解析几何试题及答案

解析几何试题及答案
解析几何试题及答案

解析几何试题及答案https://www.360docs.net/doc/4516959965.html,work Information Technology Company.2020YEAR

解析几何

1.(21)(本小题满分13分)

设λ>0,点A 的坐标为(1,1),点B 在抛物线y x 2=上运动,点Q 满足

BQ QA λ=,经

过Q 点与M x 轴垂直的直线交抛物线于点M ,点P 满足

QM MP λ=,求点P 的轨迹方程。

(21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量

的概念,性质与运算,动点的轨迹方程等基本知

识,考查灵

活运用知识探究问题和解决问题的能力,全面考核综合数学 素养.

解:由MP QM λ=知Q ,M ,P 三点在同一条垂直于x 轴的直 线上,故可设

.)1(),(),,(),,(),,(2020220y x y x y y x x x M y x Q y x P λλλ-+=-=-则则 ①

再设),1,1().(,),,(010111y x y y x x QA BQ y x B --=--=λλ即由

解得???-+=-+=.)1(,

)1(011λλλλy y x x ②,将①式代入②式,消去0y ,得

???-+-+=-+=.

)1()1(,)1(2

211λλλλλλy x y x x ③,又点B 在抛物线2

x y =上,所以211x y =,

再将③式代入211x y =,得222(1)(1)((1)),x y x λλλλλλ+-+-=+-

22222(1)(1)(1)2(1),x y x x λλλλλλλλ+-+-=+-++

2(1)(1)(1)0.x y λλλλλλ+-+-+= 0,(1),210x y λλλ>+--=因同除以得

故所求点P 的轨迹方程为.12-=x y 2.(17)(本小题满分13分)

设直线11221212:x+1:y=k x 1k k k k +20l y k l =-?=,,其中实数满足,

(I )证明1l 与2l 相交;

(II )证明1l 与2l 的交点在椭圆222x +y =1上.

(17)(本小题满分13分)本题考查直线与直线的位置关系,线线相交的判断

与证明,点在曲线上的判断与证明,椭圆方程等基本知识,考查推理论证能力和运算求解能力. 证明:(I )反证法,假设是l 1与l 2不相交,则l 1与l 2平行,有k 1=k 2,代入

k 1k 2+2=0,得.0221=+k 此与k 1为实数的事实相矛盾. 从而2121,l l k k 与即≠相交.

(II )(方法一)由方程组?

??-=+=1121x k y x k y ,解得交点P 的坐标),(y x 为

???

?

??

?

-+=-=.,2121212k k k k y k k x ,而 .144228)()2(222

2212

221212122212122212122

122

2

=++++=-++++=-++-=+k k k k k k k k k k k k k k k k k k y x 此即表明交点.12),(22上在椭圆=+y x y x P

(方法二)交点P 的坐标),(y x 满足1211y k x y k x -=??+=?,12

1,01.y k x x y k x -?

=??≠?+?=??

故知,有

1211

20,20y y k k x x

-++=?+=代入得

,整理后,得,1222=+y x 所以交点P 在椭圆.1222上=+y x

3.19.已知椭圆G :2

214

x y +=,过点(m ,0)作圆221x y +=的切线l 交椭圆G

于A ,B 两点。

(1)求椭圆G 的焦点坐标和离心率;

(2)将||AB 表示为m 的函数,并求||AB 的最大值。 (19)解:(Ⅰ)由已知得,1,2==b a 所以.322--=b a c

所以椭圆G 的焦点坐标为)0,3(),0,3(-,离心率为.2

3==

a c e

(Ⅱ)由题意知,1||≥m .当1=m 时,切线l 的方程1=x ,

点A 、B 的坐标分别为),2

3,1(),23,

1(-此时3||=AB 当m=-1时,同理可得3||=AB

当1||>m 时,设切线l 的方程为),(m x k y -=

由0448)41(.14

),

(222222

2=-+-+?????=+-=m k mx k x k y x m x k y 得;设A 、B 两点的坐

标分别为),)(,(2211y x y x ,则2

22212221414

4,418k

m k x x k m

k x x +-=+=+; 又由l 与圆.1,11

||,1222222+==+=+k k m k km y x 即得

相切

所以2

122

12)()(||y y x x AB -+-=]41)

44(4)41(64)[

1(2

222242

k m k k m k k +--++=2 .3

|

|342

+=

m m 由于当3±=m 时,,3||=AB 因为 ,2|

|3||343

|

|34||2

≤+

=+=

m m m m AB

且当3±=m 时,|AB|=2,所以|AB|的最大值为2. 4.19.(本小题共14分)

已知椭圆22

22:1(0)x y G a b a b

+=>>

的离心率为3

,右焦点为(),

斜率为I 的直线l 与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).

(I )求椭圆G 的方程;(II )求PAB ?的面积. (19)解:(Ⅰ

)由已知得c c a ==

解得a =,又222 4.b a c =-=

所以椭圆G 的方程为22

1.124

x y +

= (Ⅱ)设直线l 的方程为.m x y +=

由???

??=+

+=14

1222y x m x y 得.01236422=-++m mx x

设A 、B 的坐标分别为),)(,(),,(212211x x y x y x

4

00m

m x y =+=;因为AB 是等腰△PAB 的底边, 所以PE ⊥AB.所以PE 的斜率.14

3342-=+

--

=

m m

k 解得m=2。 此时方程①为.01242=+x x 解得.0,321=-=x x 所以.2,121=-=y y 所以|AB|=23.此时,点P (—3,2)到直线AB :02=+-y x 的距离

,2

2

32

|

223|=

+--=

d 所以△PAB 的面积S=.29||21=?d AB

5.17.(本小题满分13分)

已知直线l :y=x+m ,m ∈R 。

(I )若以点M (2,0)为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;

(II )若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线C :x 2=4y 是否相切?说明理由。

17.本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查

函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想。满分13分。

解法一:

(I )依题意,点P 的坐标为(0,m ) 因为MP l ⊥,所以

01120

m

-?=--, 解得m=2,即点P 的坐标为(0,2) 从而圆的半径

22||(20)(02)22,r MP ==-+-= 故所求圆的方程为22(2)8.x y -+=

(II )因为直线l 的方程为,y x m =+所以直线'l 的方程为.y x m =--

由22',4404y x m x x m x y =--?++=?=?得,244416(1)m m ?=-?=- (1)当1,0m =?=即时,直线'l 与抛物线C 相切 (2)当1m ≠,那0?≠时,直线'l 与抛物线C 不相切。

综上,当m=1时,直线'l 与抛物线C 相切;当1m ≠时,直线'l 与抛物线C 不相切。

解法二:(I )设所求圆的半径为r ,则圆的方程可设为22(2).x y r 2-+= 依题意,所求圆与直线:0l x y m -+=相切于点P (0,m ),

则224,

,2m r r ?+=?=解得2,

2 2.m r =???=??所以所求圆的方程为22(2)8.x y -+=

(II )同解法一。 6.18.(本小题满分12分)

如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A 。 (Ⅰ)求实数b 的值;

(Ⅱ)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程。

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1 (,)F x y , 2 (,)F x y 及3 (,)F x y . (1) 2222 1x y a b +=;(2) 22 22 1x y a b -=;(3)2 2y px =;(4) 223520; x y x -++= (5)2 226740 x xy y x y -+-+-=.解:(1) 221 0010 000 1a A b ?? ? ? ?= ? ?- ? ?? ?; 121(,)F x y x a = 221(,)F x y y b =3(,)1F x y =-;(2) 221 0010 0001a A b ?? ? ? ?=- ? ?- ? ?? ? ; 121(,)F x y x a = 221(,)F x y y b =-;3 (,)1F x y =-.(3) 0001000p A p -?? ?= ? ?-?? ; 1(,)F x y p =-;2 (,)F x y y =;3 (,)F x y px =-;(4) 510 20 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+ ;2 (,)3F x y y =-;3 5(,)22 F x y x =+;(5)

222420 x xy ky x y ++--=交于两个共轭虚交点.解:详解 略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4) 4924 k >. §5.2二次曲线的渐进方向、中心、渐进线 1. 求下列二次曲线的渐进方向并指出曲线属于 何种类型的(1) 22230 x xy y x y ++++=;(2) 22342250 x xy y x y ++--+=;(3)24230xy x y --+=. 解:(1)由2 2(,)20 X Y X XY Y φ=++=得渐进方向为:1:1 X Y =-或1:1-且属于抛物型的; (2)由2 2(,)3420 X Y X XY Y φ=++=得渐进方向为:(22):3 X Y i =-且属于椭圆型的; (3) 由(,)20X Y XY φ==得渐进方向为:1:0X Y =或0:1且属于双曲型的. 2. 判断下列曲线是中心曲线,无心曲线还是线心曲线. (1)2 2224630 x xy y x y -+--+=;(2)2 2442210 x xy y x y -++--=; (3)2 281230 y x y ++-=;(4)2 296620 x xy y x y -+-+=.解:(1) 因为2 1110 12I -= =≠-,所以它为中心曲线; (2)因 为2 120 24 I -= =-且121 241-=≠--,所以它为无心曲线; (3)因为2 00002I = =且004 026 =≠,所以它为无心曲线; (4)因为2 930 3 1 I -==-且933312--==-,所以它为线心曲线;

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A B C .23 D .5 9 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .3 B .3 C .3 D .13 3.【2016高考浙江理数】已知椭圆C 1:+y 2=1(m >1)与双曲线C 2:–y 2=1(n >0)的焦点重合,e 1, e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m b >0),四点P 1(1,1),P 2(0,1),P 3(–1, 2),P 4(1,2 )中恰有三点在椭圆C 上. (1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2 212 x y +=上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP =u u u r u u u r 。

解析几何第四版习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面 § 4.1柱面 1、已知柱面的准线为: ? ? ?=+-+=-+++-0225 )2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程 ?? ?=+-+=-+++-0 225 )2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(2 2 2 =-+++--z y y z 即:02 3 5622=----+z y yz z y 此即为要求的柱面方程。 (2)取准线上一点),,(0000z y x M ,过0M 且平行于直线? ??==c z y x 的直线方程为: ??? ??=-=-=? ?? ? ??=+=+=z z t y y t x x z z t y y t x x 0 00000 而0M 在准线上,所以 ?? ?=+--+=-++-+--0 2225 )2()3()1(222t z y x z t y t x 上式中消去t 后得到:026888232 22=--+--++z y x xy z y x 此即为要求的柱面方程。 2 而0M 在准线上,所以: ?? ?+=-++=-) 2(2)2(2 2t z t x t z y t x 消去t ,得到:010******* 22=--+++z x xz z y x 此即为所求的方程。 3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过 又过准线上一点),,(1111z y x M ,且方向为{ }1,1,1的直线方程为: ??? ??-=-=-=? ?? ? ??+=+=+=t z z t y y t x x t z z t y y t x x 1 11111 将此式代入准线方程,并消去t 得到: 013112)(5222=-++---++z y x zx yz xy z y x 此即为所求的圆柱面的方程。 4、已知柱面的准线为{})(),(),((u z u y u x u =γ,母线的方向平行于矢量{}Z Y X ,,=,试证明柱面的矢量式参数方程与坐标式参数方程分别为: S v u Y x +=)( 与 ?? ? ??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。 证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则, v M =' 即 1、求顶点在原点,准线为01,0122 =+-=+-z y z x 的锥面方程。 解:设为锥面上任一点),,(z y x M ,过M 与O 的直线为: z Z y Y x X == 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去参数t ,得: 0)()(222=-+--y z y z z x 即:02 22=-+z y x 此为所要求的锥面方程。 2、已知锥面的顶点为)2,1,3(--,准线为0,12 22=+-=-+z y x z y x ,试求它的方程。

解析几何第四版吕林根课后习题答案第三章(同名3095)

第三章 平面与空间直线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: ?? ? ??++-=-=--=v u z u y v u x 212123 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: ?? ? ??+-=+-=+=v u z u y u x 317521 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: ?? ? ??+-=+=--=v u z u y v u x 235145 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=, }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?

解析几何专题含答案

椭圆专题练习 1.【2017,2】椭圆22 194 x y +=的离心率是 A . 13 B . 5 C . 23 D . 59 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2, 且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A . 6 B . 3 C . 2 D . 13 3.【2016高考理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n –y 2 =1(n >0)的焦点重合, e 1,e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m >的左 焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段 PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为() (A ) 1 3 (B )12 (C ) 23 (D ) 34 5.【2015高考新课标1,理14】一个圆经过椭圆 22 1164 x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为. 6.【2016高考卷】如图,在平面直角坐标系xOy 中,F 是椭圆22 221()x y a b a b +=>>0的右焦 点,直线2 b y = 与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :22 22=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y . (1)22221x y a b +=;(2)22 221x y a b -=;(3)22y px =;(4)223520;x y x -++= (5)2226740x xy y x y -+-+-=.解:(1)221 0010 000 1a A b ?? ? ? ?= ? ?- ? ???;121(,)F x y x a =221 (,)F x y y b =3(,)1F x y =-;(2)2210010 000 1a A b ?? ? ? ?=- ? ?- ? ?? ? ;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -?? ? = ? ? -?? ; 1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+;2(,)3F x y y =-;35 (,)22 F x y x =+;(5)1232 171227342 A ??-- ? ? ?=- ? ? ?-- ??? ;11(,)232F x y x y =- -;217(,)22F x y x y =-++;37(,)342 F x y x y =-+-. 2. 求二次曲线2 2 234630x xy y x y ----+=与下列直线的交点.(1)550 x y --=

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标 §1.3 数量乘矢量 4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→ →→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→ → → → → → → → → → =+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→ AB 与→ BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线. 6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21 AC AB AL += Θ )(21 BC BA BM += )(2 1 CB CA CN += 0)(2 1 =+++++=++∴CB CA BC BA AC AB CN BM AL 7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL +OM +ON . [证明] LA OL OA +=Θ MB OM OB += NC ON OC += )(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量CN BM AL ,,构成一个三角形。 8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB +OC +OD =4OM . [证明]:因为OM = 21 (OA +OC ), OM =2 1 (OB +OD ), 所以 2OM =2 1 (OA +OB +OC +OD ) 所以 OA +OB +OC +OD =4OM . 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半. 图1-5

解析几何练习题及答案

解析几何 一、选择题 1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是( ) A.3 B .-3 C.33 D .-33 解析:斜率k =-1-33- -3 =-33 ,故选D. 答案:D 2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1 D .-2或1 解析:①当a =0时,y =2不合题意. ②a ≠0, x =0时,y =2+a . y =0时,x =a +2 a , 则a +2a =a +2,得a =1或a =-2.故选D. 答案:D 3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( ) A .4 B .21313 C. 51326 D .71020 解析:把3x +y -3=0转化为6x +2y -6=0, 由两直线平行知m =2, 则d =|1--6|62+22=71020. 故选D. 答案:D 4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -5=0 D .x +2y -5=0 解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所

以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C. 答案:C 5.若直线l :y =kx - 3 与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A.??????π6,π3 B .? ????π6,π2 C.? ?? ??π3,π2 D .???? ??π3,π2 解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l 的倾斜角 的取值范围为? ?? ?? π6,π2.故选B. 答案:B 6.(2014泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ) A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0 D .x -2y +5=0 解析:直线2x +y -5=0的斜率为k =-2, ∴所求直线的斜率为k ′=1 2 , ∴方程为y -3=1 2(x -2),即x -2y +4=0. 答案:A 二、填空题 7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________. 解析:由题意知截距均不为零. 设直线方程为x a +y b =1,

解析几何试题及答案

解析几何 1.(21)(本小题满分13分) 设,点的坐标为(1,1),点在抛物线上运动,点满足,经 过点与轴垂直的直线交抛物线于点,点满足 ,求点的轨迹方程。 (21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量 的概念,性质与运算,动点的轨迹方程等基本知识,考查灵 活运用知识探究问题和解决问题的能力,全面考核综合数学 素养. 解:由知Q,M,P三点在同一条垂直于x轴的直 线上,故可设 ① 再设 解得②,将①式代入②式,消去,得 ③,又点B在抛物线上,所以, 再将③式代入,得 故所求点P的轨迹方程为 2.(17)(本小题满分13分) 设直线 (I)证明与相交; (II)证明与的交点在椭圆 (17)(本小题满分13分)本题考查直线与直线的位置关系,线线相交的判断与证明,点在曲线上的判断与证明,椭圆方程等基本知识,考查推理论证能力和运算求解能力. 证明:(I)反证法,假设是l1与l2不相交,则l1与l2平行,有k1=k2,代入k1k2+2=0,得此与k1为实数的事实相矛盾. 从而相交. (II)(方法一)由方程组,解得交点P的坐标为,而 此即表明交点 (方法二)交点P的坐标满足, ,整理后,得 所以交点P在椭圆 .已知椭圆G:,过点(m,0)作圆的切线l交椭圆G于A,B两点。 (1)求椭圆G的焦点坐标和离心率; (2)将表示为m的函数,并求的最大值。 (19)解:(Ⅰ)由已知得所以 所以椭圆G的焦点坐标为,离心率为 (Ⅱ)由题意知,.当时,切线l的方程, 点A、B的坐标分别为此时 当m=-1时,同理可得 当时,设切线l的方程为 由;设A、B两点的坐标分别为,则; 又由l与圆

解析几何第四版吕林根课后习题答案第三章

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为: 0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B --, 从而v 平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面? ? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: Θ }5,2,3{z +-= 而平行于0147=--+z y x 由题3知:0)5(427)3(=+-?+?-z 从而18=z . 5. 求下列平面的一般方程. ⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

解析几何课后答案按

第1章 矢量与坐标 §1.1 矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆 (3)直线; (4)相距为2的两点 §1.3 数量乘矢量 1.要使下列各式成立,矢量,应满足什么条件? (1-=+ (2+=+ (3-=+ (4+=-

(5 = [解]:(1), -=+; (2), +=+ (3 ≥且, -=+ (4), +=- (5), ≥ -=- 2. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , 可 以构成一个三角形. [证明]: )(21 AC AB AL += )(21 BM += 0= 3. 设L 、 [证明] 4. [证明] 但 OB OD OC OA OB OC OA OD +=+-=-∴=-=-= 由于)(OC OA +∥,AC )(OD OB +∥,BD 而AC 不平行于BD , ∴0=+=+OB OD OC OA , 从而OA=OC ,OB=OD 。

5. 如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB ++=4. [证明]:因为OM = 21 (OA +OC ), =2 1 (OB +), 所以 2=2 1 (OA +OB ++OD ) 所以 OA +OB ++OD =4OM . 6. [所以所以显然所以 1. [所以从而 OP =λ+1. 2. 在△ABC 中,设=1e ,AC =2e ,AT 是角A 的平分线(它与BC 交于T 点),试将分解为1e ,2e 的线性组合. 图1-5

解析几何F答案

解析几何F答案

《解析几何》试题(F )答案 一、填空题:(每空2分,共30分) 1、 {} 36,45,48--; 2、 )3 ,3,3( 3 21321321z z z y y y x x x ++++++; 3、4 π或43π ,{}2,1,1-或{}2,1,1--; 4、15-; 5、)1,1,2(-; 6、01844-=-=-z y x 或0 1 241-= -=-z y x ; 7、3; 8、14 1arcsin ,)0,2,2(--; 9、 2; 10、双叶双曲面; 11、锥面; 12、椭圆抛物面; 13、旋转椭球面。 二、(本题16分) 解:(1)矢量设A 在矢量B 方向上的射影为 B B A A prj B ?= ,………………………………………… …………………………2 由于b a A 32+=,b a B -=,所以, 2 2 223),(cos 232))(32(b b a b a a b ab a b a b a B A -∠+=-+=-+=?, (2)

而 ) ,(cos 22))((2 2 222 b a b a b a ab b a b a b a B ∠-+=-+=--=, (2) 又由于1=a ,2=b ,3),(π=∠b a , 所 以 9 -=?B A , 3 2 =B ,…………………………………………… ………………..2 解 得 3 3-=A prj B 。………………………………………… ………………………….2 ( 2 ) 因 为 =?B A ),(sin 55)()32(b a b a a b b a b a ∠=?=-?+ (3) =353 sin 10=π。 所以以A 和B 为邻边的平行四边形的面积为 3 5。 (3) 三、(本题8分) 解:由于四面体的四个顶点为)0,0,0(A ,)6,0,6(B , )0,3,4(C 及)3,1,2(-D ,则以点)0,0,0(A 为始点,分别以点) 6,0,6(B ,)0,3,4(C 及)3,1,2(-D 为终点的矢量是 (1) {} 6,0,6=…………………………………………… (1)

中医谈方论药第三章答案 解析几何第四版课后答案第三章

中医谈方论药第三章答案解析几何第四版课后答案第三章中医谈方论药第三章答案第三章单元测试 1以下哪一部书是李克绍先生的学术代表作 ( ) A. 《胃肠病漫话》 B. 《伤寒论串讲》C. 《伤寒解惑论》 D. 《伤寒论语释》 2以下哪一项不属于《伤寒解惑论》中提出九种治学方法。( ) A. 关于“要理解当时医学上的名词术语” B. 关于“读于无字处和语法上的一些问题” C. 关于“内容不同的条文要有不同的阅读法” D. 关于“要理解寒温之争” 3丁元庆教授认为,《伤寒解惑论》中提出的哪一项既是标准也是方向?( ) A. 关于“要和《内经》《本草经》《金匮要略》结合起来” B. 关于“要与临床相结合” C. 关于“对传统的错误看法要敢破敢立” D. 关于“对原文要一分为二” 4以下哪段话是李克绍先生所说:( ) A. “胸中有万卷书,笔底无半点尘,始可著书;胸中无半点尘,目中无半点尘者,才许作古文疏注。” B. “能否理论联系实际,在临床医疗中能否灵活运用,这是检验学习《伤寒论》成功与否的重要标志。” C. “《伤寒论》言证候不谈病机,述病理而少及生理,出方剂而不言药理” D. “医者书不熟则理不明,理不明则识不清,临证游移,漫无定见,药证不合,难以奏效。”5以下哪段话,是湖北叶发正研究员在《伤寒学术史》中对李克绍先生的评价:( ) A. “他的论著享誉海内外,称得起现代的伤寒著名学家。” B. “高山仰止,景行行止” C. “他对《伤寒论》的研究创当代《伤寒论》注疏之新风,其见解独特、基于临床、前后呼应、逻辑严密;他活泼泼地注疏通解了活泼泼的《伤寒

论》。” D. “先生最反对学术上人云亦云,不求甚解,认为这是自欺欺人的不良学风。先生读书也看前人注解,但决不盲从。” 6以下哪一项,不是丁元庆教授对急性口僻的辨治分析:( ) A. 口僻发生在面部,表现为口眼歪斜。面部是足阳明胃经循行之地。 B. 阳明火热内盛,炙灼足阳明人迎脉,形成人迎脉积。 C. 足阳明经脉受邪,累及经筋,口目为僻。 D. 将葛根汤、葛根芩连汤、黄芪桂枝五物汤等用于急性口僻治疗。 7以下哪一项,不是丁元庆教授对颈动脉粥样硬化的辨治分析( ) A. 颈动脉粥样硬化是卒中的独立危险因素。 B. 阳明火热内盛,炙灼足阳明人迎脉,形成人迎脉积,成为火热致中的中间环节。 C. 足阳明经脉受邪,累及经筋,是发病的重要因素。 D. 提出用葛根芩连汤干预颈动脉粥样硬化及其斑块形成的研究方法。

解析几何大题带答案

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中, M 、N 分别是椭圆 12 42 2=+y x 的顶点,过坐标原点 的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,), 2,0(),0,2(,2,2--= =N M b a 故所以线 段MN 中点的坐标为)2 2 ,1(- -,由于直线PA 平分 线段MN ,故直线PA 过线段MN 的中点,又直 线PA 过坐标 原点,所以 .2 2122 =-- = k

解法二: 设) 0,(),,(,,0,0),,(),,(1112121 2 2 1 1 x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为2 1 ,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 )() (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y 因此.,11 PB PA k k ⊥-=所以 28. (北京理19) 已知椭圆 2 2:1 4 x G y +=.过点(m,0)作圆 221 x y +=的 切线I 交椭圆G 于A ,B 两点. (I )求椭圆G 的焦点坐标和离心率; (II )将AB 表示为m 的函数,并求AB 的最大值. (19)(共14分) 解:(Ⅰ)由已知得,1,2==b a 所以. 322--=b a c 所以椭圆G 的焦点坐标为) 0,3(),0,3(-

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系中,M N分别是椭圆的顶点,过坐标原点的直线交 椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN求k的值; (2)当k=2时,求点P到直线AB的距离d; (3)对任意k>0,求证:PA! PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN故直线PA过线段MN的中点,又直线PA过坐标 原点,所以 (2)直线PA的方程 解得 于是直线AC的斜率为 ( 3)解法一: 将直线PA的方程代入 则 故直线AB的斜率为 其方程为 解得. 于是直线PB的斜率 因此 解法二:设. 设直线PB, AB的斜率分别为因为C在直线AB上,所以从而 因此 28. (北京理19) 已知椭圆?过点(m,0)作圆的切线I交椭圆G于A, B两点. (I )求椭圆G的焦点坐标和离心率; (II )将表示为m的函数,并求的最大值? (19)(共14 分) 解:(I)由已知得 所以 所以椭圆G的焦点坐标为 离心率为 (n)由题意知,? 当时,切线l 的方程,点A、 B 的坐标分别为 此时 当m=- 1 时,同理可得当时,设切线l 的方程为由 设A、B 两点的坐标分别为,则

又由l 与圆 所以 由于当时, 所以. 因为且当时,|AB|=2 ,所以|AB| 的最大值为 2. 32. (湖南理21) 如图7椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。 (I)求C1, C2的方程; (H)设C2与y轴的焦点为M过坐标原点o的直线与C2相交于点A,B,直线MA,MB分别与C1 相交与 D,E. (i )证明:MDL ME; (ii )记厶MAB,A MDE勺面积分别是.问:是否存在直线I,使得?请说明理由。 解:(I)由题意知 故C1, C2的方程分别为 (H) (i )由题意知,直线I的斜率存在,设为k,则直线I的方程为. 由得 设是上述方程的两个实根,于是 又点M的坐标为(0,—1),所以 故MAL MB 即MDL ME. (ii )设直线MA的斜率为k1,则直线MA的方程为解得则点A的坐标为. 又直线MB的斜率为,同理可得点 B 的坐标为于是 由得 解得 则点D的坐标为 又直线ME的斜率为,同理可得点E的坐标为于是. 因此 由题意知, 又由点A、 B 的坐标可知,故满足条件的直线l 存在,且有两条,其方程分别为 34. (全国大纲理21) 已知0为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B 两点,点P 满足 (I)证明:点P在C上; (n)设点P关于点O的对称点为Q证明:A、P、B、Q四点在同一圆上.

解析几何第四版吕林根课后习题答案定稿版

解析几何第四版吕林根 课后习题答案精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

第三章 平面与空间直 线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。

(ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式: 042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B -- , 从而平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面?

解析几何第四版吕林根课后习题答案

解析几何第四版吕林根 课后习题答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

空间解析几何习题答案解析(20210120005111)

WORD 格式整理 . 2 30 x 3 3) 10 、计算题与证明题 1.已知 |a| 1, |b| 4, |c| 5, 并且 a b c 0. 计算 a b b c c a . 解:因为 |a| 1, |b| 4, |c| 5, 并且 a b c 0 所以 a 与 b 同向,且 a b 与 c 反向 因此 a b 0 , b c 0 , c a 0 所以 a b b c c a 0 2.已知 |a b| 3, |a b| 4, 求 |a| |b|. 解: |a b| a b cos 3 (1) |a b| a bsin 4 ( 2) (1)2 2 2 得 a b 2 25 所以 a b 5 4.已知向量 x 与 a (,1,5, 2) 共线 , 且满足 a x 3, 求向量 x 的坐标. 解:设 x 的坐标为 x,y,z ,又 a 1,5, 2 则 a x x 5y 2z 3 又 x 与 a 共线,则 x a 0 ij xy 15 2y 5zi z 2x j 5x y k 0 所以 2y 5z 2 z 2x 2 5x y 2 0 即 29x 2 5y 2 26z 2 20yz 4xz 10xy 0 (2) 又 x 与 a 共线, x 与 a 夹角为 0或 22 yz cos0 1 xa x 2 y 2 z 2 12 52 2 2 1) xy 15 整理得

WORD 格式整理 . 2 30 x 3 3) 10 联立 1、2 、3 解出向量 x 的坐标为 1 ,1, 1 10,2, 5

6.已知点 A(3,8,7) , B( 1,2, 3) 求线段 AB 的中垂面的方程. 解:因为 A 3,8,7 ,B( 1,2, 3) AB 中垂面上的点到 A 、B 的距离相等,设动点坐标为 M x,y,z ,则由 MA MB 得 x 3 2 y 8 2 z 7 2 x 1 2 y 2 2 z 3 2 化简得 2x 3y 5z 27 0 这就是线段 AB 的中垂面的方程。 7. 向量 a , b , c 具有 相 同的 模 , 且两 两 所成 的角 相 等 , 若 a , b 的 坐 标分 别 为 (1,1,0)和(0,1,1), 求向量 c 的坐标. 解: abc r 且它们两两所成的角相等,设为 则有 a b 1 0 1 1 0 1 1 则 cos 设向量 c 的坐标为 x, y,z c x 2 y 2 z 2 r 12 12 02 2 所以 x 2 y 2 z 2 2 3 8.已知点 A(3,6,1) , B(2, 4,1) , C(0, 2,3), D( 2,0, 3), (1) 求以 AB , AC , AD 为邻边组成的平行六面体的体积. (2) 求三棱锥 A BCD 的体积. x1 联立( 1)、(2)、(3)求出 y 0 或 z1 则 a c 1 x 1 y 0 z x y a bcos r r 12 1 r b c 0 x 1 y 1 z y z b c cos r 1 r 2 r 1) 2) 所以向量 c 的坐标为 1,0,1 或 1 4 1 ,, 3,3, 3 3)

相关文档
最新文档