现代检测理论与技术课程设计资料

现代检测理论与技术课程设计资料
现代检测理论与技术课程设计资料

重庆大学研究生课程报告书基于Zigbee无线网络的瓦斯浓度检测系统

课程名称:现代检测理论与技术

姓名:

学号

学院:

专业:控制工程

、研究背景和目的

1.1研究背景和目的

近年来,煤矿事故频频发生,煤矿工人的安全问题时时牵拉着人们的神经。煤

碳是国家经济发展的重要能源,所以安全生产、加强煤矿的安全建设已经越来越紧急和迫切。煤矿事故的元凶主要是瓦斯,因瓦斯事故每年都给国家和人民带来巨大损失。煤矿瓦斯治理是煤矿安全生产治理的核心,如何有效控制瓦斯事故是解决煤矿安全问题的关键。据不完全统计,在 1981 至 2001 年期间,全国煤矿事故总计死亡约 12.6 万人,其中重特大瓦斯事故死亡人数占 72.3% ,平均每年死亡 1579 人。2005 年,煤矿瓦斯事故发生 405 起,死亡 2157 人;2006 年瓦斯事故发生

327 起,死亡 1319 人。仅 2005 年 12 月 7 日河北省唐山市恒源实业有限公司的瓦斯煤尘爆炸事故就造成了 108 人死亡,29 人受伤的严重后果,直接经济损失4870.67 万元。在这些残酷的数字面前,人们清醒得认识到,若要保障人民的生命安全和国家的经济正常发展,必须加强煤矿的安全生产,加强瓦斯含量的检测力度,努力做到防患于未然,才能将损失降低到最小。

由于煤矿自然环境复杂,矿井开采条件多变,而且存在着火灾、水灾等自然

灾害,加上煤矿作业空间十分狭小,照明条件差等因素,目前常用的煤矿安监系统仍使用有线方式,即采用光缆、电力线缆或信号线缆等,有线方式存在以下缺

陷:

(1)布线繁琐,安装维护成本大。监测系统所需的大量光缆、电缆价格不菲,此外在复杂的地下环境布设线路同样需要消耗大量的人力物力。

(2)覆盖范围有限。由于地形环境复杂多变,矿井中存在着大量难以布线的区域,有线监控系统很难遍布矿井的各个地区,无法实现对整个矿井的全方位监测,为安全生产留下隐患。

(3)线路依赖性强。有线网络的自我修复能力较差,局部线路遭到破坏很可能造成整个监控系统的瘫痪。特别是发生爆炸事件时,线缆往往会受到致命的破坏,不能为搜救工作及事态检测提供信息。现阶段,随着各地矿井开采深度的增加,已有的安检系统难以扩展网络、灵活性不高已成为制约安全检测的瓶颈。这使得网络数据的可靠性、有效性和实时性得不到保证,难以确保重要数据及时传输。因此,利用无线网络构建网络简单、扩展性强的特点解决煤矿安检系统对实时性、可扩展性和低成本的需求已经非常迫切。

1.2瓦斯含量检测技术及Zigbee 发展现状

目前,瓦斯检测采用的是瓦斯巡回检查,即派专职人员以巡检的形式,定期

采集指定地点的瓦斯信息。但是该方式存在以下缺点:

(1)人工获取数据、手工记录,无法做到实时检测。

(2)瓦检员人身安全难以保证。

(3)历史数据查询麻烦、不能根据历史记录直接进行分析。

所以设计更合理、更高效的瓦斯采集方案摆在了人们的面前。

Zigbee 无线网络是无线网络的一个成员,主要用于无线传感器网络的建立。

无线传感器网络是由分布在给定区域内的众多无线传感器节点构成的网络。每一个传感器节点都有一种或多种传感器用来获取信息,并具有一定的计算能力。各节点之间通过网络协议实现信息的交流、汇集和处理,从而实现对局部区域内目标的探测和定位。随着通信技术、嵌入式技术和传感器技术的飞速发展,具有感知能力、计算能力和通信能力的微型传感器开始在世界范围内出现。

国际上比较有代表性和影响力的无线传感器网络实用项目有:遥控战场瓦斯监测系统、智能尘埃项目、野生动植物行为习性监控网络等。目前,英特尔公司与加州大学伯克利分校正领导者“微尘” 技术的研究工作,已经成功研制了瓶盖大小的全能传感器,可以执行计算、检测与通信功能。在日本,日立公司已开发出了全球最小的无线传感器网络终端,该终端可以连接各种传感器包括温度、亮度、红外线以及加速度等。可以应用于安全管理和智能家庭。我国的无线传感器网络及其应用研究几乎与发达国家同步。 2001 年由中国科学院牵头,由上海微系统所、微电子所、半导体所、电子所、软件所、中国科技大学等十余家科研院所和高校建立了传感器网络系统研发平台,在无线智能传感器网络通信技术、微型传感器、传感器节点等方面取得了很大进展。 Zigbee 无线传感器网络已经在各领域展开了广泛的应用。

、瓦斯浓度检测技术

2.1 瓦斯传感器技术

目前,矿井中常用的瓦斯传感器可分为热导式和热效式两大类。

热导式瓦斯传感器利用瓦斯与空气导热系数的不同而测量瓦斯浓度。这种传感器在工作时需通入恒定的电流,将其加热到一定的温度(180 C左右)才能工作,功耗较大,且其中的半导体热敏式电阻传感器受水蒸汽的影响较大,元件的一致性和互换性也较差。热导式瓦斯检测仪在测定低浓度的瓦斯时,输出信号很小误差较大。因此,这类传感器制成的瓦斯检测仪适用于测量高浓度的瓦斯(5%?100%)。目前这种传感器在矿井中应用较少。

热效式瓦斯传感器(又称热催化式瓦斯传感器),其工作原理是利用可燃气体

在催化剂的作用下进行无焰燃烧产生热量,使元件电阻因温度升高而发生变化,通过测量电阻端电压来测知瓦斯的浓度。这种传感器的优点是精度较高,输出信

号较大(1%CH时,输出电压可达15?20mV),且不受其它燃气和灰尘存在的影响。它的缺点是元件表面温度高(300?450E;寿命短(多数国家均保证1年);功耗大(其加热功率>1W热催化元件功耗为0.3?0.75W),易受硫、铅、磷、氯等的化合物干扰而使催化剂中毒,降低其灵敏度,甚至误报。

综合上述因素,本课题中传感器器件选用DYNAME公T司生产的MJC4专感器, 其结构图如图2.1所示。

图2.1元件外形结构

2.2Zigbee无线网络技术

ZigBee是基于IEEE802.15.4标准的低功耗局域网协议。根据国际标准规定,ZigBee技术是一种短距离、低功耗的无线通信技术。这一名称(又称紫蜂协议)来源于蜜蜂的八字舞,由于蜜蜂是靠飞翔和“嗡嗡”地抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。其特点是近距离、低复杂度、自组织、低功耗、低数据速率。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种

便宜的,低功耗的近距离无线组网通讯技术。 ZigBee是一种低速短距离传输的无线网络协议。ZigBee协议从下到上分别为物理层(PHY)、媒体访问控制层(MAC)、传输层(TL)、网络层(NWK)、应用层(APL)等。其中物理层和媒体访问控制层遵循IEEE 802.15.4标准的规定

它有如下特点:

⑴ 低功耗:由于Zigbee的传输速率低,发射功率仅为1mW,而且采用了休眠模式,功耗低,因此Zigbee设备非常省电。

(2)成本低:Zigbe模块的初始成本在 6美元左右,估计很快就能降到 1.5~2.5美元,并且Zigbe协议是免专利费的。

(3)延时短:通信时延和从休眠状态激活的时延都非常短,典型的搜索设备时延30ms,休眠激活的时延是15ms,活动设备信道接入的时延为 15ms。

(4)可靠:采取了碰撞避免策略,同时为需要固定带宽的通信业务预留了专用时隙,避开了发送数据的竞争和冲突。

(5)安全:Zigbee提供了基于循环冗余校验(CRC)的数据包完整性检查功能,支持鉴权和认证。

基于以上特点,Zigbee网络成为无线传感器网络的首选,它非常适宜于在工矿环境下构建传感器网络。

2.3瓦斯检测系统设计方案

本课题研究的是Zigbee无线传感器网络在瓦斯采集系统中的应用。因此,研究的重点在网络系统的建立上。另外传感器如何采集数据并将之放于网络,也是本课题的一个重点。下面介绍本系统的总体设计方案。本系统主要包括Zigbee 无线网络传输部分和瓦斯信息采集和处理部分,将二者分开的目的是增加网络的

应用范围,只需要建立一次网络就可以连接多种应用。其中,Zigbe无线网络部分的主要功能是完成矿井下信号的无线传输,它包括Zigbee射频模块和底板模

块两个部件。将二者分开是因为射频部分需要考虑板材的选取和天线的设计,将它们分开可以降低成本、避免干扰。Zigbee底板主要提供功能外设,包括模块电源设计、程序下载 Debug 口的设计、液晶显示电路设计、按键和各种接口设计等。

两大部分通过串口进行数据的通信,其连接关系如下图:

检测技术课程设计

检测技术课程设计 一、课程设计的目的 综合应用已修课程所学知识,完成被测信号的提取、转换、处理的一次综合性设计实践。它的作用如下: 获得工程师基本训练,培养学生综合运用所学理论和技术知识,解决工程实际问题的能力。 (1)提高学生查阅科技文献资料能力。 (2)开发学生的主观能动性与创造性。 (3)加深学生对课程内容的理解,拓展所学知识面。 (4)使学生初步建立正确的设计思想。掌握系统的设计方法和设计步骤。 二、课程设计时间 检测技术课程设计为1周。 三、课程设计的任务 以任务书的形式给出。 任务书的主要内容有: (1)给予的对象; (2)设计题目; (3)设计要求; (4)撰写的设计报告要求; (5)时间安排。 设计报告内容包括:目录,设计题目,前言,设计方案与设计工艺流程,各部分设计原理,设计计算及说明,器件、仪器设备的选择,设计图纸,参考文献,附录。设计图用专用计算机软件绘制,打印。 四、课程设计报告的一般格式 课程设计报告包括封面、目录、绪论、主体部分、结尾部分。 1、绪论 主要说明设计的目的、设计的任务和要求等。 2、主体部分 (1)总体设计方案的设计

(2)软硬件电路的设计 (3)设计结果(实验数据等) (4)参考文献 2、结束语 阐述本次设计的收获与体会,课题进一步完善的建议与意见。致谢等。如有附录可放在结尾处。

设计题目一电机自动监控系统设计 一、电机控制系统描述 电机作为一种拖动动力设备,在机床加工、运输、电力等领域有着广泛的应用。为了保证电机系统的正常运行,需要通过检测控制装置对它进行监控。重点监控的参数是电机 A、B、C三相线圈的温度、电机轴的径向振动振幅、电机轴的转速。 二、控制要求 上图为电机供电主电路。三相电经过空气开关KQ、交流接触器Z、热继电器PT,加到电机上,当接触器常开触点接通时,电机得电,运转。可以通过控制接触器线圈的方式控制接触器主常开触点的通断。正常接触器线圈得电,接触器主常开触点接通,异常接触器线圈断电,接触器主常开触点断开。 常规电机控制电路如图。 START STOP

检测技术及仪表课程设计报告

第一章绪论 1.1 课程设计目的 针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。 通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 1.2课题介绍 本课设题目以多功能动态实验装置为对象,要求综合以前所学知识,完成此实验装置所需参数的检测。设计检测方案,包括检测方法,仪表种类选用以及需要注意事项,并分析误差产生的原因等等。 1.3 实验背景知识 换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界十分关注而又至今未能解决的难题之一。 1.4 实验原理 1.4.1 检测方法 按对沉积物的监测手段分有:热学法和非传热量的污垢监测法。 热学法中又可分为热阻表示法和温差表示法两种; 非传热量的污垢监测法又有直接称重法、厚度测量法、压降测量法、放射技术、时间推移电影法、显微照相法、电解法和化学法。 这些监测方法中,对换热设备而言,最直接而且与换热设备性能联系最密切的莫过于热学法。这里选择热学法中的污垢热阻法。

1.4.2 热阻法原理简介 表示换热面上污垢沉积量的特征参数有:单位面积上的污垢沉积质量mf,污垢层平均厚度δf和污垢热阻Rf。这三者之间的关系由式表示: (1-1) 图1-1 清洁和有污垢时的温度分布及热阻 通常测量污垢热阻的原理如下: 设传热过程是在热流密度q为常数情况下进行的,图1a为换热面两侧处于清洁状态下的温度分布,其总的传热热阻为: (1-2) 图1b为两侧有污垢时的温度分布,其总传热热阻为: (1-3)忽略换热面上污垢的积聚对壁面与流体的对流传热系数影响,则可认为 (1-4)于是两式相减得: (1-5)该式表明污垢热阻可以通过清洁状态和受污染状态下总传热系数的测量而间接测量出来。 实验研究或实际生产则常常要求测量局部污垢热阻,这可通过测量所要求部位的壁温表示。为明晰起见,假定换热面只有一侧有污垢存在,则有: (1-6) f f f f f f m Rδ λ λ ρ 1 = = c w c c R R R U 2 1 /1+ + = f f w f f f R R R R R U 2 2 1 1 /1+ + + + = f c f c R R R R 2 2 1 1 ,= = c f f f U U R R 1 1 2 1 - = + q T T R R R R U b f s f f w c f /) ( /1 ,1 2 1 - = + + + =

检测技术与自动化装置

method 线性系统理论Linear system theory 362秋 机器人控制与自主系统Robotic contr ol and autono mous system 543春 计算机控制理论与应用Computer con trol system th eory and its application 543春 自动测试理论Automatic me asurement the ory 543春 运筹学Operation res earch 543秋 系统工程理论与应用System engin eering theory and its appli cations 543春 复杂系统建模与仿真Modeling and simulation o f complex sy stems 543秋 非 学位课现代控制理论 专题 Special topic of modern co ntrol theory 362 鲁棒控制系统Robust contro l systems 362春 最优控制Optimal contr ol 362春 自适应控制Adaptive Con trol 362春

最优估计与系统辨识Optimal estim ate and syste m identificati on 362春 过程控制Process contr ol 362秋 非线性控制系统Nonlinear con trol systems 362春 离散事件动态系统Discrete event dynamic syst ems 362春 PETRI网Petri net362秋 人工智能原理及应用Artificial intel ligence theory and its appli cations 362春 智能化方法与技术Intelligent me thod and tech nology 362 模糊理论与应用Fuzzy theory and applicatio ns 362春 模糊逻辑控制系统Fuzzy logic c ontrol system 362春 人工神经网络Artificial neur al network 362秋 遗传算法与进化算法Genetic and e volutional alg orithm 362春 实时控制系统Real-time con trol systems 362秋 机器人视觉Robotic visio362春

matlab车牌识别课程设计报告(附源代码)

Matlab程序设计任务书

目录 一.课程设计目的 (3) 二.设计原理 (3) 三.详细设计步骤 (3) 四. 设计结果及分析 (18) 五. 总结 (19) 六. 设计体会 (20) 七. 参考文献 (21)

一、课程设计目的 车牌定位系统的目的在于正确获取整个图像中车牌的区域,并识别出车牌号。通过设计实现车牌识别系统,能够提高学生分析问题和解决问题的能力,还能培养一定的科研能力。 二、设计原理: 牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。 三、详细设计步骤:

1. 提出总体设计方案: 牌照号码、颜色识别 为了进行牌照识别,需要以下几个基本的步骤: a.牌照定位,定位图片中的牌照位置; b.牌照字符分割,把牌照中的字符分割出来; c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。 牌照识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与牌照识别互相配合、互相验证。 (1)牌照定位: 自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。 流程图:

2020年智慧树知道网课《现代检测技术》课后章节测试满分答案

第一章测试 1 【单选题】(1分) 用以标定的仪器,直接的测量出某一待测未知量的量值称为()。 A. 直接测量 B. 间接测量 C. 动态测量 D. 接触式测量 2 【单选题】(1分) 下列哪项不是闭环控制型现代测试系统的优点()。 A. 实时控制 B. 实时数据采集 C. 实时判断决策 D. 远距离传输

3 【多选题】(1分) 下列属于测量过程的是()。 A. 数值和计量单位 B. 被测对象 C. 测试方法 D. 测量误差 4 【判断题】(1分) 水银温度计测量体温属于直接式测量。 A. 错 B. 对

5 【单选题】(1分) 测试技术与传感技术被称为信息技术系统的()。 A. 感官 B. 神经 C. 大脑 第二章测试 1 【单选题】(1分) 下列非线性补偿方法中属于软件补偿的是()。 A. 闭环式 B. 差动式 C. 开环式

D. 拟合法 2 【判断题】(1分) A类标准不确定度是用非统计方法得到的不确定度。 A. 错 B. 对 3 【判断题】(1分) 真值在实际测量中是可以确切获知的。 A. 对 B. 错

4 【判断题】(1分) 相对误差是绝对误差与测量仪表量程之比。 A. 错 B. 对 5 【单选题】(1分) 将63.73501四舍五入,保留两位小数为()。 A. 64.00 B. 63.74 C. 63.00 D. 63.73

第三章测试 1 【判断题】(1分) 直流电桥可以测量电容的变化。 A. 错 B. 对 2 【单选题】(1分) 全桥接法的灵敏度是半桥双臂接法的几倍()。 A. 8 B. 4 C. 2 D. 1

(2014春版)《现代检测技术》实验指导书

《现代检测技术》实验指导书 李学聪冯燕编 广东工业大学自动化学院 二0一四年二月

实验一 热电偶测温及校验 一、 实验目的 1.了解热电偶的结构及测温工作原理; 2.掌握热电偶校验的基本方法; 3.学习如何定期检验热电偶误差,判断是否及格。 二、 实验内容和要求 观察热电偶,了解温控电加热器工作原理; 通过对K 型热电偶的测温和校验,了解热电偶的结构及测温工作原理;掌握热电偶的校验的基本方法;学习如何定期检验热电偶误差,判断是否合格。 三、 实验主要仪器设备和材料 1. CSY2001B 型传感器系统综合实验台(下称主机) 1台 2. 温度传感器实验模块 1块 3. 热电偶 镍铬 ― 镍硅热电偶(K,作被校热电偶) 1支 镍铬 ― 锰白铜热电偶(E,作控温及标准热电偶) 1支 4. 2 1 3位数字万用表 1只 四、 实验方法、步骤及结果测试 1.观察热电偶,了解温控电加热器工作原理。 ①拿起热电偶并握紧黑柄,然后旋开热电偶的金属保护套,缓慢抽出,观察热电偶的外形。观察完后,将其旋紧并注意不可以让热电偶和金属保护套接触。 ②温控器:作为热源的温度指示、控制、定温之用。温度调节方式为时间比 例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。 2.仪器连线(如图1所示) ① 首先将综合实验台的电源开关置“关”, 然后将电源插头(实验桌前面)和加热炉电源插座插入综合实验台面板上的“220V 加热电源出”处; ② 将热电偶工作端插进温度传感器实验模块上的加热炉炉膛内, E 和K 分度热电偶的冷端按极性(注意区分“+”和“—”)分别接在“温控”和“测试”端。 3.开启电源 将综合实验台和加热炉的电源开关打“开”。 4.设定温度和测量数据将功能开关置“设定”,调节旋钮设定温度为50℃, 然后将开关拨至“测量”位置;当炉温达到设定值时, 等待3―5分钟炉温恒定后,分别测量“温控”和“测试”的电压(开关保持在“温控”状态),交互测量四次,把输出的热电势记录于表2中。 5. 继续将炉温提高到70℃、90℃、110℃、130℃和150℃,将热电偶输出的热电势记录于表2。

智能检测技术及仪表习题参考答案

智能检测技术及仪表习题答案 1.1什么是测量的绝对误差、相对误差、引用误差? 被测量的测量值x与被测量的真值A0之间的代数差Δ,称为绝对误差(Δ=x- A0)。 相对误差是指绝对误差Δ与被测量X百分比。有实际相对误差和公称相对误差两种表示方式。实际相对误差是指绝对误差Δ与被测量的约定真值(实际值)X0之比(δA=Δ/ X0×100%);公称相对误差是指绝对误差Δ与仪表公称值(示值)X之比(δx=Δ/ X×100%)。 引用误差是指绝对误差Δ与测量范围上限值、量程或表度盘满刻度B之比(δm=Δ/B×100%)。 1.2 什么是测量误差?测量误差有几种表示方法?他们通常应用在什么场合? 测量误差是指被测量与其真值之间存在的差异。测量误差有绝对误差、相对误差、引用误差三种表示方法。绝对误差通常用于对单一个体的单一被测量的多次测量分析,相对误差通常用于不同个体的同一被测量的比较分析,引用误差用于用具体仪表测量。 1.3 用测量范围为-50~+150kPa的压力传感器测量140kPa压力时,传感器测得示值为142kPa,求该示值的绝对误差、实际相对误差和引用误差。 Δ=142-140=2kPa; δA=2/140=1.43%;δx=2/142=1.41%;δm=2/(50+150)=1% 1.7 什么是直接测量、间接测量和组合测量? 通常测量仪表已标定好,用它对某个未知量进行测量时,就能直接读出测量值称为直接测量;首先确定被测量的函数关系式,然后用标定好的仪器测量函数关系式中的有关量,最后代入函数式中进行计算得到被测量,称为将间接测量。在一个测量过程中既有直接测量又有间接测量称为组合测量。 1.9 什么是测量部确定度?有哪几种评定方法? 测量不确定度:表征合理地赋予被测量真值的分散性与测量结果相联系的参数。 通常评定方法有两种:A类和B类评定方法。 不确定度的A类评定:用对观测列进行统计分析的方法来评定不确定度。 不确定度的B类评定:用不同于对观测列进行统计分析的方法来评定不确定度。 1.10检定一块精度为1.0级100mA的电流表,发现最大误差在50mA处为1.4mA,试判定该表是否合格?它实际的精度等级是多少? 解:δm=1.4/100=1.4%,它实际的精度为1.5,低于标称精度等级所以不合格。 1.11某节流元件(孔板)开孔直径d20尺寸进行15次测量,测量数据如下(单位:mm): 120.42 ,120.43,120.40,120.42,120,43,120.39,120.30,120.40,120.43,120.41,120.43,120.42,120.39,120.39,120.40试检查其中有无粗大误差?并写出测量结果。 解:首先求出测量烈的算术平均值: X =120.40mm 根据贝塞尔公式计算出标准差 ?=(∑v i2/(15-1))1/2=0.0289 3 ?=0.0868 所以,120.30是坏值,存在粗大误差。 去除坏值后X =120.41mm,?=(∑v i2/(14-1))1/2=0.011 3 ?=0.033 再无坏值 求出算术平均值的标准偏差?x= ?/(n)1/2=0.011/3.87=0.003 写出最后结果:(Pc=0.95,Kt=2.33) 120.41±Kt?x=120.41±0.01mm 2.3 什么是热电效应?热电势有哪几部分组成的?热电偶产生热电势的必要条件是什么? 在两种不同金属所组成的闭合回路中,当两接触的温度不同时,回路中就要产生热电势,这种物理现象称为热电效应。热电势由接触电势和温差电势两部分组成。热电偶产生热电势的必要条件是:两种不同金属和两个端点温度不同。 2.5什么是热电偶的中间温度定律。说明该定律在热电偶实际测温中的意义。 热电偶在接点温度为T、T0时的热电势等于该热电偶在接点温度为T,Tn和Tn、T0时相应的热电势的代数和。 E AB(T、T0)= E AB(T、Tn)+ E AB(Tn、T0)。这主要用于冷端温度补偿。 2.9热电偶的补偿导线的作用是什么?选择使用补偿导线的原则是什么?

自动检测技术的实验报告

自动检测技术实验报告 实验一 金属箔式应变片性能实验 ——单臂、半桥、全桥电路性能比较 一、实验目的: 1. 观察了解箔式应变片的结构及粘贴方式。 2. 测试应变梁形变的应变输出。 3. 比较各种桥路的性能(灵敏度)。 二、实验原理: 应变片是最常用的测力传感元件,当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变, 应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常见的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为44332211 R R R R R R R R ????、、、,当使用一个应变片时, ∑? = R R ;当二个应变片组成差动状态工作,则有 ∑?= R R R 2;用四个应变片组成二个差动对工作,且 ∑?= ====R R R R R R R R 4,4321。根据戴维南定理可以得出测试电桥的输出电压近似等于1/4 ? E ?ΣR ,电 桥灵敏度R R V K u //?=,于是对应于单臂、半桥、全桥的电压灵敏度分别为1/4E 、1/2E 和E 。由此可知,当E 和 电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关,单臂、半桥、全桥电路的灵敏度依次增大。

U-X关系曲线图 三、实验所需部件: 直流稳压电源(V 4 档)、电桥、差动放大器、金属箔式应变片、测微头、电压表。 四、实验接线图: 图(1) 五、实验步骤: 1、调零。开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+,-”输入端用实验线对地短路。输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。调零后电位器位置不要变化。 如需使用毫伏表,则将毫伏表输入端对地短路,调整“调零”电位器,使指针居“零”位。拔掉短路线,指针有偏转是有源指针式电压表输入端悬空时的正常情况。调零后关闭仪器电源。 2、按图(1)将实验部件用实验线连接成测试桥路,单臂桥路中R 2、R 3、R 4和W D 为电桥中的固定电阻和直流调平衡电位器,R 1为应变片(可任选上、下梁中的一片工作片)。直流激励电源为±4V ;半桥桥路中R 1和R 2为箔式应变片,R 3、R 4仍为固定电阻;全桥桥路中R 1、R 2、R 3、R 4全部使用箔式应变片。在接半桥、全桥桥路时应特别注意其应变片的受力方向,一定要接成差动形式。 3、调节测微头,使悬臂梁处于基本水平状态。 4、确认接线无误后开启仪器电源,并预热数分钟。 5、调整电桥电位器W D ,使测试系统输出为零。 6、旋动测微头,带动悬臂梁分别作向上和向下的运动,以水平状态下输出电压为零,向上和向下移动各5mm ,测微头每移动0.5mm 记录一个差动放大器输出电压值,并列表。根据表中所测数据计算灵敏度S ,S = △V /△X ,并在一个坐标图上做出V-X 关系曲线。比较三种桥路的灵敏度,并作出定性的结论。 六、实验数据分析: 实验所得数据如下表所示: 位移mm 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 电压V (单臂) -0.006 -0.011 -0.016 -0.030 -0.038 -0.043 -0.050 -0.060 -0.069 -0.076 电压V (半桥) -0.015 -0.030 -0.044 -0.060 -0.072 -0.090 -0.102 -0.118 -0.136 -0.152 电压V (全桥) -0.029 -0.063 -0.093 -0.118 -0.150 -0.182 -0.213 -0.247 -0.282 -0.310 位移mm -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 电压V (单臂) 0.014 0.019 0.026 0.033 0.045 0.052 0.060 0.066 0.076 0.085 电压V (半臂) 0.019 0.034 0.050 0.065 0.080 0.102 0.120 0.138 0.155 0.175 电压V (全桥) 0.033 0.066 0.098 0.136 0.170 0.198 0.230 0.261 0.293 0.325 根据表中所测数据,在一个坐标图上做出V-X 关系曲线图,如下图: v W D +4V -4V R 3 R 2 R 1 R 4

现代检测技术作业

现代检测技术 学院: 专业: 姓名: 学号: 指导教师: 2014年12月30日

一现代检测技术的技术特点和系统的构成 1、现代检测技术特点 (1)测量过程软件控制 智能检测系统可以是新建自稳零放大,自动极性判断,自动量程切换,自动报警,过载保护,非线性补偿,多功能测试和自动巡回检测。由于有了计算机,上述过程可采用软件控制。测量过程的软件控制可以简化系统的硬件结构,缩小体积,降低功耗,提高检测系统的可靠性和自动化程度。 (2)智能化数据处理 智能化数据处理是智能检测系统最突出的特点。计算机可以方便、快捷地实现各种算法。因此,智能检测系统可用软件对测量结果进行及时、在线处理,提高测量精度。另一方面,智能检测系统可以对测量结果再加工,获得并提高更多更可靠的高质量信息。 智能检测系统中的计算机可以方便地用软件实现线性化处理、算术平均值处理、数据融合计算、快速的傅里叶变换(FFT)、相关分析等各种信息处理功能。(3)高度的灵活性 智能检测系统已以软件工作为核心,生产、修改、复制都比较容易,功能和性能指标更加方便。而传统的硬件检测系统,生产工艺复杂,参数分散性较大,每次更改都涉及到元器件和仪器结构的改变。 (4)实现多参数检测与信息融合 智能检测系统设备多个测量通道,可以有计算对多路测量通进行检测。在进行多参数检测的基础上,依据各路信息的相关特性,可以实现智能检测系统的多传感器信息融合,从而提高检测系统的准确性、可靠性和容错性。 (5)测量速度快 高速测量时智能检测系统追求的目标之一。所谓高速检测,是指从检测开始,经过信号放大、整流滤波、非线性补偿、A/D转换、数据处理和结果输出的全过程所需要的时间。目前,高速A/D转换的采样速度在2000MHz以上,32位PC机的时钟频率也在500MHz以上。随着电子技术的迅猛发展,高速显示、高速打印、高速绘图设备也日臻完善。这些都为智能检测系统的快速检测提供了条件。(6)智能化功能强 以计算机为信息处理核心的智能检测系统具有较强的智能功能,可以满足各类用户的需要。典型的智能功能有: 1)测量选择功能 智能检测系统能够实现量程转换、信号通道和采样方式的自动选择,使系统具有对被测量对象的最优化跟踪检测能力。 2)故障诊断功能 智能检测系统结构复杂,功能较多,系统本身的故障诊断尤为重要,系统可以根据检测通道的特性和计算机本身的自诊断能力,检查个单元故障,显示故障部位,故障原因和应采取的故障排除方法。 3)其他智能功能 智能检测系统还可以具备人机对话、自校准、打印、绘图、通信、专家知识查询和控制输出等智能功能。 2、系统的构成

课程设计报告-车牌识别系统的设计

车牌识别系统的设计 一、摘要: 随这图形图像技术的发展,现在的车牌识别技术准确率越来越高,识别速度越来越快。无论何种形式的车牌识别系统,它们都是由触发、图像采集、图像识别模块、辅助光源和通信模块组成的。车牌识别系统涉及光学、电器、电子控制、数字图像处理、计算视觉、人工智能等多项技术。触发模块负责在车辆到达合适位置时,给出触发信号,控制抓拍。辅助光源提供辅助照明,保证系统在不同的光照条件下都能拍摄到高质量的图像。图像预处理程序对抓拍的图像进行处理,去除噪声,并进行参数调整。然后通过车牌定位、字符识别,最后将识别结果输出。 二、设计目的和意义: 设计目的: 1、让学生巩固理论课上所学的知识,理论联系实践。 2、锻炼学生的动手能力,激发学生的研究潜能,提高学生的协作精神。 设计意义: 车牌定位系统的目的在于正确获取整个图像中车牌的区域,并识别出车牌号。通过设计实现车牌识别系统,能够提高学生分析问题和解决问题的能力,还能培养一定的科研能力。 三、设计原理: 牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。 四、详细设计步骤:

现代检测技术及仪表 考试题

第一章 1. 5大热功量:温度、压力、物位、流量、成分 2.传感器:能把外界非电信息转换成电信号输出的装置。能把被测非电量转换为可用非电量的装置为敏感器。异同:敏感器与传感器虽然都是对被测非电量进行转换,但敏感器是把被测非电量转换为可用非电量,而不是象传感器那样把非电量转换成电量。理论上讲,M 种敏感器,N 种传感器和3种仪表电路的排列组合可产生出(M*N*3)种非电量检测仪表。 3. 非电量电测法有哪些优越性。 答:1)便于采用电子技术,用放大和衰减的办法灵活地改变测量仪器的灵敏度,从而大大扩展仪器量程。2)电子测量仪器具有极小的惯性,既能测量缓慢变化的量,也可测量快速变化的量,具有很宽的频带。3)把非电量变成电信号后,便于远距离传送和控制,这样就可实现远距离的自动测量。4)把非电量转换为数字电信号,不仅能实现测量结果的数字显示,而且更重要的是能与计算机技术相结合,便于用计算机对测量数据进行处理,实现测量的微机化和智能化。 4. 常见的检测仪表有哪几种类型?画出其框图,简述其工作原理。 答:普通模拟式检测仪表、普通数字式检测仪表、微机化 在整个测量过程中,只是模拟量之间发生转换。测量结果用指针相对标尺的位置来表示。 二、普通数字式检测仪表 (a )模数转换式――模拟测量电路把传感器输出的电量转换成直流电压信号,A/D 转换器把直流电压转换成数字,最后由数字显示器显示出来 (b) 脉冲计数式――信号放大整形后,由计数器进行计数最后由数字显示器显示出来 三、微机化检测系统 传感器将被测非电量转换成电量,测量通道对传感器信号进行调理和数据采集,转换成数字信号,送入微机进行必要处理后,由显示器显示出来并记录下来。 第4章 2、有源电桥―电桥输出电压U0与传感器电阻相对变化R R ?成线性关系02E R U R ?=- ? 4、为什么线绕式电位器容易实现各种非线性特性而且分辨力比非线绕式电位器低? 答:由线绕式电位器可见,只有当电刷的位移大于相邻两匝线圈的间距时,线绕式电位器的电阻才会变化一个台阶。而非线绕式电位器电刷是在电阻膜上滑动,电阻呈连续变化,因此线绕式电位器分辨力比非线绕式电位器低。 5、电阻应变片的灵敏系数比应变电阻材料本身的灵敏系数小吗?为什么? 答:应变片的灵敏系数k 是指应变片的阻值相对变化与试件表面上安装应变片区域的轴向应变之比称为,而应变电阻材料的应变灵敏系数k0是指应变电阻材料的阻值的相对变化与应变电阻材料的应变之比。实验表明:k <k0,除了黏结层传递应变有损失外,另一重要原因是存在横向效应的缘故。 6、热电阻与热敏电阻的电阻—温度特性有什么不同? 答:热电阻:金属的电阻率随温度的升高而升高,从而使金属的电阻也随温度的升高而升高,金属热电阻的电阻温度系数为正值。热敏电阻的电阻温度系数分为三类:(1)负温度系数 (2)正温度系数 (3)临界温度系数 7、为什么气敏电阻都附有加热器? 答:气敏电阻都附有加热器,以便烧掉附着在探测部位处的油雾、尘埃,同时加速气体的吸附,从而提高元件的灵敏度和响应速度。半导瓷气敏电阻元件一般要加热到200℃~400℃。 8、自感式传感器有哪些类型?各有何优缺点? 答:自感传感器有三种类型:变气隙式、变面积式和螺管式。变气隙式灵敏度最高,但非线性严重,示值范围只能较小,自由行程受铁心限制,制造装配困难。变面积式和螺管式的优点是具有较好的线性,示值范围大些,自由行程可按需安排,制造装配也较方便。此外,螺管式与变面积式相比,批量生产中的互换性好。 9、试比较差动自感式传感器与差动变压器式传感器的异同? 答:差动自感式传感器与差动变压器式传感器的相同点是都有一对对称的线圈铁心和一个共用的活动衔铁,而且也都有变气隙式、变面积式、螺管式三种类型。不同点是,差动自感式传感器的一对对称线圈是作为一对差动自感接入交流电桥或差动脉冲 调宽电路,将衔铁位移转换成电压。而差动变压器式传感器的是作为变压器的次级线圈,此外,差动变压器式传感器还有初级线圈(差动自感式传感器没有)。 10、试说明图4-3-11电路为什么能辨别衔铁移动方向和大小?为什么能调整零点输出电压? 答:图(a)和图(b)的输出电流为Iab=I1-I2,图(c)和图(d)的输出电压为Uab=Uac-Ubc 。当衔铁位于零位时,I1=I2,Uac=Ubc ,故Iab=0,Uab=0;当衔铁位于零位以上时,I1>I2,Uac>Ubc ,故Iab>0,Uab>0;当衔铁位于零位以下时,I1θc 即满足全反射条件,这样,光线就能在纤芯和包层的界面上不断地产生全反射,呈锯齿形路线在纤芯内向前传播,从光纤的一端以光速传播到另一端,这就是光纤传光原理。 2、红外探测器有哪两种类型?二者有何区别? 答:按其所依据的物理效应可分为光敏和热敏两大类型,光敏红外探测器是采用电真空光电器件或半导体光电器件,通过红外辐射的光电效应,把红外辐射的光量变化转换为电量变化。热敏红外探测器是采用热敏电阻、热电偶和热电堆,通过红外辐射的热电效应,把红外辐射的热量变化转换为电量变化。 3、压电式超声波探头的工作原理是什么? 答:超声波探头按其工作原理可分为压电式、磁致伸缩式、电磁式等。压电式超声波探头是利用压电材料的压电效应来工作的。逆压电效应将高频电振动转换成机械振动,以产生超声波。正压电效应将接收的超声振动转换成电信号。由于压电效应的可逆性,实际应用中的超声探头大多是发射与接收兼用,既能发射超声波信号又能接收发射出去的超声波的回波,并把它转换成电信号。 4、传感器发展的新趋向是什么? 答:传感器发展的新趋向是:1)探索具有新效应的敏感功能材料,并以此研制出具有新原理的新型物性型传感器;2)传感器的集成化和多功能化;3)传感器的智能化;4)研究生物感官,开发仿生传感器。 第8章 1、气体摆式―――图8-2-7 气体摆式倾角传感器的工作原理如图所示,传感器壳体平行于水平面时,密封盒内两几何对称的热敏电阻丝R1和R2说产生的热气流均垂直向上,二者互不影响,电桥平衡,输出为零。若传感器壳体相对于地球重心方向产生倾角Q,由于重力的作用,两个热敏电阻产生的热气流仍保持在铅垂方向,但两束热气流对彼此的热源(R1和R2)产生作用。若倾角Q 为正,R2产生的热气流作用到R1上,电桥失去平衡,输出跟Q 大小成正比的的正模式电压,若倾角Q 为负,R1产生的热气流作用到R2上,电桥失去平衡,输出跟Q 大小成正比的模拟

现代检测技术教案

绪论 ?教学要求 1.掌握检测等基本概念。 2.了解工业检测技术涉及的内容。 3.掌握自动检测系统的组成。 4.明确本课程的任务。 5.了解检测技术的发展趋势。 ?教学手段多媒体课件,实物演示 ?教学课时1学时 ?教学内容 一.检测(Detection)的定义(联系具体、日常生活的例子,如举“操冲秤象”的例子过程来说明检测的定义) 检测是利用各种物理、化学效应,选择合适的方法与装置,将生产、科研、生活等各方面的有关信息通过检查与测量的方法赋予定性或定量结果的过程。能够自动地完成整个检测处理过程的技术称为自动检测与转换技术。 二.检测技术在国民经济中的地位和作用 举例说明:检测技术是现代化领域中很有发展前途的技术,它在国民经济中起着极 其重要的作用。 三.工业检测技术的内容(了解) 四.自动检测系统的组成(掌握) 1. 系统框图(0-1) 2. 传感器(Transducer)及定义 3. 显示器 4. 数据处理装置 5. 执行机构 6. 自动检测系统举例(0-2) 五.检测技术的发展趋势(举例介绍)

当前,检测技术的发展主要表现在以下几个方面: 1.不断提高检测系统的测量精度、量程范围、延长使用寿命、提高可靠性 2.应用新技术和新的物理效应,扩大检测领域 3.发展集成化、功能化的传感器 4.采用计算机技术,使检测技术智能化 5.发展网络化传感器及检测系统 六.本课程的任务和学习方法 本课程的任务是:在阐明测量基本原理的基础上,逐一分析各种传感器是如何将非电量转换为电量的,并介绍相应的测量转换电路、信号处理电路及各种传感器在工业中的应用。 本课程的学习方法是:要理论联系实际,要举一反三(演示光电开关,提问和讨论可以哪有几种用途,启发!),富于联想,善于借鉴,关心和观察周围的各种机械、电气等设备,重视实验和实训,这样才能学得活、学得好,才有利于提高今后解决实际问题的能力。 留一个问题给学生回去思考:举出课堂上演示过的光电开关共有哪几种用途,第二次上课时,回答得越多越好。

检测技术及仪表课程设计报告

检测技术及仪表课程设计报告 1、1 课程设计目的针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 1、2课题介绍本课设题目以多功能动态实验装置为对象,要求综合以前所学知识,完成此实验装置所需参数的检测。设计检测方案,包括检测方法,仪表种类选用以及需要注意事项,并分析误差产生的原因等等。 1、3 实验背景知识换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界分关注而又至今未能解决的难题之一。 1、4 实验原理 1、4、1 检测方法按对沉积物的监测手段分有:热学法和非传热量的污垢监测法。热学法中又可分为热阻表示法和温差表示法两种;非传热量的污垢监测法又有直接称重法、厚度测量法、压降测量法、放射技术、时间推移电影法、显微照相法、电解法

和化学法。这些监测方法中,对换热设备而言,最直接而且与换热设备性能联系最密切的莫过于热学法。这里选择热学法中的污垢热阻法。 1、4、2 热阻法原理简介表示换热面上污垢沉积量的特征参数有:单位面积上的污垢沉积质量mf,污垢层平均厚度δf和污垢热阻Rf。这三者之间的关系由式表示: (1-1)图1-1 清洁和有污垢时的温度分布及热阻通常测量污垢热阻的原理如下:设传热过程是在热流密度q为常数情况下进行的,图1a为换热面两侧处于清洁状态下的温度分布,其总的传热热阻为: (1-2)图1b为两侧有污垢时的温度分布,其总传热热阻为: (1-3)忽略换热面上污垢的积聚对壁面与流体的对流传热系数影响,则可认为(1-4)于是两式相减得: (1-5)该式表明污垢热阻可以通过清洁状态和受污染状态下总传热系数的测量而间接测量出来。实验研究或实际生产则常常要求测量局部污垢热阻,这可通过测量所要求部位的壁温表示。为明晰起见,假定换热面只有一侧有污垢存在,则有:(1-6)(1-7)若在结垢过程中,q、Tb均得持不变,且同样假定(1-8)则两式相减有: (1-9)这样,换热面有垢一侧的污垢热阻可以通过测量清洁状态和污染状态下的壁温和热流而被间接测量出来。

相关文档
最新文档