聚合物熔体的“爬杆”现象

聚合物熔体的“爬杆”现象

聚合物熔体的“爬杆”现象

聚合物熔体的Weissenberg效应,即“爬杆”现象或“包轴”现象,包轴现象是由高分子的弹性所引起的,分子链被拉伸取向缠绕在轴上,距转轴越近的高分子,受到转动线速度大,拉伸取向程度高,大分子取向后,其链段有自发恢复到蜷曲构向的倾向,但此时弹性回复受到转轴的限制,使这部分弹性能表现为一种包轴的内裹力。把高分子熔体沿轴往上挤(当然向下挤看不见)形成包轴层现象,其实质是由于高聚物熔体具有弹性。在受剪切作用而流动时会产生法向应力差。对于牛顿流体,是各向同性,在剪切力作用而流动时,法向应力差为零。

剪切过程中,越靠近轴线(aixs)的位置,受到的剪切越小,越远离轴线的位置,受到的剪切越大,剪切大,意味着分子链要取向,导致熵的减小,由于高分子本身的熵弹性,因此趋向于自发的回复到熵最大的情况,方法只有一个,那就是往中间靠,于是靠近轴线的位置,分子链大量聚集,产生爬杆效应。

聚合物钻井液的配制

任务4 聚合物钻井液的配制 学习目标: 1.会配制聚合物抑制性钻井液; 2.能够熟练阐述阳离子、阴离子和两性离子聚合物钻井液的相关知识; 3.能够准确使用页岩抑制剂。 技能训练: 一.配制聚合物抑制钻井液 1.准备工作 (1)穿戴好劳保用品; (2)备足钻井液处理剂、高分子聚合物、NaOH、CMC、PHP、膨润土等; (3)检查水源,固控设备、搅拌器、钻井液枪运转是否正常; (4)检查配制罐、储备罐; (5)钻井液全套性能测试仪、pH试纸等。 2.操作步骤 (1)计算配制钻井液所需处理剂用量和膨润土的用量。 (2)首先在注入定量水的配制罐中加入膨润土并充分搅拌,使膨润土充分水化。 (3)在配制罐中加入高分子聚合物及所用处理剂,充分搅拌均匀。 (4)测定钻井液性能及pH值。 (5)将配好的钻井液打入储备罐。 (6)清洗全部仪器。 3.技术要求 必须注意PHP在钻井液中的含量,应根据地层的不同而异:东营组以上地层,钻井液中PHP 保持0.1%~0.15%的含量,沙河街组地层保持0.2%~0.3%的含量;NaOH加入量以保持要求的pH 值为准。 二.使用页岩抑制剂 1.准备工作 (1)穿戴好劳保用品。 (2)准备好页岩抑制剂,如聚丙烯酸钾、水解聚丙烯腈钾盐、腐殖酸钾、磺化沥青和水分散沥青、无机盐(KCI、NaCl)、KOH等。 (3)ZNN-D6型旋转粘度计一套,ZNS-3型滤失仪一套。 (4)检查水源、搅拌器、钻井液枪等。

2.操作步骤 (1)了解页岩抑制剂的特点。 (2)分析处理剂的机理,选择处理剂的种类。 (3)在基浆中做处理配合小型实验。 (4)处理钻井液。 (5)测量处理后的钻井液性能。 (6)记录处理剂的用量和效果。 (7)清洗测定仪器并摆放整齐。 3.技术要求 (1)聚丙烯酸钾(KHPAM)在淡水或盐水钻井液中使用。 (2)水解聚丙烯腈钾盐(KPAN)适用于淡水和不含钙的盐水钻井液中,抗温170℃。 (3)腐殖酸钾(KHm)适用于深井淡水钻井液,有一定的降粘作用。 (4)磺化沥青(FT-342、FT-1)和水分散沥青(SR-401)用作地层微裂缝和破碎带的封闭剂。 (5)无机盐类主要是降低页岩表面渗透水化,控制膨胀。 (6)性能测定应侧重于钻井液滤失量和滤饼质量。 基础知识: 1.聚合物钻井液的概念 聚合物钻井液是自20世纪70年代初发展起来的一种新型钻井液体系。广义上讲,凡是使用线型水溶性聚合物作为处理剂的钻井液体系可称为聚合物钻井液。但通常是将聚合物作为主处理剂或主要用聚合物调控性能的钻井液体系称为聚合物钻井液。 2.聚合物钻井液的特点 (1)固相含量低,且亚微粒子所占比例也低。这是聚合物钻井液的基本特征,是聚合物处理剂选择性絮凝和抑制钻屑分散的结果,对提高钻井速度是极为有利的。 (2)具有较强的触变性、较强的剪切稀释特性和适宜的流型,即在环形空间中形成平板型层流。因此聚合物钻井液悬浮和携带岩屑的效果好,可有效地减少钻屑的重复破碎,使钻头进尺明显提高。 (3)钻井速度快。 (4)由于聚合物可有效地抑制泥页岩的吸水分散作用,所以稳定井壁的能力较强,井径比较规则。 (5)由于聚合物钻井液的密度低,可实现近平衡压力钻井;由于固相含量少,可减少固相的侵入,因而对油气层的损害小,有利于发现和保护产层。 (6)具有良好的防渗透性漏失的作用。 (7)由于聚合物钻井液的处理剂用量较少,钻井速度快,缩短了完井周期,因此可大幅度降低钻井总成本。

聚合物流变学复习题参考答案2资料

高分子流变学复习题参考答案 一、名词解释: 1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。 应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。 或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象。 2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。 3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。 挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。 4、.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。 5、非牛顿流体:凡不服从牛顿粘性定律的流体。 牛顿流体:服从牛顿粘性定律的流体。 6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。 胀塑性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。 7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。 8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。 9、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。 或拉伸流动:质点速度仅沿流动方向发生变化的流动。 剪切流动:质点速度仅沿着与流动方向垂直的方向发生变化的流动。 10、法向分量:作用力的方向与作用面垂直即称为应力的法向分量。 剪切分量:作用力的方向与作用面平行即称为应力的剪切分量。 11、粘流态:是指高分子材料处于流动温度(T f)和分解温度(T d)之间的一种凝聚态。 12、宾汉流体:在流动前存在一个剪切屈服应力σy。只有当外界施加的应力超过屈服应力才开始流动的流体。 13、稳定流动:流动状态不随时间而变化的流动。 14、零切黏度——剪切速率趋向于零时的熔体黏度,即流动曲线的初始斜率。 15、非牛顿性指数:幂律公式 ? =n s Kγ σ中的n是表征流体偏离牛顿流动的程度的指数,

聚合物钻井液的配制

聚合物钻井液的配制

任务4 聚合物钻井液的配制 学习目标: 1.会配制聚合物抑制性钻井液; 2.能够熟练阐述阳离子、阴离子和两性离子聚合物钻井液的相关知识; 3.能够准确使用页岩抑制剂。 技能训练: 一.配制聚合物抑制钻井液 1.准备工作 (1)穿戴好劳保用品; (2)备足钻井液处理剂、高分子聚合物、NaOH、CMC、PHP、膨润土等; (3)检查水源,固控设备、搅拌器、钻井液枪运转是否正常; (4)检查配制罐、储备罐; (5)钻井液全套性能测试仪、pH试纸等。 2.操作步骤 (1)计算配制钻井液所需处理剂用量和膨润土的用量。 (2)首先在注入定量水的配制罐中加入膨润土并充分搅拌,使膨润土充分水化。 (3)在配制罐中加入高分子聚合物及所用处理剂,充分搅拌均匀。 (4)测定钻井液性能及pH值。 (5)将配好的钻井液打入储备罐。 (6)清洗全部仪器。 3.技术要求 必须注意PHP在钻井液中的含量,应根据地层的不同而异:东营组以上地层,钻井液中PHP保持0.1%~0.15%的含量,沙河街组地层保持0.2%~0.3%的含量;NaOH加入量以保持要求的pH值为

1.聚合物钻井液的概念 聚合物钻井液是自20世纪70年代初发展起来的一种新型钻井液体系。广义上讲,凡是使用线型水溶性聚合物作为处理剂的钻井液体系可称为聚合物钻井液。但通常是将聚合物作为主处理剂或主要用聚合物调控性能的钻井液体系称为聚合物钻井液。 2.聚合物钻井液的特点 (1)固相含量低,且亚微粒子所占比例也低。这是聚合物钻井液的基本特征,是聚合物处理剂选择性絮凝和抑制钻屑分散的结果,对提高钻井速度是极为有利的。 (2)具有较强的触变性、较强的剪切稀释特性和适宜的流型,即在环形空间中形成平板型层流。因此聚合物钻井液悬浮和携带岩屑的效果好,可有效地减少钻屑的重复破碎,使钻头进尺明显提高。 (3)钻井速度快。 (4)由于聚合物可有效地抑制泥页岩的吸水分散作用,所以稳定井壁的能力较强,井径比较规则。 (5)由于聚合物钻井液的密度低,可实现近平衡压力钻井;由于固相含量少,可减少固相的侵入,因而对油气层的损害小,有利于发现和保护产层。 (6)具有良好的防渗透性漏失的作用。 (7)由于聚合物钻井液的处理剂用量较少,钻井速度快,缩短了完井周期,因此可大幅度降低钻井总成本。 3.聚合物钻井液的性能指标 聚合物钻井液所谓“不分散”具有两个含义:一是指组成钻井液的粘土颗粒直径尽量维持在1~30m 。二是指混入这种钻井液体系的钻屑不容易分散变细。所谓“低固相”,是指低密度固相(主要指粘

聚合物流变学

6流变学方法在聚合物研究中的应用 6.1 测量分子量及其分布的流变学方法 分子量(MW)和分子量分布(MWD)在确定聚合物的物理性质时起了很重要的作用,因此得到聚合物的分子量和分子量分布对聚合物工业是必不可少的。如果已知某种可测量的物理性质对分子量的依赖性,原则上就可以通过测量这种物理性质来确定分子量。而且对分子量的依赖性越强,确定分子量的敏感度就越高。通常所采用的确定聚合物分子量及其分布的方法有凝胶渗透色谱法(GPC)、光散射和本征粘度法等。表6-1列出了几种常用方法对分子量的依赖性及敏感度(Mead 1994)。虽然这些方法(如GPC)得到了广泛的应用,但是实验中样品的准备时间和测试时间使它们不适用于在线过程控制,而且要求所测试的聚合物能在室温下很容易地溶解于溶剂中,但是许多工业上大量应用的聚合物,如聚乙烯、聚丙烯和含氟聚合物(聚四氟乙烯)等,在室温下可能只能部分地溶解于普通的溶剂。有时即使传统的方法可行,这些方法的灵敏度和精度都不高,特别是对于分子量分布有高分子量尾部的样品,而高分子量尾部对聚合物加工性能的表征有很大影响。鉴于传统方法的不足,又由于聚合物的分子量及其分布与聚合物的粘弹性质有密切的关系,因此就有了利用聚合物粘弹性质来确定分子量分布的流变学方法。与传统的方法相比,流变学方法可以作到快速测量,而且不需要溶剂来溶解聚合物,因而从理论上将对任何聚合物都适用。流变学方法的另一个优点就是对高分子量尾部的灵敏度高。 表6-1 用分子量区别线性柔性聚合物的各种方法的分子量标度 方法 对分子量的 依赖性关系 对分子量的 敏感度关系 其它 GPC M1/2 M-1/2 排除体积 对高分子量部分不敏感 本征粘度 M0.6 M-0.4 流体体积法 对高分子量部分不敏感 光散射 M1M0 对高分子量部分敏感 渗透压 M-1 M-2 对低分子量聚合物的数均分子量较准 零剪切粘度 M3.4 M2.4 适用于具有类似分布形状的体系 可回复柔量 (M z/M w)~3.5 … 反映了分子量分布的分散性 对分子量绝对值不敏感 分子量对聚合物粘度的影响取决于分子量的大小:当分子量小于缠结分子量 e M时,零剪切粘度与分子量是一次方关系;当分子量大于缠结分子量时,零剪切粘度与分子量呈 3.4次方关系。分子量分布对动态粘度和动态模量的影响可以从图6-1看出。在低频范围 内,弹性模量随着分子量分布变窄而降低,这表明平衡可恢复柔量0 e J对分子量多分散性的依赖。在高频范围内,分子量分布的变宽对粘度有两个显著的影响:剪切变稀行为开始出现的频率更低;从牛顿区到指数定律区的转变过程变长。动态模量也有同样的表现:幅度

聚合物的流变性能

第四节聚合物的流变性能 一概述 注塑中把聚合物材料加热到熔融状态下进行加工。这时可把熔体看成连续介质,在机器某些部位上,如螺杆,料筒,喷嘴及模腔流道中形成流场。在流场中熔体受到应力,时间,温度的联合作用发生形变或流动。这样聚合物熔体的流动就和机器某些几何参数和工艺参数发生密切的联系。 处于层流状态下的聚合物熔体,依本身的分子结构和加工条件可分近似牛顿型和非牛顿型流体它们的流变特性暂不予祥细介绍。 1 关于流变性能 (1)剪切速率,剪切应力对粘度的影响 通常,剪切应力随剪切速率提高而增加,而粘度却随剪切速率或剪切应力的增加而下降。 剪切粘度对剪切速率的依赖性越强,粘度随剪切速率的提高而讯速降低,这种聚合物称作剪性聚合物,这种剪切变稀的现象是聚合物固有的特征,但不同聚合物剪切变稀程度是不同的,了解这一点对注塑有重要意义。 (2)离模膨胀效应 当聚合物熔体离开流道口时,熔体流的直径,大于流道出口的直径,这种现象称为离模膨胀效应。 普遍认为这是由聚合物的粘弹效应所引起的膨胀效应,粘弹效应要影响膨胀比的大小,温度,剪切速率和流道几何形状等都能影响熔体的膨胀效应。所以膨胀效应是熔体流动过程中的弹性反映,这种行为与大分子沿流动方向的剪切应力作用和垂直于流动方向的法向应力作用有关。 在纯剪切流动中法向效应是较小的。粘弹性熔体的法向效应越大则离模膨胀效应越明显。流道的影响;假如流道长度很短,离模效应将受到入口效应的影响。这是因为进入浇口段的熔体要收剑流动,流动正处在速度重新分布的不稳定时期,如果浇口段很短,熔体料流会很快地出口,剪切应力的作用会突然消失,速度梯度也要消除,大分子发生蜷曲,产生弹性恢复,这会使离模膨胀效应加剧。如果流道足够长,则弹性应变能有足够的时间进行弹性松驰。这时影响离模膨胀效应的主要原因是稳定流动时的剪切弹性和法向效应的作用。 (3)剪切速率对不稳定流动的影响 剪切速率有三个流变区:低剪切速率区,在低剪切速率下被破坏的高分子链缠结能来得及恢复,所以表现出粘度不变的牛顿特性。中剪切区,随着剪切速率的提高,高分子链段缠结被顺开且来不及重新恢复。这样就助止了链段之间相对运动和内磨擦的减小。可使熔体粘度降低二至三个数量级,产生了剪切稀化作用。在高剪切区,当剪切速率很高粘度可降至最小,并且难以维持恒定,大分子链段缠结在高剪切下已全部被拉直,表现出牛顿流体的性质。如果剪切速率再提高,出现不稳定流动,这种不稳定流动形成弹性湍流熔体出现波纹,破裂现象是熔体不稳定的重要标志。 当剪切速率达到弹性湍流时,熔体不仅不会继续变稀,反而会变稠。这是因为熔体发生破裂。 (4)温度对粘度的影响

聚合物配制工聚合物配制工考试卷模拟考试题.docx

《聚合物配制工》 考试时间:120分钟 考试总分:100分 遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。 1、带传动是()传动中的一种方式。( ) A.液压 B.机械 C.电力 D.风力 2、下列不属于机械传动的是()传动。( ) A.带 B.齿轮 C.液压 D.链 3、机械传动系统基本组成部分是()。( ) A.带、齿轮或链 B.液压泵 C.马达、液压缸 D.液压泵、液压缸 4、下列()传动是一种带有中间挠性件的啮合传动。( ) A.带 B.链 C.齿轮 D.蜗杆 5、蜗杆传动常用于()的工作条件。( ) 姓名:________________ 班级:________________ 学号:________________ --------------------密----------------------------------封 ----------------------------------------------线-------------------------

A.传动比大、传递功率大 B.传动比大、传递功率小 C.传动比小、传递功率小 D.传动比小、传递功率大 6、带传动是一种把()作为有用的因素加以利用的机械传动。() A.摩擦 B.链条 C.啮合齿轮 D.蜗杆 7、标准齿轮的齿廓是由两条对称的()构成。() A.双曲线 B.渐近线 C.弧线 D.单曲线 8、根据工作条件,齿轮传动可分为()传动。() A.开式和半开式 B.开式和闭式 C.开式、半开式和闭式 D.半开式、半闭式和闭式 9、三角带具有一定的厚度,为了制造和测量的方便,以其()作为标准长度。() A.圆周长 B.展开长度 C.内周长 D.外周长 10、生产中最常见的带传动是()带传动。() A.平行 B.三角 C.圆形 D.齿形 11、三角带的截面积形状为()。() A.正方形 B.矩形 C.三角形 D.梯形

北化聚合物制备工程答案样本

北京化工大学-第二学期 《聚合物制备工程》期末考试试卷 班基: 姓名: 学号: 分数: 一、填空( 20分) 1.一般而言聚合物的生产过程由单体精制与准备、催化剂体系准备与精制、聚合过程、分离过程、后处理过程、回收过程组成。 2、常见的聚合反应器按照结构分类包括釜式、管式、 塔式、流化床、挤出机、特殊形式的聚合反应器。 3、釜式反应釜的除热方式有夹套冷却、夹套附加内冷管、内冷管、反应物料釜外循环、回流冷凝器、反应物料部分闪蒸、反应介质预冷。 4、悬浮聚合体系由单体、水、 分散剂和引发剂组成。 5、 ESBR采用乳液聚合方法生产, 其聚合机理是自由基聚合 , SSBR采用溶液聚合方法生产, 其聚合机理是阴离子聚合。 6、可采用本体聚合、悬浮聚合、乳液聚合等聚合方法制备聚氯乙烯。 7、中国镍系顺丁橡胶催化剂的主要成分是环烷酸镍、三异丁基铝和三氟化硼乙醚络合物。 8、尼龙66可采用熔融缩聚和固相缩聚方法生产。 9、反应器的基本设计方程是 : ( 反应物流入量) -( 反应物流出量) -( 反

应消失量) -( 反应物累积量) =0。 10、 PET熔融缩聚主要生产工艺是熔融缩聚和固相缩聚。 二、简述题( 20分) 1.写出以下缩写的聚合物中文名称, 并指出其聚合机理和工业实施方法。 PET、 LDPE、 SBS、 GPPS、 CR 答: PET 对苯二甲酸乙二酯, 缩合聚合, 熔融缩聚/固相缩聚 LDPE 低密度聚乙烯, 自由基聚合, 本体聚合 SBS 聚苯乙烯-b-丁二烯-b-苯乙烯嵌段共聚物, 阴离子聚合, 溶液聚合GPPS 通用聚苯乙烯, 自由基聚合, 本体聚合/悬浮聚合 CR 氯丁橡胶, 自由基聚合, 乳液聚合 2.分离和后处理过程对聚合物性能有何影响? 答: 分离就是指聚合物从聚合介质分开的过程, 不同的聚合实施方法可能采取的分离方法不同。分离过程将脱除绝大部分的残留单体、溶剂, 这些物质不但降低聚合物产品的性能, 而且对于人体有害、污染环境。聚合物后处理工序包括分离、干燥、脱挥、脱灰、加入助剂及形状处理等几方面; 可是树脂与橡胶后处理略有区别, 树脂后处理主要包括脱水、干燥、加入添加剂、直接得到粉状树脂; 或者经过脱水、干燥、加入添加剂、混炼、切粒、混合均化、包装得到颗粒状树脂; 橡胶后处理根据用途也不同, 乳液用于涂料或其它直接使用乳液的场合, 乳液能够直接使用或浓缩后包装、使用; 需要得到固体橡胶时则需要凝聚、脱水、水洗、挤压干燥、压块、包装。在这些后处理工序中, 最关键的十脱灰和干燥工序, 这些工序所使用的设备若不合理, 仍会出现废品。橡胶产品导致凝胶含量高, 塑料树脂导致分子量降低或交联。 3.简述采用管式和釜式反应器生产低密度聚乙烯( LDPE) 的特点及产生差异的

流变学在聚合物研究中的应用

流变学在聚合物研究中的应用 概述 高分子熔体的流变行为是由其长链分子的拓扑结构决定的。当高分子主链上引入一定数量和长度的支链后,其粘弹性质与线形高分子会有明显不同。长链支化聚合物剪切条件下会表现出与线形高分子类似的应变软化,但由于支链的限制将有更长的末端松弛时间,并在拉伸条件下表现出与线形高分子完全不同的应变硬化松弛过程。支化对聚合物粘弹性质的影响,无论对工业界还是科学研究都是一个十分重要和基础的课题。近年来的一系列研究表明:一方面通过引入相同或相似结构单元的长支链可以明显提高聚合物的熔体强度(这对于熔融纺丝、吹膜等熔体拉伸加工过程是十分有利的);另一方面也可以通过含有特征官能团支链的引入对聚合物进行改性,提高其光学、热学和力学性能。目前,随着控制聚合反应和机理研究的进一步深入,人们已能够直接得到各种具有明确拓扑结构的支化聚合物,如梳形[1]、星形、H形聚合物[2]等,这对支化聚合物流变学的深入研究与探索起了极大的推动作用。 与线形高分子不同,支化高分子熔体是热流变复杂的,其流变学特性主要表现在: (1)支化减小了高分子的流体力学体积,降低了零切粘度,支链松弛过程的加入使得整个高分子的末端松弛时间延长; (2)长链支化聚合物在拉伸过程中会表现出明显的应变硬化,并使得时- 温叠加原理不再有效; (3)支化高分子的拓扑结构对其整个松弛过程有显著的影响,支化密度和支链长度存在临界值,超过此临界值,支链松弛过程将会清晰地反映在动态粘弹谱上; (4)支化聚合物流变行为的温度依赖性是复杂的,多数支化聚合物的流变行为比相应线形聚合物有更强的温度依赖性,但也有一些支化聚合物和其相应线形高分子具有同样的温度依赖性,如聚异丁烯。 本文简介流变学在不同聚合物研究中的应用,并对流变学的发展方向做了展望。 1、流变学在聚乙烯研究中的应用 聚乙烯基本分为三大类,即低密度聚乙烯(LDPE)!高密度聚乙烯(HDPE)和线型低密度聚乙烯(LLDPE),三种聚乙烯分子结构见图如下

聚合物工艺学习题集

第一章绪论 1.试述高分子合成工艺学的主要任务。 2.简述高分子材料的主要类型,主要品种以及发展方向。 3.用方块图表示高分子合成材料的生产过程,说明每一步骤的主要特点及意义。 4.如何评价生产工艺合理及先进性。 5.开发新产品或新工艺的步骤和需注意的问题有哪些? 第二章生产单体的原料路线 1.简述高分子合成材料的基本原料(即三烯、三苯、乙炔)的来源。 2.简述石油裂解制烯烃的工艺过程。 3.如何由石油原料制得芳烃?并写出其中的主要化学反应及工艺过程。 4.画出C4馏分中制取丁二烯的流程简图,并说明采用萃取精馏的目的。 5.简述从三烯(乙烯、丙烯、丁二烯)、三苯(苯、甲苯、二甲苯),乙炔出发制备高分子材料的主要单体合成路线(可用方程式或图表表示,并注明基本工艺条件)。 6.如何由煤炭路线及石油化工路线生产氯乙烯单体? 7.简述苯乙烯的生产方法。 8.试述合成高分子材料所用单体的主要性能,在贮存、运输过程中以及在使用时应注意哪些问题? 9.论述乙烯产量与高分子合成工艺的关系。 第三章游离基本体聚合生产工艺 1.自由基聚合过程中反应速度和聚合物分子量与哪些因素有关?工艺过程中如何调节? 2.自由基聚合所用引发剂有哪些类型,它们各有什么特点? 3.引发剂的分解速率与哪些因素有关?引发剂的半衰期的含义是什么?生产中有何作用? 4.引发剂的选择主要根据哪些因素考虑?为什么? 5.举例说明在自由基聚合过程中,调节剂,阻聚剂,缓聚剂的作用。 6.为什么溶剂分子的Cs值比调节剂分子的Cs小的多,而对聚合物分子量的影响往往比调节剂大的多? 7.以乙烯的本体聚合为例,说明本体聚合的特点。 8.根据合成高压聚乙烯的工艺条件和工艺过程特点,组织高压聚乙烯的生产工艺流程,并划出流程示意图。 9.高压聚乙烯分子结构特点是怎样形成的,对聚合物的加工及性能有何影响。 10.乙烯高压聚合的影响因素有哪些? 11. 对比管式反应器及釜式反应器生产高压聚乙烯的生产工艺。 12.聚乙烯的主要用途有哪些、可以采用哪些方法改进它的性能,开发新用途。 13.比较高压聚乙烯及聚苯乙烯的生产工艺流程,改进聚苯乙烯的性能,可采用哪些方法? 14.试述聚苯乙烯和有机玻璃的优缺点及改性方向。 15.比较聚乙烯、聚苯乙烯、聚氯乙烯,聚甲基丙烯酸甲酯本体聚合工艺的异同。

聚合物流变学

聚合物流变学的学习与心得体会 通过一学期的聚合物流变学的学习,使我对其有了初步的了解。现在针对 平时学习笔记和课后浏览相关书籍所获知识进行总结。 1、 聚合物流变学学习内容 1. 流变学中的基本概念 流变学是研究材料的流动和变形规律的科学,是一门介于力学、化学、物理与工程科学之间的新兴交叉学科。聚合物随其分子结构、分子量的不同,以 及所处温度的不同,可以是流体或固体,它们的流动和变形规律各不相同,也 即有不同的流变性能。聚合物流变学是研究聚合物及其熔体的变形和流动特性。 1.1 粘弹性流体特性及材料流变学分类 粘性流体的流动是:变形的时间依赖性;变形不可恢复(外力作的功转化为热能);变形大,力与变形速率成正比,符合Newton's 流动定律。 根据经典流体力学理论,不可压缩理想流体的流动为纯粘性流动,在很小的剪切应力作用下流动立即发生,外力释去后,流动立即停止,但粘性形变不 可恢复。切变速率不大时,切应力与切边速率呈线性关系,遵循牛顿粘性定律, 且应力与应变本身无关。 流体→流动→粘性→耗散能量→产生永久变形→无记忆效应 根据经典固体力学理论,在极限应力范围内,各向同性的理想弹性固体的形变为瞬时间发生的可逆形变。应力与应变呈线性关系,服从胡克弹性定律, 且应力与应变速率无关。 固体→变形→弹性→储存能量→变形可以恢复 聚合物流动时所表现的粘弹性,即有粘性流动又有弹性变形,与通常所说 的理想固体的弹性和理想液体的粘性大不相同,也不是二者的简单组合。 材料流变学分类 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

7.高聚物熔体的流变性质

第一章 高聚物熔体的流变性质 主要内容:(1)液体的流动类型 (2)高分子熔体的流动特征 (3)影响高聚物熔体粘度的因素 (4)高聚物熔体弹性效应的表现 (5)高聚物熔体粘度的测量方法 难点内容:弹性效应的理解 掌握内容:(1)牛顿流体和非牛顿流体的流动特征 (2)高聚物熔体的流动特征及影响流动温度的因素 (3)影响切粘度的结构因素及外在因素 理解内容:(1)高聚物熔体的流动机理 (2)高聚物熔体弹性效应的机理、现象及影响因素 了解内容:(1)高聚物熔体粘度的测量方法 (2)拉伸粘度的基本情况 §8 高聚物的基本流变性质 §8、1流变学的基本概念简介 一、流动的方式 1、速度方向 2、速度梯度方向 剪切流动 a 库爱特(拖流动) b 泊肃叶(压力流) 拉伸流动 速度方向平行速度梯度方向 二.流体的基本类型 γγ ? ==?=?=dt d dt dy dx dy dt dx dY dv 11 (1) 牛顿流体 στ=η·γ (η为常数) 熔体结构不变 (2) 非牛顿流体 表观粘度ηa = γ τ σ?

a. 胀塑流体 n k a γ γηστ? ? ==? γ↑ ηa b. 假塑性流体 στ=ηa γn (n<1) γ↑.ηa ↓ (剪切变稀) c. στ=σb + k γn 三.假塑性流体的基本特性 习题 1.名词解释 牛顿流体 非牛顿流体 假塑性流体 胀塑性流体 Bingham 流体 零切粘度 表观粘度 熔融指数 第一法向应力差 挤出胀大 真实粘度 2.大分子流动是如何实现的? 3.大分子流动的基本特征是什么? 4.流体流动的基本类型有哪些?分别用τ-γ、η-γ、lg τ-lg γ、lg η-lg γ曲线示意图。 5.分析假塑性流体流动的η-γ曲线,并从分子运动论的角度给予解释。

浅谈聚合物配方设计

“十一五”期间,改性塑料行业的发展重点是通用塑料的工程化和工程塑料的高性能化,这两点目前在塑料改性行业里得到了各界同仁的一致认可。如何实现通用塑料的工程化和工程塑料的高性能化呢?这就需要塑料改性技术的创新,塑料技术创新中一个最重要的课题之一就是配方创新。配方创新和配方的设计是密不可分的,如何开发一个新产品,如何设计一个新配方,相信每个塑料改性企业和塑料改性技术人员都十分关心。本人多年在一线从事科研工作,我愿意结合自己的设计配方的经验和心得,同大家探讨和分享。 要设计一个好的塑料改性配方,成为一个真正的优秀技术人员,必须要有扎实的基本功。有了扎实的基本功,才能够进行技术创新。因此我在这里首先浅谈一下配方设计需要具备哪些基本功,供大家参考,不足请指正。 熟悉各种基础树脂的物性、用途以及相关背景 每种基础树脂都有其各自的特点,你只有熟悉它,了解它,才能用好它。这需要长期的基础学习和实践才能做到。在不同的配方里,根据不同的性能指标的要求,选择不同的基础树脂十分重要。这是在配方设计中的基础,譬如盖一栋房子,基础树脂就像是它的基石。因此,要想成功的设计一个配方,必须熟悉各种基础树脂的物性、用途以及相关背景。 (一)、熟悉各种基础树脂的物性 既然是熟悉,就不是一般的简单的了解,要求全面细致,以下举例说明: 例1:聚乙烯类塑料 聚乙烯是指由乙烯单体自由基聚合而成的聚合物,英文名简称PE。PE的合成原料来自石油,自1965年以来一直高居世界树脂产量第一位。目前,聚乙烯的主要品种有:低密度聚乙烯(LDPE),高密度聚乙烯(HDPE),线性低密度聚乙烯(LLDPE),(超)高分子量聚乙烯(UHMWPE),金属聚乙烯(m-PE) 还有其改性品种: 乙烯—乙酸乙烯酯(EVA)氯化聚乙烯(CPE)。 1、聚乙烯类塑料的结构性能 PE为线性聚合物,属于高分子长链脂肪烃;分子对称无极性,分子间作用力小,力学性能不高、电绝缘性好、熔点低、印刷性不好。PE的结构规整,线性度高,因而易于结晶。结晶度从高到低排序:HDPE,LLDPE,LDPE。随结晶度的提高,PE制品的密度、刚性、硬度和强度等性能提高,但冲击性能下降。 (1) 一般性能:PE树脂为无味、无毒的白色粉末或颗粒,外观呈乳白色,有似蜡的手感;吸水率低,小于0.01%。PE膜透明,透明度随结晶度提高而下降。PE膜的透水率低但透气性较大,不适于保鲜包装而适于防潮包装。PE易燃,氧指数仅为17.4%,燃烧时低烟,有少量熔融滴落,火焰上黄下蓝,有石蜡气味。 PE的耐水性较好,制品表面无极性,难以粘合和印刷,须经表面处理才可改善。 (2)力学性能:PE的力学性能一般,其拉伸强度较低,抗蠕变性不好,耐冲击性能较好。PE的耐环境应力开裂性不好,但随分子量增大而改善。PE耐穿刺性好,并以LLDPE最好。 (3)热学性能:PE的耐热性不高,随分子量和结晶度的提高而改善。PE的耐低温性好,脆化温度一般可达-50℃以下;随分子量的增大,最低可达-140℃。PE的线膨胀系在塑料中属较大的。PE的热导率属塑料中较高的。 (4)电学性能:PE无极性,因此电性能十分优异。介电损耗很低,且随温度和频率变化极小。PE是少数耐电晕性好的塑料品种,介电强度又高,因而可用做高压绝缘材料。 (5) 环境性能:PE具有良好的化学稳定性。在常温下可耐酸、碱、盐类水溶液的腐蚀,具

高效液相色谱法测定头孢地尼及制剂中聚合物的含量

龙源期刊网 https://www.360docs.net/doc/4318119375.html, 高效液相色谱法测定头孢地尼及制剂中聚合物的含量 作者:陈文静周志慧陈永森 来源:《医学信息》2014年第11期 摘要:目的采用聚苯乙烯高效液相色谱法检查头孢地尼中聚合物的方法。方法色谱柱为聚苯乙烯凝胶为填料的TSKgel G2000SWxl(7.8 mm×300 mm 5um)色谱柱,流动相为0.1 mol/L,pH=7.0缓冲溶液-甲醇(95∶5),流速为0.5 mL/min,检测波长285 nm,通过HPLC-ESI-MS法鉴定高分子杂质峰,并对其结构进行推定。结果头孢地尼在0.0002~1.5 mg/mL浓度范围内与峰面积呈良好线性关系(r=1.0000)最小检测浓度为0.2 ug/mL,聚合物杂质与头孢地尼能有效分离,并先于主峰流出,方法专属性良好,样品在溶液中不稳定,需临用新配。结论建立的方法快速准确。适用于头孢地尼及其聚合物的测定。 关键词:高效液相色谱;聚苯乙烯凝胶;头孢地尼;聚合物;β-内酰胺类抗生素;过敏原 头孢地尼为半合成的第三代口服头孢菌素,属于β-内酰胺类抗生素,具有抗菌谱广、疗效高、毒性低等特点。β-内酰胺抗生素是目前临床上最常用的抗感染药物[1]。研究证明,引发过敏反应的过敏原不是抗生素本身,而是其中的高分子杂质,因此国内外对β-内酰胺类抗生素的高分子杂质的控制非常重视。2010版中国药典已有22个品种43个标准的控制[2]。 中国药典2010年版已采用葡聚糖G-10自身对照外标法对大部份常用注射用头孢类抗生素进行了高分子杂质控制,也有文献报道使用葡聚糖G-10用于头孢地尼聚合物的测量[3]。葡聚糖G-10可以手工填装,也有商品化色谱柱,使用该填料的分离的色谱峰拖尾严重,不利于该产品聚合物的测定。日本药典(JP)对头孢卡品酯采用以苯乙烯-二乙烯基苯共聚物为基础的TSKgel G2000 色谱柱进行聚合物控制。也有文献报道使用国产的苯乙烯-二乙烯基苯共聚物为基础的,以分子排阻为主要分离机制,用于测定头孢呋辛酯中高分子聚合物的检查[4]。 因此我们采用苯乙烯为填料的TSKgel G2000SWxl色谱柱。 1仪器与试药 液相色谱仪,检测器: Waters2998,溶液输送泵:Waters2695,柱温箱:Waters Corporation工作站:Empower版本6.20。 2色谱条件 色谱柱,TOSOH TSKgel G2000SWxl (300mm);柱温:35℃恒温。流速:0.5 mL/min。 3溶液的制备

聚合物浓度测定方法

聚合物浓度测定方法(碘-淀粉法) 一、仪器和材料 1.721分光光度计; 2.50毫升的具塞容量瓶; 3.移液管; 4.聚丙烯酰胺溶液; 5.碘化镉、可溶性淀粉、溴、水合硫酸铝; 6.乙酸,三水乙酸钠、甲酸钠、蒸馏水。 二、实验原理 碘-淀粉法是精度较高的测定聚合物浓度的方法,其测定浓度的线性范围是0~6mg/l。碘-淀粉法是利用Hofmann重排的第一部反应,在p H=5的条件下,用溴水与酰胺基作用生成N-溴代酰胺,多余的溴用还原剂除去。生成的N-溴代酰胺水解生成次溴酸,次溴酸能定量的将碘离子氧化成碘,在有淀粉存在的条件下形成蓝色三碘-淀粉络合物。因此,即使酰胺基的浓度很低,任然能够用淀粉-碘化物法有效地测定出来。碘-淀粉法是基于酰胺基团,对于聚丙烯酰胺的水解度特别敏感。碘-淀粉法适合测定油田盐水和地表水配制的聚合物溶液浓度。 三、试验方法 1.相关溶液的配制 a.淀粉-碘化镉试剂的配制

将11.0g碘化镉(分析纯)溶于300~400ml纯水中,加热煮沸10分钟并使之溶解,稀释至700ml左右。加入2.5g可溶性淀粉,搅拌、煮沸5分钟,溶解后用三层慢速滤纸在玻砂漏斗中过滤(水压抽滤),最后稀释至1000ml。 b.缓冲溶液的配制 称取25g三水合乙酸钠溶解在800ml蒸馏水中,溶解后加入水合硫酸铝0.5g,用冰醋酸调节至p H=5.0,最后稀释至1000ml备用。 c.饱和溴水的配制 用移液管吸取50ml溴至装有1000蒸馏水的棕色瓶中。在2小时内不断地摇动棕色瓶,并微开瓶塞放出蒸汽。定期振荡并释放溴蒸汽,保持瓶内有未溶解的液溴,经过一段时间(约2周)待溴饱和稳定后方可使用。 2.样品测试 移取定量缓冲溶液于50ml容量瓶中,加入聚合物溶液及25ml纯水,混合均匀后,加入定量饱和溴水,振荡后反应一定时间;加入过量甲酸钠溶液除去多余的溴,摇匀,静置反应5min;加入淀粉-碘化镉溶液,用蒸馏水稀释至刻度,摇匀溶液,静置20min。用分光光度计在590nm处,1cm比色皿,按质量浓度由小到大的顺序测试吸光度,以纯水作参比溶液。 a.聚丙烯酰胺溶液浓度标准曲线的测定 (1)打开721分光光度计的电源开关,预热20分钟。 (2)用波长选择按钮将单色光波长选为580nm。打开比色皿盖,将参比液(可用蒸馏水或5ml缓冲液,5ml甲酸钠溶液,1ml饱和溴水,5ml淀粉-碘化镉,用蒸馏水稀释至50ml)放入比色皿,将仪器比色皿盖合上,使灯管发光,按调零键。 (3)分别吸取纯水25ml至于10个50ml容量瓶内,再分别移取浓度为20,40,60,80,100,120,140,160,180,200ppm的聚丙烯酰胺标准溶液各2ml 于10个容量瓶内。分别加p H=5缓冲溶液5ml,混合均匀后再加饱和溴水1ml,摇匀静置15分钟。再加甲酸钠溶液(1%)5ml,摇匀静置5分钟。最后加淀粉-碘化镉溶液5ml,用纯水稀释至刻度,摇匀静置20分钟。用分光光度计测试在不同浓度下的吸光度值A,绘制吸光度与聚合物浓度关系标准曲线。

聚合物流变学复习题参考答案2

聚合物流变学复习题参考答 案2 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高分子流变学复习题参考答案 一、名词解释: 1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。 应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。 或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象。 2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。 3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。 挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。 4、.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。 5、非牛顿流体:凡不服从牛顿粘性定律的流体。 牛顿流体:服从牛顿粘性定律的流体。 6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。 胀塑性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。 7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。 8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。 9、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。 或拉伸流动:质点速度仅沿流动方向发生变化的流动。 剪切流动:质点速度仅沿着与流动方向垂直的方向发生变化的流动。 10、法向分量:作用力的方向与作用面垂直即称为应力的法向分量。

聚合物流变性能测试

聚合物流变性能测试-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

聚合物流变性能测试 一、实验目的 1、熟悉和了解RHEOGRAPH25型流变仪的工作原理及操作方法。 2、掌握将计算机输出流动曲线(σ-γ曲线)转换为其他形式流动曲线(lg σ-lgγ)、(lgη-lgγ)的方法。 3、掌握非牛顿指数n的计算方法。 4、掌握利用Arrhenius方程计算粘流活化能Eη的方法。 二、RHEOGRAPH25型流变仪工作原理 毛细管流变仪是目前发展得最成熟、应用最广的流变测量仪之一,其主要优点在于操作简单,测量准确,测量范围宽(剪切速率γ:10-2~105s-1 )。 毛细管流变仪测试聚合物流变性能基本原理:在一个无限长的圆形毛细管中,聚合物熔体在管中的流动是一种不可收缩的粘性流体的稳定层流流动,毛细管两端分压力差为△P,由于流体具有粘性,它必然受到自管体与流动方向相反的作用力,根据粘滞阻力与推动力相平衡等流体力学原理推导,可得到毛细管管壁处的剪切应力σ和剪切速率γ与压力、熔体流率的关系。仪器通过自身软件计算出高聚物的表观粘度,并得到相应的剪切速率和剪切应力,表观粘度的关系曲线图。 三、实验仪器及材料 仪器:德国高特福RH25型毛细管流变仪、毛细管口模,长径比30:1,5:0.5,5:0.3;、活塞、转矩扳手、耐温润滑油、耐温手套、纯棉清洁布。 原料:PE、PP 四、实验内容 测定聚乙烯、聚丙烯树脂不同温度下流变性能,具体如下 第一组:PE,170℃,175℃,180℃,185℃。 第二组:PE,185℃,190℃,195℃,200℃。 第三组:PP,190℃,195℃,200℃,205℃。 第四组:PP,205℃,210℃,215℃,220℃。 五、操作步骤 1、开机 打开仪器,电脑,等候约一分钟,待初始化结束后,显示屏出现“Refere nce drive”; 2) 点击“Reference drive”进入操作界面。 2、程序设定 包括测试温度、熔融时间、活塞速度、毛细管的尺寸选择等参数的设置, 3、测试膛升温 编辑测试程序后,点击“parameter send”,开始升温,待温度达到测试温度并恒温10-15分钟; 4、毛细管安装 安装毛细管过程中,毛细管上的销钉必须在上方,安装时四个固定螺丝加抗磨糊后拧紧,再退回2圈,等候5-10分钟后再用扭矩扳手拧紧,扭矩扳手扭矩值设定为60N·m,PVT测试时设定为80 N.m; 5、压力传感器安装

聚合物的相对分子质量与分子量分布

第4章聚合物的相对分子质量与分子量分布 4.1高聚物相对分子质量的统计意义 假定在某一高分子试样中含有若干种相对分子质量不相等的分子,该试样的总质量为w,总摩尔数为n,种类数用i表示,第I种分子的相对分子质量为Mi,摩尔数为ni,重量为wi,在整个试样中的重量分数为Wi,摩尔分数为Ni,则这些量之间存在下列关系: 常用的平均相对分子质量有:以数量为统计权重的数均相对分子质量,定义为 以重量为统计权重的重均相对分子质量,定义为 以z值为统计权重的z均相对分子质量,zi定义为wiMi,则z均相对分子质量的定义为 用黏度法测得稀溶液的平均相对分子质量为黏均相对分子质量,定义为 这里的a是指[η]=KMa公式中的指数。 根据定义式,很易证明:

数均、重均、Z均相对分子质量的统计意义还可以分别理解为线均、面均和体均(即一维、二维、三维的统计平均)。 对于多分散试样, 对于单分散试样, (只有极少数象DNA等生物高分子才是单分散的) 用于表征多分散性(polydispersity)的参数主要有两个。 1、多分散系数(Heterodisperse Index,简称HI) 2、分布宽度指数 对于多分散试样,d>1或σn >0(σw>0) 对于单分散试样,d=1或σn=σw=0 表4-1比较了不同类型高分子的多分散性 表4-1合成高聚物中d的典型区间 4.2高聚物相对分子质量的测定方法 1、端基分析法(end-group analysis,简称EA) 如果线形高分子的化学结构明确而且链端带有可以用化学方法(如滴定)或物理方法(如放射性同位素测定)分析的基团,那么测定一定重量高聚物中端基的数目,即可用下式求得试样的数均相对分子质量。

相关文档
最新文档