统的方法相比,流变学方法可以作到快速测量,而且不需要溶剂来溶解聚合物,因而从理论上将对任何聚合物都适用。流变学方法的另一个优点就是对高分子量尾部的灵敏度高。 表6-1 用分子量区别线性柔性聚合物的各种方法的分子量标度 方法 对分子量的 依赖性关系 对分子量的 敏感度关系 其它 GPC M1/2 M-1/2 排除体积 对高分子量部分不敏感 本征粘度 M0.6 M-0.4 流体体积法 对高分子量部分不敏感 光散射 M1M0 对高分子量部分敏感 渗透压 M-1 M-2 对低分子量聚合物的数均分子量较准 零剪切粘度 M3.4 M2.4 适用于具有类似分布形状的体系 可回复柔量 (M z/M w)~3.5 … 反映了分子量分布的分散性 对分子量绝对值不敏感 分子量对聚合物粘度的影响取决于分子量的大小:当分子量小于缠结分子量 e M时,零剪切粘度与分子量是一次方关系;当分子量大于缠结分子量时,零剪切粘度与分子量呈 3.4次方关系。分子量分布对动态粘度和动态模量的影响可以从图6-1看出。在低频范围 内,弹性模量随着分子量分布变窄而降低,这表明平衡可恢复柔量0 e J对分子量多分散性的依赖。在高频范围内,分子量分布的变宽对粘度有两个显著的影响:剪切变稀行为开始出现的频率更低;从牛顿区到指数定律区的转变过程变长。动态模量也有同样的表现:幅度

磁性聚合物研究与应用现状1

剩磁、矫顽力升高,内禀矫顽力略为下降;但在含相同体积分数磁粉情况下,磁性高分子粘结钕铁硼的磁性能比非磁性的高分子粘结钕铁硼的磁性能高,温度稳定性却相差无几。 (2)单体聚合法 将磁性粒子均匀分散到含有单体的溶液或乳液中,利用引发剂引发单体进行聚合反应,即可得到内部包有一定量磁性微粒的高分子微球。该法得到的高分子微球粒径较大,而且磁响应性强。迄今为止,单体聚合法合成磁性微球的方法主要有:悬浮聚合[20, 21]、分散聚合[22, 23] 、乳液聚合[24](包括乳液聚合、种子聚合)等。单 体聚合法成功的关键在于确保单体的聚合反应在磁性粒子表面顺利进行。由于磁性粒子是亲水性的,所以亲水性单体(如多糖化合物)容易在磁性粒子表面进行聚合,而对于亲油性单体(如苯乙烯、甲基丙烯酸甲酯),聚合反应难以在磁性微粒表面进行。因此需要对磁性微粒进行预处理或适当改变聚合体系的有机相组成。 刘学涌等人[25]通过苯乙烯与聚氧乙烯大分子单体(MPEO)的分散共聚制备了亲水亲油的磁性高分子微球,研究了聚氧乙烯大分子单体对微球粒径的影响,并用扫描电子显微镜(SEM)、原子力显微镜(AFM)表征了磁性微球的粒径、表面形貌以及表面粗糙度,用傅立叶红外光谱(FTIR)鉴定了共聚物的结构。 罗正平等人[26]以Fe3O4为核,采用分散聚合法合成了粒径为0.5~2.0μm、单分散性好、磁性物质含量可达10%的PSt、P(St/MAA)磁性高分子微球。同时讨论了温度、引发剂、分散介质、稳定剂等因素对反应的影响,并对所得磁性微球的表观形态、磁响应性进行了表征。 Michael A.McDonald等人[27]合成了内核含钆元素的磁性高分子微球,并用于超声波或磁共振成像的造影剂,收到了很好的效果。同时,该微球在医学上也有广泛的应用,如中子捕获疗法等。 (3)化学液相沉积法 把一定浓度的金属阳离子渗透和交换到大孔树脂中去,然后利用化学反应使金属离子转化为磁性金属氧化物,使之均匀分布在聚合物的孔结构中。将渗透和转化步骤反复进行,即可制成磁性高分子微球。 该法的步骤如下[28]:把多孔渗水的聚合物粒子浸泡在磁性金属盐的前驱体溶液中,然后用稀释的氢氧化钠溶液中和,使金属盐转变为磁性粒子并吸附到聚合物的孔隙中。聚合物粒子包括二乙烯基苯交联的聚苯乙烯、磺化或胺化交联的聚苯乙烯等,而被沉积的可以是铁、钴、镍的氧化物或其与碱金属、稀土金属的复合氧化物等。重复溶胀和中和的步骤可以调节微球中的磁性物质含量。 Emur等[29]报道采用类似的方法制得了粒径为100~250μm的磁性高分子微球,并指出搅拌速率和Fe3O4/chitosan质量比是影响微球粒径的主要因素。 另外有文献报道[30],先把聚合物硝化,然后在酸的存在下,用硝酸将金属氧化成金属氧化物,使磁性微粒沉积在聚合物表面。硝化的聚合物可以用三硝基苯磺酸盐或二硝基氟苯与氨基功能化的丙烯酸或蛋白质反应制得,被沉积的可以是铁或镍的氧化物等。 4 磁性聚合物的应用 磁性聚合物同时具有磁性和良好的加工性能,因而在许多领域具有广泛的应用。 4.1医学、诊断学领域的应用

传热学试题(答案)

①Nu准则数的表达式为(A ) ② ③根据流体流动的起因不同,把对流换热分为( A) ④A.强制对流换热和自然对流换热B.沸腾换热和凝结换热 ⑤C.紊流换热和层流换热D.核态沸腾换热和膜态沸腾换热 ⑥雷诺准则反映了( A) ⑦A.流体运动时所受惯性力和粘性力的相对大小 ⑧B.流体的速度分布与温度分布这两者之间的内在联系 ⑨C.对流换热强度的准则 ⑩D.浮升力与粘滞力的相对大小 ?彼此相似的物理现象,它们的( D)必定相等。 ?A.温度B.速度 ?C.惯性力D.同名准则数 ?高温换热器采用下述哪种布置方式更安全( D) ?A.逆流B.顺流和逆流均可 ?C.无法确定D.顺流

?顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃ ?7.为了达到降低壁温的目的,肋片应装在( D) ?A.热流体一侧B.换热系数较大一侧 ?C.冷流体一侧D.换热系数较小一侧 21黑体表面的有效辐射( D)对应温度下黑体的辐射力。 22A.大于B.小于 C.无法比较D.等于 23通过单位长度圆筒壁的热流密度的单位为( D) 24A.W B.W/m2 C.W/m D.W/m3 25格拉晓夫准则数的表达式为(D ) 26 27.由炉膛火焰向水冷壁传热的主要方式是( A ) 28 A.热辐射 B.热对流 C.导 热 D.都不是 29准则方程式Nu=f(Gr,Pr)反映了( C )的变化规律。 30A.强制对流换热 B.凝结对流换热

31 C.自然对流换热 D.核态沸腾换热 32下列各种方法中,属于削弱传热的方法是( D ) 33A.增加流体流度 B.设置肋片 34 C.管内加插入物增加流体扰动 D.采用导热系数较小的材 料使导热热阻增加 35冷热流体的温度给定,换热器热流体侧结垢会使传热壁面的温度( A ) 36 A.增加 B.减小 C.不变 D.有时增 加,有时减小 37将保温瓶的双层玻璃中间抽成真空,其目的是( D ) 38A.减少导热 B.减小对流换热 39 C.减少对流与辐射换热 D.减少导热与对流换热 40下列参数中属于物性参数的是( B ) 41A.传热系数 B.导热系数 42 C.换热系数 D.角系数 43已知一顺流布置换热器的热流体进出口温度分别为300°C和150°C,冷流体进出口温度分别为50°C和100°C,则其对数平均温差约为( )

配位聚合物的应用及其研究进展

配位聚合物在光电磁材料中的应用 姓名:吴娜学号:10207010 摘要:配位聚合物由于其特殊的结构及其在光电磁等方面优异的性能引起了科学家的广泛关注。本文综述了金属有机化合物在光电磁材料中的应用,并对新型多功能材料在设计、合成与应用方面的广阔前景作了展望。 关键词:配位聚合物;多功能材料;非线性光学;材料化学 引言: 配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁性和易功能化的特性引起了研究者浓厚的兴趣。配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。并对分子器件和分子机器的发展起着至关重要的作用。配位聚合物在新的分子材料中将发挥重要的作用。配位化学理论在材料的分子设计中也将起着重要的指导作用。 材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2)分子化;(3)巨大的应用前景。金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。以下是金属有机化合物分别在光电磁材料中的应用。 1 配位聚合物在光学材料中的应用 配位聚合物的光学性质研究主要集中在光致发光、电致发光以及非线性光学等方面[8]。 1.1光致发光和电致发光材料 当外界光照射到某些物质的时候,这些物质会发射出各种波长和不同强度的可见光,而当外界光停止照射时,这种发射光也随之消失,我们称这种发光现象叫光致发光( PL);当

上海理工大学高等传热学试题及答案

1.试求出圆柱坐标系的尺度系数,并由此导出圆柱坐标系中的导热微分方程。 2 .一无限大平板,初始温度为T 0;τ>0时,在x = 0表面处绝热;在x = L 表面以对流方式向温度为t f 的流体换热。试用分离变量法求出τ>0时平板的温度分布(常物性)。(需求出特征函数、超越方程的具体形式,范数(模)可用积分形式表示)。(15分) , 3.简述近似解析解——积分法中热层厚度δ的概念。 答:近似解析解:既有分析解的特征:得到的结果具有解析函数形式,又有近似解的特征:结果只能近似满足导热解问题。在有限的时间内,边界温度 的变化对于区域温度场的影响只是在某一有限的范围内,把这个有限的范围定义为热层厚度δ。 4.与单相固体导热相比,相变导热有什么特点 答:相变导热包含了相变和导热两种物理过程。相变导热的特点是 1.固、液两相之间存在着 移动的交界面。 2.两相交界面有潜热的释放(或吸收) | 对流部分(所需量和符号自己设定) 1 推导极坐标系下二维稳态导热微分方程。 2 已知绕流平板流动附面层微分方程为 y u y u V x u u 22??=??+??ν 取相似变量为: x u y νη∞ = x u f νψ∞= 写出问题的数学模型并求问题的相似解。 3 已知绕流平板流动换热的附面层能量积分方程为: ?=∞?? =-δ00)(y y t a dy t t u dx d 当Pr<<1时,写出问题的数学模型并求问题的近似积分解及平均Nu (取三次多项式)。 4 ] O x

5写出常热流圆管内热充分发展流动和换热问题的数学模型并求出速度和温度分布及Nu x.辐射 1.请推导出具有n个表面的净热流法壁面间辐射换热求解公式,并简要说明应用任一种数值方法的求解过程。 2.试推导介质辐射传递方程的微分形式和积分形式,要求表述出各个步骤和结果中各个相关量的含义。 3.根据光谱辐射强度表示下面各量:1)光谱定向辐射力;2)定向辐射力;3)光谱辐射力;4)辐射力;5)辐射热流量。要求写清各量的符号、单位。 4.说明下列术语(可用数学表达式)(每题4分) a)光学厚度 b)漫有色表面 c)? d)兰贝特余弦定律 e)光谱散射相函数 f)定向“灰”入射辐射

聚合物的流变性能

第四节聚合物的流变性能 一概述 注塑中把聚合物材料加热到熔融状态下进行加工。这时可把熔体看成连续介质,在机器某些部位上,如螺杆,料筒,喷嘴及模腔流道中形成流场。在流场中熔体受到应力,时间,温度的联合作用发生形变或流动。这样聚合物熔体的流动就和机器某些几何参数和工艺参数发生密切的联系。 处于层流状态下的聚合物熔体,依本身的分子结构和加工条件可分近似牛顿型和非牛顿型流体它们的流变特性暂不予祥细介绍。 1 关于流变性能 (1)剪切速率,剪切应力对粘度的影响 通常,剪切应力随剪切速率提高而增加,而粘度却随剪切速率或剪切应力的增加而下降。 剪切粘度对剪切速率的依赖性越强,粘度随剪切速率的提高而讯速降低,这种聚合物称作剪性聚合物,这种剪切变稀的现象是聚合物固有的特征,但不同聚合物剪切变稀程度是不同的,了解这一点对注塑有重要意义。 (2)离模膨胀效应 当聚合物熔体离开流道口时,熔体流的直径,大于流道出口的直径,这种现象称为离模膨胀效应。 普遍认为这是由聚合物的粘弹效应所引起的膨胀效应,粘弹效应要影响膨胀比的大小,温度,剪切速率和流道几何形状等都能影响熔体的膨胀效应。所以膨胀效应是熔体流动过程中的弹性反映,这种行为与大分子沿流动方向的剪切应力作用和垂直于流动方向的法向应力作用有关。 在纯剪切流动中法向效应是较小的。粘弹性熔体的法向效应越大则离模膨胀效应越明显。流道的影响;假如流道长度很短,离模效应将受到入口效应的影响。这是因为进入浇口段的熔体要收剑流动,流动正处在速度重新分布的不稳定时期,如果浇口段很短,熔体料流会很快地出口,剪切应力的作用会突然消失,速度梯度也要消除,大分子发生蜷曲,产生弹性恢复,这会使离模膨胀效应加剧。如果流道足够长,则弹性应变能有足够的时间进行弹性松驰。这时影响离模膨胀效应的主要原因是稳定流动时的剪切弹性和法向效应的作用。 (3)剪切速率对不稳定流动的影响 剪切速率有三个流变区:低剪切速率区,在低剪切速率下被破坏的高分子链缠结能来得及恢复,所以表现出粘度不变的牛顿特性。中剪切区,随着剪切速率的提高,高分子链段缠结被顺开且来不及重新恢复。这样就助止了链段之间相对运动和内磨擦的减小。可使熔体粘度降低二至三个数量级,产生了剪切稀化作用。在高剪切区,当剪切速率很高粘度可降至最小,并且难以维持恒定,大分子链段缠结在高剪切下已全部被拉直,表现出牛顿流体的性质。如果剪切速率再提高,出现不稳定流动,这种不稳定流动形成弹性湍流熔体出现波纹,破裂现象是熔体不稳定的重要标志。 当剪切速率达到弹性湍流时,熔体不仅不会继续变稀,反而会变稠。这是因为熔体发生破裂。 (4)温度对粘度的影响

聚合物流变学

聚合物流变学的学习与心得体会 通过一学期的聚合物流变学的学习,使我对其有了初步的了解。现在针对 平时学习笔记和课后浏览相关书籍所获知识进行总结。 1、 聚合物流变学学习内容 1. 流变学中的基本概念 流变学是研究材料的流动和变形规律的科学,是一门介于力学、化学、物理与工程科学之间的新兴交叉学科。聚合物随其分子结构、分子量的不同,以 及所处温度的不同,可以是流体或固体,它们的流动和变形规律各不相同,也 即有不同的流变性能。聚合物流变学是研究聚合物及其熔体的变形和流动特性。 1.1 粘弹性流体特性及材料流变学分类 粘性流体的流动是:变形的时间依赖性;变形不可恢复(外力作的功转化为热能);变形大,力与变形速率成正比,符合Newton's 流动定律。 根据经典流体力学理论,不可压缩理想流体的流动为纯粘性流动,在很小的剪切应力作用下流动立即发生,外力释去后,流动立即停止,但粘性形变不 可恢复。切变速率不大时,切应力与切边速率呈线性关系,遵循牛顿粘性定律, 且应力与应变本身无关。 流体→流动→粘性→耗散能量→产生永久变形→无记忆效应 根据经典固体力学理论,在极限应力范围内,各向同性的理想弹性固体的形变为瞬时间发生的可逆形变。应力与应变呈线性关系,服从胡克弹性定律, 且应力与应变速率无关。 固体→变形→弹性→储存能量→变形可以恢复 聚合物流动时所表现的粘弹性,即有粘性流动又有弹性变形,与通常所说 的理想固体的弹性和理想液体的粘性大不相同,也不是二者的简单组合。 材料流变学分类 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

同济大学传热学题库共6套含答案

传热学(一) ?名词解释(本大题共 5 小题,每小题 4 分,共 20 分) 21. 导热基本定律 22. 非稳态导热 23. 凝结换热 24. 黑度 25. 有效辐射 ?简答题 ( 本大题共 2 小题 , 每小题 8 分 , 共 16 分 ) 26. 简述非稳态导热的基本特点。 27. 什么是临界热绝缘直径?平壁外和圆管外敷设保温材料是否一定能起到保温的作用,为什么? ?计算题(本大题共 2 小题,每小题 12 分,共 24 分) 28. 一内径为 300mm 、厚为 10mm 的钢管表面包上一层厚为 20mm 的保温材料,钢材料及保温材料的导热系数分别为 48 和 0.1 ,钢管内壁及保温层外壁温度分别为220 ℃及 40 ℃,管长为 10m 。试求该管壁的散热量。 29. 一内径为 75mm 、壁厚 2.5mm 的热水管,管壁材料的导热系数为 60 ,管内热水温度为 90 ℃,管外空气温度为 20 ℃。管内外的换热系数分别为和 。试求该热水管单位长度的散热量。 ?名词解释 ( 本大题共 5 小题 , 每小题 4 分 , 共 20 分 ) 21. 导热基本定律 : 当导热体中进行纯导热时 , 通过导热面的热流密度 , 其值与该处温度梯度的绝对值成正比 , 而方向与温度梯度相反。

22. 发生在非稳态温度场内的导热过程称为非稳态导热。 或:物体中的温度分布随时间而变化的导热称为非稳态导热。 23. 蒸汽同低于其饱和温度的冷壁面接触时 , 蒸汽就会在壁面上发生凝结过程成为流液体。 24. 物体的辐射力与同温度下黑体辐射力之比。 25. 单位时间内离开单位表面积的总辐射能。 ?简答题(本大题共 2 小题,每小题 8 分,共 16 分) 26. ( 1 )随着导热过程的进行 , 导热体内温度不断变化 , 好象温度会从物体的一部分逐渐向另一部分转播一样 , 习惯上称为导温现象。这在稳态导热中是不存在的。 ( 2 )非稳态导热过程中导热体自身参与吸热(或放热),即导热体有储热现象,所以即使对通过平壁的非稳态导热来说,在与热流方向相垂直的不同截面上的热流量也是处处不等的,而在一维稳态导热中通过各层的热流量是相等的。 ( 3 )非稳态导热过程中的温度梯度及两侧壁温差远大于稳态导热。 27. ( 1 )对应于总热阻为极小值时的隔热层外径称为临界热绝缘直径。 ( 2 )平壁外敷设保温材料一定能起到保温的作用,因为增加了一项导热热阻,从而增大了总热阻,达到削弱传热的目的。 ( 3 )圆筒壁外敷设保温材料不一定能起到保温的作用,虽然增加了一项热阻,但外壁的换热热阻随之减小,所以总热阻有可能减小,也有可能增大。 ?计算题(本大题共 2 小题,每小题 12 分,共 24 分) 28. 解:已知 d 1 =300mm d 2 =300+2 × 10=320mm d 3 =320+2 × 20=360mm m t w1 =220 ℃ t w2 =40 ℃ =9591.226W 29. 解:已知 d 1 =75mm=0.075m d 2 =75+2 × 2.5=80mm=0.08m t f1 =90 ℃ t f2 =20 ℃

互穿网络聚合物的研究进展及应用

互穿网络聚合物的研究进展及应用 吴 婷,文秀芳,皮丕辉,程 江,杨卓如 (华南理工大学化学与化工学院,广州510640) 摘要 聚合物共混改性是实现高分子材料功能化和开发新材料的重要途径。通过互穿网络聚合物方法制备的共混聚合物,以其优异的性能广泛应用于材料科学的方方面面,并成为近年来共混聚合物改性研究的热点。共混聚合物增强方法主要包括:添加/第三组分0、反应性增容、离聚体共混改性和互穿网络聚合物。在此基础上总结了互穿网络聚合物的制备方法及研究现状,详述了互穿网络聚合物在导电材料、药物控释体系、功能膜、涂料工业等领域的应用,最后指出了互穿网络聚合物材料目前存在的问题,并对今后的研究进行了展望。 关键词 互穿网络聚合物 增强方法 制备 应用 Research Progress and Application of Interpenetrating Polymer Networks WU Ting,WEN Xiufang,PI Pihui,CHENG Jiang,YAN G Zhuoru (Schoo l of Chemistr y and Chemical Engineer ing ,So uth China U niversity o f T echnolog y,Guang zho u 510640)Abstract P olymer blending mo dif ication is an impor tant w ay to prepare functional poly mer materials and deve -lop new mater ials.Blend po ly mers pr epar ed by interpenetr ating polymer netw orks(I PN s)are widely used in ever y as -pect o f material science fo r t heir ex cellent pr operties,w hich are ho tspo t issues in mo dified mater ials research all the t ime.T he enhancement methods o f polymer blending include the addit ion o f t he thir d co mpo nent,r eact ive co mpat ibil-i ty,io no mer blends and inter penetrat ing polymer netw or ks.T he r esear ch statuses on preparat ions of interpenetr ating polymer netw or ks ar e br iefly summa rized o n that basis.T he applications of IPN s in co nduct ive mat er ials,drug del -i v ery sy stems,functio nal membr anes,and co ating industr y ar e described in details,and its ex isting pro blems and fur -ther pro spects in this field ar e a lso analy zed finally. Key w ords interpenet rating po ly mer netwo rks,enhancement methods,preparat ion,application 吴婷:女,1982年生,博士研究生,主要从事高分子复合材料方面的研究 T el:020-********-601 E -mail:ang elw u2006@https://www.360docs.net/doc/4311057229.html, 共混聚合物是指2种或2种以上均聚物或共聚物的混合物,通常又称为聚合物合金。聚合物共混改性是实现高分子材料功能化和开发新材料的重要途径。共混聚合物具有加工方便、价格低廉、性能优异等特点,因此得到广泛应用[1,2] 。互穿网络聚合物(Int erpenetrating polymer net -w orks,IPNs)是一类利用新型改性技术制备的共混聚合物,具有特殊的空间拓扑结构。作为一种新型的多相聚合物材料,IPN s 以其独特的化学共混方法和网络互穿结构以及强迫互容、界面互穿、协同作用和加工性能复合的特点被广泛应用于燃料电池、粘合剂、涂料、导电材料等方面[3-5] 。本文重点介绍了互穿网络聚合物材料的增强机理,对其制备方法进行了分类并总结了其研究现状,概述了其在材料、医学、化工等方面的应用,并对其发展前景进行了展望。 1 共混聚合物增强方法 聚合物共混时存在体系完全相容、体系部分相容、体系完全不相容3种情况。性能良好的聚合物合金往往要求两聚合物的物理性能互补,具有良好的相容性,宏观不分离,微观达均相。因为共混聚合物中的两组分一般各自成相,当两 组分完全相容时,聚合物可实现分子水平的分散而形成均相;当两组分不相容时,分子相互扩散程度低,相间界面明显,从而导致性能变差;但由于聚合物的分子结构、极性、分子量等差异很大,在已知的各种聚合物中仅有一小部分是完全相容或部分相容体系,大部分体系是完全不相容或难容的,即使在强大的机械作用下,聚合物合金能达到微观均相体系的仍然很少。因此,如何提高聚合物合金的相容性是制备高性能聚合物合金的关键。常用的方法有以下几种。 1.1 添加/第三组分0)))增容剂 增容剂是指与聚合物两组分都有较好相容性的物质,它以界面活性剂的形式分布于共混物两相界面处,可降低两组分间界面张力,增加界面亲和性及界面粘合力,促使分散相颗粒细微化和均匀分布,分为反应型增容剂和非反应型增容剂2种。反应型增容剂具有可与共混聚合物在共混条件下反应的基团,在共混过程中原位反应形成共聚物,共聚物存在于两相界面,能减小界面张力,增加两相相互作用,从而提高分散相的分散效果。非反应型增容剂具有与共混聚合物相容性都较好的特点,在共混过程可直接实现两相增容的目的,由于其针对性较强,所以广泛适用性较差。

(完整word版)高等传热学复习题(带答案).doc

高等传热学复习题 1.简述求解导热问题的各种方法和傅立叶定律的适用条件。 答:导热问题的分类及求解方法: 按照不同的导热现象和类型,有不同的求解方法。求解导热问题,主要应用于工程之中,一般以方便,实用为原则,能简化尽量简化。 直接求解导热微分方程是很复杂的,按考虑系统的空间维数分,有 0 维, 1 维, 2 维和 3维导热问题。一般维数越低,求解越简单。常见把高维问题转化为低维问题求解。有稳态导热和非稳态导热,非稳态导热比稳态导热多一个时间维,求解难度增加。有时在稳态解的基础上分析非稳态稳态,称之为准静态解,可有效地降低求解难度。根据研究对象的几何形状,又可建立不同坐标系,分平壁,球,柱,管等问题,以适应不同的对象。 不论如何,求解导热微分方程主要依靠三大方法: 甲.理论法 乙.试验法 丙.综合理论和试验法 理论法:借助数学、逻辑等手段,根据物理规律,找出答案。它又分: 分析法;以数学分析为基础,通过符号和数值运算,得到结果。方法有:分离变量法,积分变换法( Lapl ace 变换, Four i er 变换 ) ,热源函数法, Gr een 函数法,变分法,积分方程法等等,数理方程中有介绍。 近似分析法:积分方程法,相似分析法,变分法等。 分析法的优点是理论严谨,结论可靠,省钱省力,结论通用性好,便于分析和应用。缺点是可求解的对象不多,大部分要求几何形状规则,边界条件简单,线性问题。有的解结构复杂,应用有难度,对人员专业水平要求高。 数值法:是当前发展的主流,发展了大量的商业软件。方法有:有限差分法,有限元法,边界元法,直接模拟法,离散化法,蒙特卡罗法,格子气法等,大大扩展了导热微分方程的实用范围,不受形状等限制,省钱省力,在依靠计算机条件下,计算速度和计算质量、范围不断提高,有无穷的发展潜力,能求解部分非线性问题。缺点是结果可靠性差,对使用人员要求高,有的结果不直观,所求结果通用性差。 比拟法:有热电模拟,光模拟等 试验法:在许多情况下,理论并不能解决问题,或不能完全解决问题,或不能完美解决问题,必须通过试验。试验的可靠性高,结果直观,问题的针对性强,可以发掘理论没有涉及的新规律。可以起到检验理论分析和数值计算结果的作用。理论越是高度发展,试验法的作用就越强。理论永远代替不了试验。但试验耗时费力,绝大多数要求较高的财力和投入,在理论可以解决问题的地方,应尽量用理论方法。试验法也有各种类型:如探索性试验,验证性试验,比拟性试验等等。 综合法:用理论指导试验,以试验促进理论,是科学研究常用的方法。如浙大提出计算机辅助试验法 ( CAT) 就是其中之一。 傅立叶定律的适用条件:它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑 介质,气、液、固三相的导热问题。 2.定性地分析固体导热系数和温度变化的关系 3.什么是直肋的最佳形状与已知形状后的最佳尺寸? 答:什么叫做“好”?给定传热量下要求具有最小体积或最小质量或给定体

相关文档
最新文档