汽车发动机冷却系培训课件

汽车发动机冷却系培训课件
汽车发动机冷却系培训课件

汽车发动机冷却系培训课件

本章内容一、概述二、水冷系三、水冷系主要部件的结构和工作原理四、风冷系五、水冷却系常见故障的诊断与排除六、冷却液冷却水的选择软水:环矿物质较少硬水:易产生水垢、而阻塞水道。破坏水的冷却循环,使发动机过热防冻液防冻液成分水冷却系的组成:水套,水泵,散热器,导风圈,水管,水温表,感温器,节温器,百叶窗等。其中最主要的三大部件是:散热器,水泵,风扇。一、水冷系组成水泵节温器补偿水桶(CA1091)散热器风扇水套水温表分水管(492Q)百叶窗强制式水冷系组成大循环路线小循环路线冷却水大小循环散热器(水箱) 1、功用:散热、盛水 2、构造:上、下水室散热器芯:管片式、管带式(6102)散热器盖:复式活门―闭式水冷系膨胀水箱作用:密封冷却系统,减少了冷却液的散失,使冷却系统内水、气分离,保持压力稳定。避免空气不断进入,给冷却系统内部造成氧化、穴蚀。材料:塑料散热器的材料黄铜铝结构:补偿水桶目前大多数发动机都采用了防冻液作为冷却液。防冻液冰点很低,可避免冬季使用中因结冰而导致散热器、缸体和缸盖被胀裂的现象;防冻液的沸点也要比水高,更有利于发动机的正常工作。为防止防冻液的损失,冷却系设置了补偿水桶,对散热器内的防冻液起到自动补偿的作用。补偿水桶设置于散热器一侧,通过橡胶水管与散热器加水口处的出气口相连。当冷却液受热膨胀至散热器盖的蒸气阀打开时,部分冷却液随着高压蒸气通过水管进入补偿水桶;而当温度降低、散热器内产生真空时,补偿水桶内的冷却液及时回流散热器。 ?? 离心式水泵 1、作用:对水加压,强制水的循环 2、泵水原理(离心式)叶轮旋转,边缘甩水,中心真空吸水 3、离心式水泵构造泵壳:进水口与旁通口、出水口(492Q在水泵支架上)检视孔泵轴、叶轮与轴承水封:胶木垫、

橡胶水封(6102Q为陶瓷-石墨水封)弹簧风扇对空气产生吸力,使之沿轴向流动 ? 结构:由前盖、壳体、主动板、从动板、阀片、主动轴、双金属感温器、阀片轴、轴承、风扇等组成。风扇离合器作用:风扇是发动机功率的消耗者,最大时约为发动机功率的10%。为了降低风扇功率消耗,减少噪声和磨损,防止发动机过冷,降低污染,节约燃料,多采用风扇离合器。

4、节温器功用:自动控制水流量和循环路线,调节水温分类⑴蜡式:可靠寿命长⑵皱纹筒式:可靠性差,工艺复杂冷却系工作原理变更水的循环路线(节温器) 1、蜡式节温器⑴构造壳与支架、阀门、膨胀筒:橡胶、芯、感应体、石蜡⑵工作原理 76℃固体石蜡体积小副阀开水经旁通管小循环89℃液体石蜡体积大主阀开水流散热器大循环 76~89℃副阀渐关主阀渐开大小循 2、皱纹筒式节温器 1、构造:壳与支架、主副阀门、皱纹筒 2、工作原理 70℃主阀门关副阀门开小循环 83℃主阀门开副阀门关大循环 70~83℃主阀门渐开副阀门渐关大小循环(2)风扇离合器的类型硅油风扇离合器:利用一定温度时,硅油体积变化带动离合器结合。机械式风扇离合器:利用记忆弹簧的形状记忆效应及其一定温度时形状变化。电磁风扇离合器:达到一定温度时,水温感应开关的电路接通,离合器结合。 1)硅油风扇离合器⑴构造:壳体与前盖、主、被动板(进、回油孔)、阀片与感温器⑵工作原理 a.温度低,感温器不变阀片不动,进油孔关工作腔无油,离合器分离; b.温度高,感温器变形阀片转动,进油孔开工作腔进油,离合器接合。 2)电磁风扇离合器 1、构造:主动部分:电磁壳体、线圈、滑环、摩擦片从动部分:衔铁、风扇轮毂 2、工作原理 a.水温低线圈断电电磁壳体不吸衔铁离合器分离;

b.水温高线圈通电电磁壳体吸住衔铁离合器接合风冷却系统冷却强度的调节:方法有:改变通过散热器的空气的流量和改变冷却水的流量。 1、改变通过散热器的空气流量:利用百叶窗和各种自动风扇离合器来实现改变通过散热器的空气流量。(1)、百叶窗:在散热器前面,由驾驶员控制,冷天时,

先关闭发动。水温升的快。(2)、风扇离合器: 2、改变通过散热器的冷却水的流量:节温器有:折叠式、蜡式。(1)、折叠式: 3.4发动机过热的诊断参考程序第四节水冷却系常见故障的诊断与排除现象发动机的冷却液充足,但在行驶中冷却液温度超过363K,直至沸腾(谷称“开锅”);或运行中冷却液在363K以上,如一停车,冷却液立刻沸腾。原因主要原因有两个方向:首先是冷却系的散热能力下降,其次是发动机产生的热量增加。冷却系本身的原因有:百叶窗开度不足。风扇皮带太松或因油污面打滑。散热器出水管老化吸瘪或内脱层堵塞。冷却风扇装反,或风扇规格不对。电动风扇不转,或硅油风扇离合器损坏,使风扇不转或转速过低。节温器失效,使冷却液大循环受阻。水套水垢沉积过多,或分水管堵塞,分水不畅。散热器内芯管堵塞,或散热片倾倒过多。水泵损坏。气抽屉垫烧穿,或缸盖出现裂缝,使高温气体进入冷却系。其他系统的原因有:点火时间过迟。混合气过浓或过稀燃烧室积炭过多。发动机机油量不足,或机油散热器工作不良。汽车使用条件的影响(如道路、气候、风向和负荷等)。故障诊断与排除方法

(1)先检查百叶窗是否开度不足。若开度足够,再检查风扇的转动情况及风扇皮带是否打滑。如风扇不转或转速太低,可调整风扇皮带松紧度,或检查硅油风扇离合器,或检查风扇电机及温控开关的好坏,若损坏则应更换新件。(2)若风扇转动正常,再用手分别感觉散热器和发动机的温度。若散热器温度低,而发动机温度高,说明冷却液循环不良。应检查散热器出水胶管是否被吸瘪,或胶管内壁有脱层堵塞,若胶管被吸瘪应更换新管。(3)如散热器出水良好,再拆松散热器进水管,起动发动机试验,冷却液应有力排出。否则,说明水泵或节温器有故障。或进一步拆下节温器试验,若散热器的进水管仍不排水,则说明水泵有故障;若拆下节温器后,散热器的进水管变得排水有力了,则故障就在节温器,应换用新件。(4)检查散热器各部温度是否均匀。如果冷热不均,说明散热器内部芯管有堵塞或散热片倾倒过多。(5)检查发动机各部温度是否均匀。如发

动机的后端温度高于前端,则说明分水管已损坏或堵塞,应换用新件。(6)若以上检查正常,在冷却液温度过高的同时,发动机动力明显下降,并从散热器的加水口处涌出高温气体或从排气管处排出水蒸汽,则就检查气缸垫是否烧坏。(7)对于长期未清洗水垢的发动机,若出现过热无法排除时,应考虑水套内积垢太多,可采用化学溶剂法清洗水垢。(8)此外,还应检查是否由其他系统的原因引起过热。(9)若发动机及冷却液温度正常,冷却液位也正常,而水温表指示水温过高,或水温过高报警灯点亮,则为水温表、报警灯电路或元件故障。

3.2 冷却液不足引起发动机过热

现象发动机冷却系容纳不了规定的冷却液量,或在运行中冷却液消耗异常,使发动机过热。原因(1)冷却水套或散热器积垢过多或堵塞。(2)散热器漏水。(3)散热器盖的进、排气阀失效。(4)水泵水封不良或叶轮密封垫圈磨损过甚而漏水。(5)冷却系其他部位漏水。(6)气缸垫水道孔与气缸相通。(7)个别进气通道破裂漏水。(8)气门室内壁破裂漏水。故障诊断与排除方法(1)在发动机运转时,首先检查冷却系外部是否漏水,可通过紧固排除漏水部位。(2)水泵泄水孔漏水,常被误认为散热器出水管漏水,可用一干燥洁净木条伸到水泵的泄水孔处,若木条上有水,则说明水泵漏水。(3)若外部不漏水,则应考虑为冷却系内部漏水。若发动机运转时,排气管排出大量的水蒸汽,或拔出机油尺发现机油中有冷却液,则为水套破裂或气缸垫水道孔破损,致使冷却液漏入曲轴箱、气缸内或进、排气道内。 3.3 发动机突然过热现象冷车起动后,发动机冷却液温度迅速升高而产生沸腾现象或汽车行驶中发动机突然过热。原因(1)风扇皮带断裂。(2)水泵轴与叶轮脱转。(3)冷却系严重漏水。(4)节温器主阀门脱落致使冷却液不能进行大循环。(5)气缸垫烧穿,或缸盖出现裂缝,高温气体进入冷却系。故障诊断与排除方法若汽车在行驶中发动机突然过热,且冷却液沸腾后,切莫使发动机立即熄火,应怠速运转散热5min,待冷却液温度下降后,再补加冷却液。(1)首先检查冷却

液数量是否充足,再检查风扇是否转动。若风扇停转,应察看风扇皮带是否断裂;硅油风扇离合器或电磁式风扇离合器是否损坏;若为电动风扇,应检查冷却液温度开关、风扇电机及其电路是否损坏。(2)若风扇运转正常,冷却液数量足够,可用手感觉散热器和发动机的温度,如发动机温度很高,而散热器温度很低,说明水泵损坏或节温器失灵。(3)若冷态发动机起动后,水箱口立即向外溢水并排出大量气泡,呈现冷却液沸腾状态,多为气缸套、气缸盖出现裂纹或气缸垫烧蚀,使高温高压气体窜入水套。此时,应分解缸盖、缸体,焊修裂纹或更换气缸套、气缸垫。 3.4发动机过热的诊断参考程序 3.5 冷却液温度过低

1.现象:长时间冷却液温度过低(特别是冬天),发动机起动困难,行驶无力。

2.原因: 1)冷却强度调节装置(保温罩、百叶窗、节温器、风扇离合器)不能正常工作; 2)水温指示系统故障。

3.故障诊断与排除方法: 1)百叶窗、保温罩的直观检查; 2)节温器的检查(打开水箱盖,看水是否进行大循环),并排除故障; 3)风扇离合器的检查(看风扇是否在转),并排除故障; 4)检查水温指示线路。 3.6冷却液消耗异常: 1.现象:冷却液消耗异常,或在冬天出车前,虽已加满冷却液,但途中明显减少。 2.原因: 1)泄漏:散热器、进、出水管、水泵(水封、叶轮垫圈)、气缸垫水道孔与气缸窜通; 2)冬天停车后水末放净而结冰。 3.故障诊断与排除方法:先检查外部漏水,再检查内部漏水(排气管排出白色水蒸汽),然后检查水箱是否结冰(有时放水开关被冻结

在打开位置)。第四节冷却系一般检查

(一)散热器和水套的检查:主要检查它们外部是否有泥土、油污、散热片变形等;内部主要检查有水垢、油污等;可用化学溶剂清洗。水垢产生的原因:加注了硬水油污产生的原因:水道与油道相通。(二)冷却液数量的检查:方法:膨胀水箱的冷却液面应在“低”与“充满”之间液面过低的危害:容易开锅原因:有某处出现渗漏,应及时进行检修。(三)风扇皮带张紧力的检查:危害:过松:打滑,使水泵和发电机的转速下降,影响它们的工作,并加速皮

带的磨损;过紧:水泵轴承、发电机轴承、风扇皮带磨损加快。调整检查方法:移动发电机的支架(或惰轮的移动)来实现,调整到用大拇指按下皮带其下移量为6~13毫米为合适。(四)硅油离合器的检查:方法:用螺丝刀插入双金属感温弹簧的末端,并反时钟转动弹簧,直到感觉被拌住为止,这时测量其外端与固定槽之间的距离应为13MM,同时阀片轴应能随弹簧的转动而转动。假如出现故障,可用风扇后面的锁止块来直接驱动,待回到驻地后再修理。(五)节温器的检查:方法:将节温器置于热水中,然后加热,检查阀门的开启和完全开启的温度,以及完全开启时阀门的升程。其工作参数见P33表5-1。鉴于节温的重要性(若不能进行大循环会导致发动机过热而拉缸),必须定期检查(一般为5000KM),必要时予以更换。冷却系一般性检测冷却系主要故障是发动机过热。过热现象主要有:冷却液充足但发动机过热,冷却液不足引起发动机过热,发动机突然过热等。 3.1 冷却液充足但发动机过热离心式水泵工作原理

当叶轮旋转时,水泵中的水被叶轮带动一起旋转,在离心力作用下,水被甩向叶轮边缘,然后经外壳上与叶轮成切线方向的出水管压送到发动机水套内。与此同时,叶轮中心处的压力降低,散热器中的水便经进水管被吸进叶轮中心部分。 3、风扇功用:风扇通常安排在散热器后面并与水泵同轴。用来提高流经散热器的空气流速和风量,增强散热器的散热能力,同时对发动机其他附件也有一定的冷却作用。特点:车用发动机的风扇轴流式和离心式。轴流式风扇所产生的风,其流向与风扇轴平行;离心式风扇所产生的风,其流向为径向。轴流式风扇效率高,风量大,结构简单,布置方便。因而在车用发动机上得到了广泛的应用。车用发动机采用轴流式风扇的三种型式结构特点:叶片多用薄钢板压制而成,为4~6片,叶片间夹角一般不相等。叶片与其旋转平面成30°~45 °的安装斜角。整体风扇在轿车和轻型载货汽车上应用较多。近年来轿车上还采用了电动风扇。风扇常和发动机一起由曲轴带轮通过V带驱动。为调节V 带的张紧程度,通常将发电机的支架做成可调节的。可调节支架风扇的驱动V

带张紧装置蜡式节温器皱纹筒式节温器节温器装在冷却水循环的通路中,根据发动机负荷大小和水温的高低自动改变水的循环流动路线,以达到调节冷却系的冷却强度。节温器有蜡式和乙醚皱纹筒式两种,目前多数发动机采用蜡式节温器。推杆弹簧主阀门石蜡胶管外壳节温器结构与工作原理节温器分蜡式节温器与折叠式节温器两种。蜡式节温器又分单阀型与双阀型,如图7-16所示是东风EQ6100-1型发动机单阀型蜡式节温器结构示意图。推杆3的上端固定于支架1的中心处,下端插入胶管5的中心孔中。胶管与节温器外壳7之间形成的腔体内装满精致石蜡4。常温时,石蜡呈固态,弹簧8将主阀门2推向上方,使之压紧在阀座上,主阀门关闭,副阀门6上移而开启,来自发动机气缸盖出水口的冷却水,经水泵又流回气缸体水套中,进行小循环冷却方式。当发动机水温低于76oc时,节温器主阀门关闭,副阀门打开,冷却水不流经散热器,只是在水套与水泵之间循环,称为发动机的小循环冷却方式,可加快冷起动后暖机过程。当发动机水温升高时,石蜡逐渐变成液态,其体积膨胀,迫使胶管压缩,而对推杆锥状端头产生向上举力,但推杆上端固定,因此其反作用力迫使胶管、节温器外壳向下移动,主阀门逐渐开大,副阀门逐渐关小。当发动机水温高于76oc时,主阀门开启,水温超过86 oc时,主阀门完全打开,副阀门完全关闭。此时来自气缸盖出水口的冷却水沿出水管全部进入散热器,称为发动机的大循环冷却方式。小循环大循环当水温低于358K时,主阀关,副阀开―小循环。当水温高于358K时低于378K时,主阀渐开,副阀渐关―大小循环同时进行。当水温高于378K时,主阀全开,副阀关―大循环。蜡式节温器工作情况一般水冷系的冷却水都是由机体流进,从气缸盖流出。大多数节温器布置在气缸盖出水管路中,如前所述。这种布置方式的优点是结构简单,容易排除水冷系中的气泡。其缺点是节温器在工作时会产生振荡现象。例如,在冬季起动发动机时,由于冷却水温度低,节温器关闭。冷却水在进行小循环时,温度很快升高,节温器开启。与此同时,散热器内的低温冷却水流入机体,

使冷却水又冷了下来,节温器重新关闭,等到冷却水再度升高,节温器又再次打开,直到全部冷却水的温度稳定之后,节温器才趋于稳定不再反复开闭。这种现象称为节温器的振荡现象。当出现这种现象时,将增加汽车的燃油消耗量。

节温器损坏(如节温器壳体破损)时会导致乙醚或石蜡漏失,发动机会因过热而开锅。此外,发动机过热的原因也可能是驱动水泵叶轮旋转的冷却风扇皮带出现打滑现象,造成水泵、冷却风扇的工作能力下降,需要经常调整。发动机因过热而开锅时,切不可将散热器盖马上打开补充冷却水,因为密封加压的强制循环水冷系的压力高于环境大气压力,冷却系中冷却水的沸点高于100oc,如果立刻将高于100oc的冷却系压力降低至环境大气压力,冷却系中的热水立即沸腾,大量的热蒸汽涌出会烫伤人。 5、风扇离合器和温控开关功用:减小风扇噪声,改善低温起动性能,节约燃料和降低排放,自动调节发动机的冷却强度。(1)风扇离合器主要有硅油式和电磁式等。冷却水温度不高时,风扇随离合器壳体一起空转打滑;当发动机气流温度超过338K时,离合器处于接合状态,风扇转速提高。当发动机气流温度低于308K时,风扇离合器又回到分离状态。硅油风扇离合器(3)风扇温控开关功用:在冷却水温度升高时,其内部的温控介质膨胀而使风扇以高速运转,加速了发动机的冷却;相反,若在冷却水温度降低的时,介质收缩而使风扇低速运转或停下来,实现了对散热器电动机风扇的控制。(4)百叶窗功用:通过调节流经散热器的空气量来调节冷却系的冷却强度,使发动机在适宜的温度下工作。第四节风冷系利用高速空气流直接吹过气缸盖和气缸体的外表面,把从气缸内部传出的热量散发到大气中去,以保证发动机在最有利的温度范围内工作。一、工作机理:二、结构发动机气缸和气缸盖采用传热较好的铝合金铸成,结构简单、重量轻、故障少,无需特殊保养,但是由于材料质量要求高,冷却不够均匀,工作噪音大等缺点,目前在汽车上很少使用。第五节变速器机油冷却器一、采用的原因:在自动变速器中,机油因工

作频繁而过热,则会降低变速器的性能,甚至造成变速器损坏。所以,在装有自动变速器的汽车中必须装置变速器机油冷却器。二、构造:实际上就是一根冷却管。三、位置及冷却:置于散热器的出水室内,由冷却液对流过冷却管的变速器机油进行冷却。小结冷却系作用水冷系大、小循环主要部件散热器水泵节温器风冷系与水冷系的区别变速器机油冷却器采用的原因 * * 第七章发动机冷却系刘存山一、冷却系功用使发动机得到适度的冷却,并保持其在最适宜地温度范围内工作。第一节概述 1 降低充气效率,使发动机功率下降; 2爆燃的倾向加大,使零件因承受额外冲击性负荷而造成早期损坏; 3 运动件的正常间隙被破坏,运动阻滞,磨损加剧,甚至损坏; 4 润滑情况恶化,加剧了零件的摩擦磨损; 5 零件的机械性能降低,导致变形或损坏。过热 1 发动机若过冷,则散热损失增加;

2 对柴油机,机油粘度较大,摩擦功率损失较大,导致发动机动力性、经济性指标也降低;对汽油机,已汽化的燃油又凝结并流到曲轴箱,稀释了机油而影响润滑,结果也使发动机动力性、经济性指标下降;

3 发动机过冷,进入气缸的混合气或空气温度低而点燃困难,造成发动机功率下降、油耗上升;

4 温度低,润滑油粘度增大,零件磨损加剧。过冷后果冷却程度二、不正常冷却对发动机的影响三、冷却系的分类水冷风冷由于冷却不足,已被淘汰水冷系 ?是以水作为冷却介质,把发动机受热零件吸收的热量散发到大气中去。风冷系 ?是以空气作为冷却介质,把发动机受热零件吸收的热量散发到大气中去。四、正常冷却时的发动机温度气缸盖和气缸壁的温度分别为423~453K和433~473K.(0度=-273K)风冷系气缸盖内冷却水温度在80~100℃, 缸壁的温度不超过200~300℃,缸盖的温度大约为300~400℃。水冷系温度范围系统五、水冷系与风冷系的优缺点及适用范围系统水冷系风冷系适用范围优缺点比较水冷系的优点:冷却效果好,布置紧凑,使用方便,噪声小。:目前的水冷系一般由水泵强制给水(或冷却液)在冷

却系中进行循环流动,故称强制循环水冷系广泛用于汽车发动机冷却效果差,噪音大,功耗大基本淘汰七、冷却液的特点和选用:1、冷却水的选择:2、防冻液:3、冷却液:防腐,防结垢,防氧化,防冻,提高沸点等功能。八、冷却水和防冻液 1、冷却水汽车发动机中使用的冷却水应是清洁的软水,如雨水,自来水等;而井水、河水等硬水中含有矿物质,在高温下易生成水垢,不能作为发动机冷却水。 2、防冻液功用:为防止在冬季寒冷地区,因冷却水结冰而发生散热器、气缸体、气缸盖变形或胀裂的现象,在冷却水中加入一定量的防冻液以达到降低冰点、提高沸点的目的。乙二醇或丙二醇来降低冷却液的冰点 1.乙二醇是无色略有甜味的粘性液体,沸点为197摄氏度,可以与任何比例混合 2.丙二醇溶液,也可以与冷却水按一定比例混合形成混合液,常加入防腐剂、着色剂。第二节水冷系一、水冷系的组成水冷却系是以水作为冷却介质,把发动机受热零件吸收的热量散发到大气中去。目前汽车发动机上采用的水冷系大都是强制循环式水冷系,利用水泵强制水在冷却系中进行循环流动。水冷系由散热器、水泵、风扇、冷却水套和温度调节装置等组成。冷却水在冷却系内的循环流动路线有两条,一条为大循环,另一条为小循环。所谓大循环是水温高时,水经过散热器而进行的循环流动;而小循环就是水温低时,水不经过散热器而进行的循环流动,从而使水温升高。小循环大循环节温器冷却系的大小循环实质通常利用节温器来控制通过散热器冷却水的流量。节温器装在冷却水循环的通路中(一般装在气缸盖的出水口),根据发动机负荷大小和水温的高低自动改变水的循环流动路线,以达到调节冷却系的冷却强度。当发动机在正常热状态下工作时,即水温高于80℃,节温器阀门打开了通往散热器的通道,同时关闭了通往水泵的旁通管,冷却水全部流经散热器,形成大循环;当冷却水温低于70℃时,节温器阀门关闭了通往散热器的通道,同时打开了通往水泵的旁通管,水套内的水只能由旁通孔流出经旁通管进入水泵,又被水泵压入发动机水套,此时冷

却水并不流经散热器,只在水套与水泵之间进行小循环,从而防止发动机过冷;当发动机的冷却水温在70~80℃范围内,通往散热器的通道和通往水泵的旁通管均处于半开闭状态,此时一部分水进行大循环,而另一部分水进行小循环。第三节、水冷系的主要部件 1、散热器散热器又称为水箱,由上水室、散热器芯和下水室等组成。安装在发动机前的车架横梁上。其作用是将冷却水在水套中所吸收的热量散发至外界大气,使水温下降。上水箱散热器盖下水箱散热器芯出水管口进水管安装处常用散热器芯的结构型式(1)管片式由若干扁形或圆形冷却管组成。空气吹过扁形冷却管和散热片,使管内流动的水得到冷却。管片式散热器因结构刚度较好广为汽车发动机所使用。(2)管带式由若干扁平冷却管组成水管与散热器相间排列,在散热器带上常开有形似百叶窗的孔,以破坏气流在散热器表面上的附面层,提高散热能力。管带式管片式散热器盖汽车上广泛采用闭式水冷系,该水冷系的三热气盖具有空气――蒸汽阀,可自动调节冷却系内部压力,提高冷却效果。压力阀真空阀压力阀弹簧真空阀弹簧盖发动机热态正常时,两阀门关闭,将冷却系与大气隔开。因水蒸气的产生使冷却系内的压力稍高于大气压力,提高了冷却水的沸点,改善了冷却效能。当散热器内部压力达到126~137Kpa时,蒸汽阀开启而使水蒸汽从通气孔排出;当水温下降,冷却系内部的真空度低于10~20Kpa时,空气阀打开,空气从通气孔进入冷却系,以防散热器及芯管被大气压瘪。 1-散热器盖 2-上贮水室 3-导风罩 4-散热器总成 5-下贮水室 6-散热器出管 7-散热器进水管 8-补偿水桶 2、水泵水泵的作用对冷却水加压,使之在冷却系中循环流动。汽车上广泛使用离心式水泵。它具有结构紧凑、泵水量大及因故障而停止工作时,不妨碍水在冷却系内部自然循环等优点。 *

汽车发动机冷却系统的检修

题目:汽车发动机冷却系统的检修 所在院系青海交通职业技术学院 专业班级汽车运用技术0901班 学号 48 学生姓名徐国良 指导教师孙成宁 2011 年06月09 日 目录 1摘要 (1) 2 冷却系统的概述 (2) 3 冷却系统的组成 (2) 4 冷却系统的构造 (2) 5 冷却系统的工作原理 (3) 6 冷却系统的检修 (4) 6.1散热器的检修 (4) 6.2节温器的检修 (5) 6.3水泵的检修 (5) 6.4风扇的检修 (5) 总论 (6) 谢辞 (6) 参考文献 (6)

1摘要 本文论述了冷却系统的作用、组成、主要构造、工作原理、日常维护、故障的检测步骤和排除方法,并举例做出简单介绍。 Keywords: cooling system cooling system to maintain the temperature set point cooling system intelligent control 2 冷却系统的概述 虽然汽油发动机已进行了大量改进,但是在将化学能转换成机械能的过程中,汽油发动机的效率仍然不高。汽油中的大部分能量(约70%)被转换成热量,而散发这些热量则是汽车冷却系统的任务。冷却系统的主要工作是将热量散发到空气中以防止发动机过热,但冷却系统还有其他重要作用。汽车中的发动机在适当的高温状态下运行状况最好。如果发动机变冷,就会加快组件的磨损,从而使发动机效率降低并且排放出更多污染物。 因此,冷却系统的另一重要作用是使发动机尽快升温,并使其保持恒温。燃料在汽车发动机内持续燃烧。燃烧过程中产生的热量大部分从排气系统中排出,但仍有部分热量滞留在发动机中,从而使其升温。当冷去液的温度约为93℃时,发动机达到最佳运行状态。在这个温度下:燃烧室的温度足以使燃料完全蒸发,因此可以更好地使燃料燃烧并减少气体排放。如果用于润滑发动机的润滑油较稀薄,粘稠度较低,则发动机零件可以更灵活地运转,而发动机在围绕自身部件旋转的过程中消耗的能量也将减少。金属零件更不易磨损。 3 冷却系统的组成 水冷却系统一般由散热器、节温器、水泵、水道、风扇等组成。散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器又分为横流式和垂直流动两种。 水泵和节温器 发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,推动冷却液在整个系统内循环。这些冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。可以将节温器看作一个阀门,其原理是利用可随温度伸缩的材料(石蜡或乙醚之类的材料)做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液小循环。 空气的流动 为了提高散热器的冷却能力,在散热器后面安装风扇强制通风。为了调节散热器的冷却力,要在散热器上装上活动百页窗以控制风力进入。现在已经普遍使用风扇电磁离合器或者电子风扇。电子风扇由电动机直接带动,由温度传感器控制电动机运转。 散热器。 冷却介质 虽然我们称其为水冷但冷却介质并不是单纯的水,而是由水、防冻液和各种专门用途的防腐剂组成的混合物,也称为冷却液。这些冷却液中的防冻液含量占30%~50%,提高了液体的凝固点,防止在低温下结冰而损坏发动机。 4 冷却系统的构造

汽车发动机原理课后答案

第一章 1简述发动机的实际工作循环过程。 答: 2画出四冲程发动机实际循环的示功图,它与理论示功图有什么不同?说明指示功的概念和意义。 理论循环中假设工质比热容是定值,而实际气体随温度等因素影响会变大,而且实际循环中还存在泄露损失.换气损失燃烧损失等,这些损失的存在,会导致实际循环放热率低于理论循环。指示功时指气缸内完成一个工作循环所得到的有用功Wi,指示功Wi反映了发动机气缸在一个工作循环中所获得的有用功的数量。 4什么是发动机的指示指标?主要有哪些? 答:以工质对活塞所作之功为计算基准的指标称为指示性能指标。它主要有:指示功和平均指示压力.指示功率.指示热效率和指示燃油消耗率。 5什么是发动机的有效指标?主要有哪些? 答:以曲轴输出功为计算基准的指标称为有效性能指标。主要有:1)发动机动力性指标,包括有效功和有效功率.有效转矩.平均有效压力.转速n和活塞平均速度;2)发动机经济性指标,包括有效热效率.有效燃油消耗率;3)发动机强化指标,包括升功率PL.比质量me。强化系数PmeCm. 第二章

1为什么发动机进气门迟后关闭.排气门提前开启?提前与迟后的角度与哪些因素有关/ 答:进气门迟后关闭是为了充分利用高速气流的动能,从而实现在下止点后继续充气,增加进气量。排气门提前开启是由于配气机构惯性力的限制,若在活塞到下止点时才打开排气门,则在排气门开启的初期,开度极小,废弃不能通畅流出,缸内压力来不及下降,在活塞向上回行时形成较大的反压力,增加排气行程所消耗的功。在发动机高速运转时,同样的自由排气时间所相当的曲轴转角增大,为使气缸内废气及时排出,应加大排气提前角。 2四冲程发动机换气过程包括哪几个阶段,这几个阶段时如何界定的? 答:1)自由排气阶段:从排气门打开到气缸压力接近于排气管内压力的这个时期。 强制排气阶段:废气是由活塞上行强制推出的这个时期。 进气过程:进气门开启到关闭这段时期。 气门重叠和燃烧室扫气:由于排气门迟后关闭和进气门提前开启,所以进.排气门同时

论述汽车发动机冷却系统有几种形式,各有什么特点

题目:论述汽车发动机冷却系统有几种形式,各有什么特点 汽车冷却系统 冷却系统的功用是带走引擎因燃烧所产生的热量,使引擎维持在正常的运转温度范围内。引擎依照冷却的方式可分为风冷系及水冷系,风冷系是靠引擎带动风扇及车辆行驶时的气流来冷却引擎;水冷系则是靠冷却水在引擎中循环来冷却引擎。不论采何种方式冷却,正常的冷却系统必须确保引擎在各样行驶环境都不致过热。 水冷系 水冷系是以冷却液为冷却介质,通过冷却液将高温零件的热量带走,再以一定的方式散发到大气中去,使发动机的温度降低而进行冷却的一系列装置。通常,冷却液在水冷系内的循环流动路线有两条,一条为大循环,另一条是小循环,两者由冷却液是否流经散热器而进行区别,冷却强度也不同。小循环是指冷却水仅在引擎内循环,而大循环则是冷却水在引擎与热交换器 (水箱) 间循环。 冷却系统的循环汽车发动机的冷却系为强制循环水冷系,即利用水泵提高冷却液的压力,强制冷却液在发动机中循环流动。冷却系主要由水泵、散热器、冷却风扇、补偿水箱、节温器、发动机机体和气缸盖中的水套以及附属装置等组成。其工作过程为:水泵将冷却液由机外吸人并加压,使之经分水管流入发动机缸体水套。这样,冷却水从气缸壁吸收热量,温度升高;流到气缸盖水套,再次受热升温后,沿水管进入散热器内。经风扇的强力抽吸,空气流由前向后高速通过散热器。最终使受热后的冷却水在流经散热器的过程中,其热量不断地通过散热器,散发到大气中去。同时,使水本身得到冷却。冷却了的冷却液流到散热器的底部后,又在水泵的加压下,经水管再压入水套,如此不断地循环。从而使得发动机在高温条件下工作的零件不断地得到冷却,从而确保发动机的正常工作。因此水冷却形式具有冷却可靠、布置紧凑、噪声小、使用方便等优点。 风冷系 这种冷却方法不是在发动机中进行液体循环,而是通过发动机缸体表面附着的铝片对气缸进行散热。一个功率强大的风扇向这些铝片吹风,使其向空气中散热,从而达到冷却发动机的目的。 风冷系以空气为冷却介质,利用汽车行驶时的高速空气流,将高温零件表面的热量吹散到大气中去。风冷系的汽车发动机一般采用由传热性能较好的铝合金铸成的汽缸和汽缸盖,为了增大散热面积,各汽缸一般都分开制造,并且在汽缸和汽缸盖表面分布许多均匀的散热片,以增大散热面积。为了有效地利用空气流和保证各汽缸冷却均匀,有的发动机上装有导流罩及分流板等部件。风冷系具有结构简单、重量轻、故障少、无需特殊保养、维护简便、对地理环境和气候环境

汽车发动机原理课后习题答案

第二章发动机的性能指标 1.研究理论循环的目的是什么?理论循环与实际循环相比,主要作了哪些简化? 答:目的:1.用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,明确提高以理论循环热效率为代表的经济性和以平均有效压力为代表的动力性的基本途径 2.确定循环热效率的理论极限,以判断实际内燃机经济性和工作过程进行的完善程度以及改进潜力 3.有利于分析比较发动机不同循环方式的经济性和动力性 简化:1.以空气为工质,并视为理想气体,在整个循环中工质的比热容等物理参数为常数,均不随压力、温度等状态参数而变化 2.将燃烧过程简化为由外界无数个高温热源向工质进行的等容、等压或混合加热过程,将排气过程即工质的放热视为等容放热过程 3.把压缩和膨胀过程简化成理想的绝热等熵过程,忽略工质与外界的热交换及其泄露等的影响4.换气过程简化为在上、下止点瞬间开和关,无节流损失,缸内压力不变的流入流出过程。 2.简述发动机的实际工作循环过程。 四冲程发动机的实际循环由进气、压缩、燃烧、膨胀、排气组成3.排气终了温度偏高的原因可能是什么? 有流动阻力,排气压力>大气压力,克服阻力做功,阻力增大排气压力增大,废气温度升高。负荷增大Tr增大;n升高Tr增大,∈+,膨胀比增大,Tr减小。 4.发动机的实际循环与理论循环相比存在哪些损失?试述各种损失

形成的原因。 答:1.传热损失,实际循环中缸套内壁面、活塞顶面、气缸盖底面以及活塞环、气门、喷油器等与缸内工质直接接触的表面始终与工质发生着热交换 2.换气损失,实际循环中,排气门在膨胀行程接近下止点前提前开启造成自由排气损失、强制排气的活塞推出功损失和自然吸气行程的吸气功损失 3.燃烧损失,实际循环中着火燃烧总要持续一段时间,不存在理想等容燃烧,造成时间损失,同时由于供油不及时、混合气准备不充分、燃烧后期氧不足造成后燃损失以及不完全燃烧损失 4.涡流和节流损失实际循环中活塞的高速运动使工质在气缸产生涡流造成压力损失。分隔式燃烧室,工质在主副燃烧室之间流进、流出引起节流损失 5.泄露损失活塞环处的泄漏无法避免 5.提高发动机实际工作循环效率的基本途径是什么?可采取哪些措施? 答:减少工质比热容、燃烧不完全及热分解、传热损失、提前排气等带来的损失。措施:提高压缩比、稀释混合气等 6.为什么柴油机的热效率要显著高于汽油机? 柴油机拥有更高的压缩比, 7.什么是发动机的指示指标?主要有哪些? 以工质在气缸内对活塞做功为基础,评定发动机实际工作循环质量的

汽车发动机冷却系

汽车发动机冷却系

汽车发动机冷却系系统维护摘要:汽车的发动机是动力的来源,它的出现给汽车带来了强劲的动 力,它就像人的心脏一样那样重要,但是人不只是有心脏,还有别的器官,心脏在这些器官的辅助下,才能发挥它原本的能力。这器官就是冷却系。它让工作中的发动机得到适度的冷却,从而保持发动机在最适宜的温度范围内工作。本文论述了冷却系的作用、组成、主要结构、工作原理、日常维护、故障检测步骤和排除方法。 关键词:冷却系统;过热、过冷的危害;冷却系统维护; 如果一台发动机,冷却系统的维修率一直居高不下,往往会引起发动机其他构件损坏,特别是随着车辆行驶里程的增加,冷却系统的工作效率逐渐下降,对发动机的整体工作能力产生较大影响,冷却系统的重要性在于维护发动机常温下工作,尤如人体的皮肤汗腺,如果有一天,人体的汗腺不能正常工作,那么身体内的热量将无法散去,轻则产生中暑,重则休克。 一、冷却系的组成与作用 (一)作用 冷却系统的功用是带走引擎因燃烧所产生的热量,使引擎维持在正常的运转温度范围内。引擎依照冷却的方式可分为气冷式引擎及水冷式引擎,气冷式引擎是靠引擎带动风扇及车辆行驶时的气流来冷却引擎;水冷式引擎则是靠冷却水在引擎中循环来冷却引擎。不论采何种方式冷却,正常的冷却系统必须确保引擎在各样行驶环境都不致过热。 (二)组成 水冷却系统一般由散热器、节温器、水泵、水道、风扇等组成。散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器又分为横流式和垂直流动两种,空调冷凝器通常与其装在一起。 1.水泵和节温器 发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,推动冷却液在整个系统内循环。目前最先进的水泵是宝马新一代直六发动机上采用的电动水泵,它能精确的控制水泵的转速,并有效的减少了对输出功率的损耗。这些冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。可以将节温器看作一个阀门,其原理是利用可随温度伸缩的材料(石蜡或乙醚之类的材料)做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液

汽车发动机原理课本总结

汽车发动机原理 一、发动机实际循环与理论循环的比较 1.实际工质的影响 理论循环中假设工质比热容是定值,而实际气体比热是随温度上升而增大的,且燃烧后生成CO2、H2O等气体,这些多原子气体的比热又大于空气,这些原因导致循环的最高温度降低。加之循环还存在泄漏,使工质数量减少。实际工质影响引起的损失如图中Wk所示。这些影响使得发动机实际循环效率比理论循环低。 2.换气损失 为了使循环重复进行,必须更换工质,由此而消耗的功率为换气损失。如图中Wr所示。其中,因工质流动时需要克服进、排气系统阻力所消耗的功,成为泵气损失,如图中曲线rab’r 包围的面积所示。因排气门在下止点提前开启而产生的损失,如图中面积W所示。 3.燃烧损失 (1)非瞬时燃烧损失和补燃损失。实际循环中燃料燃烧需要一定的时间,所以喷油或点火在上止点前,并且燃烧还会延续到膨胀行程,由此形成非瞬时燃烧损失和补燃损失. (2)不完全燃烧损失。实际循环中会有部分燃料、空气混合不良,部分燃料由于缺氧产生不完全燃烧损失。 (3)在高温下,如不考虑化学不平衡过程,燃料与氧的燃烧化学反应在每一瞬间都处在化学动平衡状态,如2H2O=2H2+O2等,由左向右反应为高温热分解,吸收热量。但在膨胀后期及排气温度较低时,以上各反应向左反应,同时放出热量。上述过程使燃烧放热的总时间拉长,实质上是降低了循环等容度而降低了热效率。 (4)传热损失。实际循环中,汽缸壁和工质之间始终存在着热交换,使压缩、膨胀线均脱离理论循环的绝热压缩、膨胀线而造成的损失。 (5)缸内流动损失。指压缩及燃烧膨胀过程中,由于缸内气流所形成的损失。体现为,在压缩过程中,多消耗压缩功;燃烧膨胀过程中,一部分能量用于克服气流阻力,使作用于活塞上做功的压力减小。 二、充量系数 衡量不同发动机动力性能和进气过程完善程度的重要指标;定义为每缸每循环实际吸入气缸的新鲜空气质量与进气状态下计算充满气缸工作容积的空气质量的比值。 影响因素: 1.进气门关闭时缸内压力Pa 2.进气门关闭时缸内气体温度Ta 3.残余废气系数 4.进排气相位角 5.压缩比 6.进气状状态 提高发动机充量系数的措施 1.降低进气系统阻力 发动机的进气系统是由空气滤清器、进气管、进气道和进气门所组成。减少各段通路对气流的阻力可有效提高充量系数。(1)减少进气门处的流动损失1)进气马赫数M 不超过0.5受气门大小、形状、升程规律、进气相位等因素影响2)减少气门处的流动损失增大气门相对通过面积,提高气门处流量系数以及合理的配气相位是限制M值、提高充量系数的主要方法。增大进气门直径可以扩大气流通路面积;增加气门数目;改进配气凸轮型线,适当增加气门升程,在惯性力容许条件下,使气门开闭尽可能快;改善气门处流体动力性能。(2)减少进气道、进气管和空气滤清器的阻力

汽车发动机原理名词解释

123发动机理论循环:将非常复杂的实际工作过程加以抽象简化,忽略次要因素后建立的循环模式。 循环热效率:工质所做循环功与循环加热量之比,用以评定循环经济性。 指示热效率:发动机实际循环指示功与所消耗的燃料热量的比值。 有效热效率:实际循环的有效功与所消耗的热量的比值。 指示性能指标:以工质对活塞所作功为计算基准的指标。 有效性能指标:以曲轴对外输出功为计算基准的指标。 指示功率:发动机单位时间内所做的指示功。 有效功率:发动机单位时间内所做的有效功。 机械效率:有效功率与指示功率的比值。 平均指示压力:单位气缸工作容积,在一个循环中输出的指示功。 平均有效压力 me p :单位气缸工作容积,在一个循环中输出的有效功。 有效转矩:由功率输出轴输出的转矩。 指示燃油消耗率:每小时单位指示功所消耗的燃料。 有效燃油消耗率:每小时单位有效功率所消耗的燃料。 指示功:气缸内每循环活塞得到的有用功。 有效功:每循环曲轴输出的单缸功量。 示功图:表示气缸内工质压力随气缸容积或曲轴转角的变化关系的图像。p V -图即 为通常所说示功图, p ?-图又称为展开示功图。 换气过程:包括排气过程(排除缸内残余废气)和进气过程(冲入所需新鲜工质,空气或者可燃混合气)。 配气相位:进、排气门相对于上、下止点早开、晚关的曲轴转角,又称进排气相位。 排气早开角:排气门打开到下止点所对应的曲轴转角。 排气晚关角:上止点到排气门关闭所对应的曲轴转角。 进气早开角:进气门打开到上止点所对应的曲轴转角。 进气晚关角:下止点到进气门关闭所对应的曲轴转角。 气门重叠:上止点附近,进、排气门同时开启着地现象。 扫气作用:新鲜工质进入气缸后与缸内残余废气混合后直接排入排气管中。 排气损失:从排气门提前打开,直到进气行程开始,缸内压力到达大气压力前循环功的损失。 自由排气损失:因排气门提前打开,排气压力线偏离理想循环膨胀线,引起膨胀功的减少。 强制排气损失:活塞将废气推出所消耗的功。 进气损失:由于进气系统的阻力,进气过程的气缸压力低于进气管压力(非增压发动 机中一般设为大气压力),损失的功成为进气损失。 换气损失:进气损失与排气损失之和。 泵气损失:内燃机换气过程中克服进气道阻力所消耗的功和克服排气道阻力所消耗的功的代数和。不包括气流对换气产生的阻力所消耗的功。 充量系数:实际进入气缸内的新鲜空气质量与进气状态下理论充满气缸工作容积的空气质量之比。 进气马赫数M :进气门处气流平均速度与该处声速之比,它是决定气流性质的重要参数。M 反映气体流动对充量系数的影响,是分析充量系数的一个特征数。当M 超过一定数值时,大约在0.5左右,急剧下降。应使M 在最高转速时不超过一定数值,M 受气门大小、形状、生成规律、进气相位等因素影响。 增压比:增压后气体压力与增压前气体压力之比。 增压:利用增压器提高空气或可燃混合气的压力。 增压度:发动机在增压后增长的功率与增压前的功率之比。 4抗爆性:汽油在发动机气缸内燃烧时抵抗爆燃的能力,用辛烷值表示。 干点:汽油蒸发量为100%时的温度。 自然点:柴油在没有外界火源的情况下能自行着火的最低温度。 凝点:柴油失去流动性而开始凝固的温度。 热值:单位量(固体和液体燃料用1kg ,气体燃料用1)的燃料完全燃烧时所发出的热量。当生成的水为液态时,成为高热值,气态时为低热值。无论是汽油机还是柴油机,燃料在气缸中生成的水均为气态,所用热值均为低热值。 理论空气量:1kg 燃料完全燃烧时所需的最少空气量。 过量空气系数:燃油燃烧实际供给的空气量(L )与完全燃烧所需理论空气量()的比值。 空燃比:燃油燃烧时空气流量与燃料流量的比。 5喷油器的流通特性:喷孔流通截面积与针阀升程的关系。 喷射过程:从喷油泵开始供油直到喷油器停止喷油的过程。 供油规律:供油速率随凸轮轴转角(或时间)的变化关系。 喷油规律:喷油速率随凸轮轴转角(或时间)的变化关系。 喷油提前角:燃油喷入气缸的时刻到活塞上止点所经历的曲轴转角。 燃油的雾化:燃油喷入燃烧室内后备粉碎分散为细小液滴的过程。 燃烧放热规律:瞬时放热速率和累积放热百分比随曲轴转角的变化关系。 瞬时放热速率:在燃烧过程中的某一时刻,单位时间内(或曲轴转角内)燃烧的燃油所放出的热量。 累积放热百分比:从燃烧开始到某一时刻为止已经燃烧的燃油与循环供油量的比值。

汽车发动机冷却系统的设计原则

发动机冷却系统的设计原则 (李勇) 水冷式汽车发动机冷却系统一般由散热器、节温器、水泵、缸体水道、缸盖水道、风扇及连接水管、冷却液等组成。我们主机厂主要根据整车布置及发动机功率的要求来选定散热器及各零部件的形状、大小,并合理布置整个冷却系统,保证发动机的动力性、经济性、可靠性和耐久性,从而提高整车的性能。 一、冷却系统的总体布置原则 冷却系统总布置主要考虑两方面,一是空气流通系统;二是冷却液循环系统。因此在设计中必须做到提高进风系数和冷却液循环中的散热能力。 1,提高进风系数。要做到提高进风系数就必须要做到:(1)减小空气的流通阻力,(2)降低进风温度,防止热风回流。 (1)减小空气的流通阻力 设计中应尽量减少散热器前面的障碍物,进风口的有效进风面积不要小于60﹪的散热器芯部正面积;在整车布置允许的前提下,尽可能采用迎风正面积较大的散热器;风扇与任何部件的距离不应小于20mm,这样就可以组织气流通畅排出,可以减少风扇后的排风背压。 (2)降低进风温度, 要合理布置散热器的进风口,提高散热器与车身、发动机舱接合处的密封性,防止热风回流。 (3)合理布置风扇与散热器芯部的相对位置 从正面看,尽量使风扇中心与散热器中心重合,并使风扇直径与正

方形一边相等,这样可以使通过散热器的气流分布最为均匀,或者使风扇中心高一下些,使空气流经散热器上部的高温高效区。 另:考虑发动机振动的因素,风扇和护风罩之间的间隙应该在20mm 以上。 从轴向看,尽可能加大风扇前端面与散热器之间的距离,并合理设计护风罩。要使气流均匀通过散热器芯部整个面积,必须要求风扇与散热器之间保持一定的距离,一般对载货汽车,风扇与散热器芯部之间的距离不得小于50mm。 2,提高冷却液循环中的散热能力 要提高冷却液循环中的散热能力,提高冷却液循环中的除气能力是关键。冷却系统的气体会造成水泵流量下降,使散热器的冷却率下降;还会造成发动机水套内局部沸腾,致使局部热应力猛增,影响发动机性能;在热机停工况,气体还会造成冷却液过多的损失。因此要提高冷却液循环中的除气能力,其措施就是设计膨胀水箱和相应的除气管路(当散热器位置比发动机位置高时,可以在散热器上部直接开一个注水口,并在注水口上用一压力式的散热器盖即可,我厂的农用车型的散热器就是采用此方式进行排气及加水)。 二、散热器的选择 (1)现在我厂基本上全部都采用铜制散热器,芯部结构为管带式的。散热器要带走的热量Q w,按照热平衡的试验数据或经验公式计算:Q w=(A·g e·Ne·h n)/3600 kJ/s 式中: A—传给冷却系统的热量占燃料热能的百分比,对柴油机A=0.18~0.25

汽车发动机冷却系培训课件

汽车发动机冷却系培训课件 本章内容一、概述二、水冷系三、水冷系主要部件的结构和工作原理四、风冷系五、水冷却系常见故障的诊断与排除六、冷却液冷却水的选择软水:环矿物质较少硬水:易产生水垢、而阻塞水道。破坏水的冷却循环,使发动机过热防冻液防冻液成分水冷却系的组成:水套,水泵,散热器,导风圈,水管,水温表,感温器,节温器,百叶窗等。其中最主要的三大部件是:散热器,水泵,风扇。一、水冷系组成水泵节温器补偿水桶(CA1091)散热器风扇水套水温表分水管(492Q)百叶窗强制式水冷系组成大循环路线小循环路线冷却水大小循环散热器(水箱) 1、功用:散热、盛水 2、构造:上、下水室散热器芯:管片式、管带式(6102)散热器盖:复式活门―闭式水冷系膨胀水箱作用:密封冷却系统,减少了冷却液的散失,使冷却系统内水、气分离,保持压力稳定。避免空气不断进入,给冷却系统内部造成氧化、穴蚀。材料:塑料散热器的材料黄铜铝结构:补偿水桶目前大多数发动机都采用了防冻液作为冷却液。防冻液冰点很低,可避免冬季使用中因结冰而导致散热器、缸体和缸盖被胀裂的现象;防冻液的沸点也要比水高,更有利于发动机的正常工作。为防止防冻液的损失,冷却系设置了补偿水桶,对散热器内的防冻液起到自动补偿的作用。补偿水桶设置于散热器一侧,通过橡胶水管与散热器加水口处的出气口相连。当冷却液受热膨胀至散热器盖的蒸气阀打开时,部分冷却液随着高压蒸气通过水管进入补偿水桶;而当温度降低、散热器内产生真空时,补偿水桶内的冷却液及时回流散热器。 ?? 离心式水泵 1、作用:对水加压,强制水的循环 2、泵水原理(离心式)叶轮旋转,边缘甩水,中心真空吸水 3、离心式水泵构造泵壳:进水口与旁通口、出水口(492Q在水泵支架上)检视孔泵轴、叶轮与轴承水封:胶木垫、

汽车发动机冷却系统的发展与现状

汽车发动机冷却系统的发展与现状 发表时间:2017-10-20T14:00:13.917Z 来源:《防护工程》2017年第16期作者:刘洋[导读] 汽车水冷发动机冷却系统主要由发动机冷却水套、冷却水泵、节温器及冷却风扇等部件组成。 国家知识产权局专利局专利审查协作广东中心 摘要:早期的发动机冷却系统虽能满足汽车的基本使用要求,但在满载或者恶劣的环境中容易出现问题。在当今日益重视环境保护、提倡节能和舒适性的情况下,发动机的结构、性能和汽车整体性能都有很大的发展,冷却系统正朝着轻型化、紧凑化和智能化的方向发展。为此,重点介绍了国内外汽车发动机冷却系统的研究及发展情况,并做了简要分析。 关键词:冷却系统;冷却介质;冷却机理 1发动机冷却系统向智能化方向发展 发动机冷却系统是汽车的重要构件。汽车水冷发动机冷却系统主要由发动机冷却水套、冷却水泵、节温器及冷却风扇等部件组成。传统冷却系统采用的是冷却风扇或离合器式冷却风扇,两种风扇均由发动机曲轴通过皮带驱动,其冷却调节的灵敏度不高,功率损失也很大。为解决这个问题,就出现了自控电动冷却风扇。2冷却系统的冷却介质 目前,发动机广泛采用液态水作冷却液。水作为内燃机冷却系统的冷却介质具有很多优点:在性能方面,它性能稳定、热容量大、导热性好、沸点较高;在经济性能方面,它资源丰富、容易获取。但另一方面,水作为冷却介质也存在着两个较大的缺点:一是冰点高,在0℃时结冰,造成冬季使用困难;二是水具有一定的腐蚀性,对发动机冷却系统有损害作用。另外,水做冷却液的冷却系统,体积较庞大,不利于汽车内部结构的优化和整体质量的减少,增加了发动机功率的额外消耗。天然水中一般都含有部分矿物盐类(MgCl2、Ca(HCO3)2等),当水在发动机冷却系统内受热时,碳酸盐会在冷却系的壁上形成很难除去的水垢。导热性能很差。当水垢聚积过多时,会使发动机冷却性能恶化而导致过热。另外,溶解在水中的某些盐类(如MgCl2)在受热时产生水解作用,生成Mg(OH)2和HCl。其中HCl是一种腐蚀性很强的酸。因此,当水中含矿物盐类过多时,对发动机的冷却系统是很不利的。为了防止水垢的产生和水的腐蚀作用,在冷却水中加入了防腐蚀剂(重铬酸钾K2Cr2O7);为了解决水在0℃时结冰的问题,一般采用防冻液来作冷却液,常见的有丙稀二醇、甘醇、硅酸盐、有机酸等。3冷却系统向高效低能耗方向发展 发动机冷却系统效率的提高主要从两个方面来实现:其一,新材料的应用及部件结构的新设计;其二,部件的智能驱动方式。传统冷却系统中,风扇和水泵的效率普遍不高,造成大量能源的浪费。为提高冷却风扇的效率,用塑料翼形风扇取代圆弧型直叶片冷却风扇。从气体动力学的角度分析,翼形风扇能够改善风扇流场,提高风扇的效率和静压,使风扇高效区变宽;另外,塑料表面的光洁度较高。传统的冷却风扇由发动机驱动,装风扇的发动机与装有风罩的散热器必须分别用弹性支座固定在车架。为避免在汽车运行中因振动而引起风扇与风罩相碰,风扇叶轮与风罩的径向间隙的设计数值大于20mm,这必然大幅度降低风扇的容积效率。风扇的总效率取决于容积效率、机械效率和液力效率的乘积,即 η总 ??η机 ??η容 ??η液。传统风扇叶片采用薄钢板冲压而成,其液力效率 η液较低,又加上皮带传动存在打滑损失,其机械效率 η杨也不高,从而导致传统冷却风扇的总效率只有30%左右。采用电控风扇,由电机直接驱动风扇,与原来的皮带传动相比,机械效率 η机提高了。电控冷却风扇完全脱离发动机,与风罩、散热器安装为一体,保证了风扇与风罩的同心度,进一步减小了径向间隙,导致风扇容积效率 η容大幅度提高;另外,采用翼形端面塑料和流线型风罩,使风扇气流入口形成良好的流线型气流,可提高风扇的液力效率 η液,综合各项措施最终使电动风扇的效率达到78%。4冷却系统新的冷却机理 上世纪70年代,美国、日本和英国等国家提出了“绝热发动机”,其基本思路是对组成发动机燃烧室的零部件表面,喷涂耐高温的陶瓷覆层或使用陶瓷零部件,从而大大减少散热损失。经过20年的研制,绝热发动机在高温陶瓷零件(镶块或涂层)方面取得了较大的成功[7、8]。绝热发动机(无外部冷却装置)的整机热效率接近40%,复合式绝热发动机的整机热效率达到了40%以上[9]。这种以高度隔热层为主要手段的绝热发动机的有效热效率,较同类常规发动机(水冷或风冷)高出5%~15%。虽然绝热发动机提高了整机热效率和功率,同时降低了成本,但受材料和镶涂工艺的限制,还不能在普通车辆上使用,而且在高温条件下,发动机的润滑机油粘度降低,润滑效果变差,需要安装专门的散热装置;另外,气缸的充气效率会降低5%~10%。因此,还需要进一步研究新的冷却技术。 上世纪80年代,德国的Elsbett公司研制了一种新型车用发动机[10],它采用新的燃烧系统与新的冷却系统相结合的方式,以传热系数低的普通金属材料和巧妙的结构设计,大幅度减少了散热损失,取消了外部冷却装置。该机新的燃烧系统减少散热的原理是在球型燃烧室中有强烈的空气涡流,在离心力的作用下,沿燃烧室壁形成一层相对较冷的空气区,“旋流式喷油器”喷出一股雾化锥角很大、射程近、射速慢的空心涡流雾锥[11~13]。这股油雾随空气涡流旋转,不与燃烧室壁接触,在燃烧室中心混合燃烧,形成了热的燃烧中心—“热区”和周边温度较低的冷却空气层—“冷区” 这种燃烧系统。有“冷区”包围着“热区”,从而使燃烧室壁接受和传出的燃烧热量大为减少。Elsbett发动机在此基础上进行了进一步减少传热损失的设计[14],选用铸铁做活塞顶;将活塞环按内腔设置隔热槽,以截断热流通道,减少传向环槽的热量。上述3项措施使燃烧经活塞传到气缸壁的热量下降了一个数量级;加上以机油循环冷却气缸盖内腔和缸体上部的油道,用机油喷射冷却活塞内腔,实现了无水冷强制风冷的新的冷却机理。目前,还出现了发动机常规冷却机理中的强化冷却措施,如活塞的“内油冷”、排气门的“钠冷”以及喷油嘴的“内油冷”等内冷技术[15]。另外,采用的一些节油技术也具有内部冷却的功能[15],如乳化柴油、进气喷水、进气引汽、代用燃料冷却和过量空气冷却等。 5结论 (1)冷却系统实现智能化,工作协调性增强。

汽车发动机冷却系统毕业论文

河南职业技术学院 毕业设计(论文) 题目浅谈汽车发动机冷却系统系(分院)汽车工程系 学生姓名***** 学号***** 专业名称汽车电子 指导教师**** 年月日

浅谈汽车发动机冷却系统 摘要冷却系统是发动机的重要组成部分,对发动机的动力性、经济性和可靠性有很大影响。随着发动机转速和功率的不断提高,对冷却系统的要求越来越高,因而对发动机冷却系统的设计与研究也愈来愈深入。汽车发动机的冷却系统是保持发动机正常工作的重要部件,如果发动机冷却系统的维修率很高,就会引起发动机其他部件的损坏,使发动机的整体工作能力受到影响,因此,汽车发动机冷却系统的维护与保养就显得尤为重要。 关键词:冷却系统冷却系统维护故障诊断案例分析 1 冷却系统的组成 水冷却系统一般由散热器、节温器、水泵、水道、风扇等组成。散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器又分为横流式和垂直流动两种,空调冷凝器通常与其装在一起。 水泵和节温器 发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,推动冷却液在整个系统内循环。目前最先进的水泵是宝马新一代直六发动机上采用的电动水泵,它能精确的控制水泵的转速,并有效的减少了对输出功率的损耗。这些冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。可以将节温器看作一个阀门,其原理是利用可随温度伸缩的材料(石蜡或乙醚之类的材料)做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液小循环。 空气的流动 为了提高散热器的冷却能力,在散热器后面安装风扇强制通风。以前的轿车散热器风扇是由曲轴皮带直接带动的,发动机启动它就要转,不能视发动机温度变化而变化,为了调节散热器的冷却力,要在散热器上装上活动百页窗以控制风力进入。现在已经普遍使用风扇电磁离合器或者电子风扇,当水温比较低时离合器与转轴分离,

汽车发动机原理考试复习

第二章 三种循环: 发动机有三种基本理论循环,即定容加热循环、定压加热循环和混合加热循环。发动机的循环常用示功图来说明 理论循环是用循环热效率和循环平均压力来衡量和评定的。 循环热效率是工质所做循环功W(J)与循环加热量Q1(J)之比,用以评定循环的经济性。循环平均压力pt(kPa)是单位气缸工作容积所做的循环功,用以评定发动机的循环做功能力。四冲程发动机的实际循环是由进气压缩做功排气四个行程所组成. 理论循环与实际循环比较: 1实际工质的影响 (实际工质影响引起的损失:理论循环中假设工质比热容是定值,而实际比热容是随温度的升高而上升,且燃烧后生成CO2,和H2O等多原子气体,这些气体的比热容又大于空气,使循环的最高温度降低.由于实际循环还存在泄漏,合工质数量减少,这意味着同样的加热量,在实际循环中所引起的起压力和温度的升高要比理论循环要低得多,其结果是循环热效率底,循环所做的功减少.) 2换气损失 (换气损失:燃烧废气的排出和新鲜空气的吸入是使循环重复进行所必不可少的,由此而消耗的功为换气损失。) 3燃烧损失 (非瞬时燃烧损失和补燃损失:实际循环中燃烧非瞬时完成,所以喷油或点火在上止点之前,并且燃烧还会延续到膨胀行程,由此形成非瞬时燃烧损失和补燃损失。 提前排气损失,实际循环中会有部分燃料由于缺氧产生不完全燃烧损失,在高温度下部分燃烧产物分解而吸热,使循环的最高温度下降,由此产生燃烧损失。) 4传热损失 (传热、流动损失:实际循环中,气缸壁和工质间自始至终存在热交换。 综上,实际循环热效率低于理论循环。) 发动机的指示指标评定,概念: 发动机的指示性能指标是指以工质对活塞做功为计算基础的指标,简称指示指标。 表示循环动力性、经济性。 发动机的有效指标 以曲轴输出功为计算基础的性能指标,称有效指标。 有效指标被用来直接评定发动机实际工作性能的优劣。 代表发动机的整机性能。 第三章 换气过程阶段、特点、特征 四冲程发动机的换气过程包括从排气门开启到进气门关闭的整个时期。约占410o~ 480o曲轴转角。 换气过程可分作自由排气、强制排气、进气和燃烧室扫气四个阶段。 (1自由排气阶段,从排气门开启到气缸压力接近于排气管内压力的时期 超临界状态流动:从排气门开启到活塞行至下止点所对应的曲轴转角称为,一般为30o~80o曲轴转角。此时气缸内废气压力较高,约为0.2-0.5MPa,气缸压力p与排气管压力pr之比大于临界值1.9。排气流动处于超临界状态,流速为当地声速c(m/s)。此阶段,废气流量

发动机冷却系试题____答案

冷却系统试题 一、填空题 1.发动机的冷却方式一般有 和 两种。 2.发动机冷却水的最佳工作温度一般是 ℃。 3.冷却水的流向与流量主要由 来控制。 4.水冷系冷却强度主要可通过 、 、 等装置来调 节。 5.解放CA6102型发动机水泵采用 水封,其动环为 件,装于 ,静环为 件,装于 。 6.散热器芯的结构形式有 和 两种。 7.解放CA6102型发动机冷却系大循环时,冷却水主要由水套经 、 、 而又流回水套。小循环时,冷却水主要由水套经 、 、 流回水套。 8.强制冷却水在发动机内进行循环的装置是 。 9.发动机冷却系的风扇通常是由 来驱动的。 10.闭式水冷系广泛采用具有 的散热器盖。 11.百叶窗是通过改变 来调节发动机的冷却强度。 二、解释术语 1.冷却水小循环 2.冷却水大循环 3.自动补偿封闭式散热器 4.风冷系 5.水冷系 6.强制循环式水冷系 三、判断题(正确打√、错误打×) 1.发动机在使用中,冷却水的温度越低越好。 ( ) 2.风扇工作时,风是向散热器方向吹的,这样有利于散热。 ( ) 3.任何水都可以直接作为冷却水加注。 ( ) 4.采用具有空气-蒸气阀的散热器盖后,冷却水的工作温度可以提高至 100℃以上而不“开锅”。

( ) 5.发动机工作温度过高时,应立即打开散热器盖,加入冷水。 ( ) 6.蜡式节温器失效后,发动机易出现过热现象。 ( ) 7.蜡式节温器的弹簧,具有顶开节温器阀门的作用。 ( ) 8.硅油风扇离合器,具有降低噪声和减少发动机功率损失的作用。 ( ) 9.膨胀水箱中的冷却液面过低时,可直接补充任何牌号的冷却液。 ( ) 10.风扇离合器失效后,应立即修复后使用。 ( ) 11.硅油风扇离合器中的硅油主要用来润滑离合器。( ) 12.发动机的风扇与水泵同轴,是由曲轴通过凸轮轴来驱动的。() 四、选择题 1.使冷却水在散热器和水套之间进行循环的水泵旋转部件叫做( )。 A、叶轮 B、风扇 C、壳体 D、水封 2.节温器中使阀门开闭的部件是( )。 A、阀座 B、石蜡感应体 C、支架 D、弹簧 3.冷却系统中提高冷却液沸点的装置是( )。 A、水箱盖 B、散热器 C、水套 D、水泵 4.水泵泵体上溢水孔的作用是( )。 A、减少水泵出水口工作压力 B、减少水泵进水口工作压力 C、 及时排出向后渗漏的冷却水,保护水泵轴承 D、便于检查水封工作 情况 5.如果节温器阀门打不开,发动机将会出现( )的现象。 A、温升慢 B、热容量减少 C、不能起动 D、怠速不稳定 6.采用自动补偿封闭式散热器结构的目的,是为了( )。 A、降低冷却液损耗 B、提高冷却液沸点 C、防止冷却液温度过 高蒸汽从蒸汽引入管喷出伤人 D、加强散热 7.加注冷却水时,最好选择( )。 A、井水 B、泉水 C、雨雪水 D、蒸馏水 8.为在容积相同的情况下获得较大散热面积,提高抗裂性能,散热器冷 却管应选用( )。

汽车发动机冷却系统的构成及故障维修

汽车发动机冷却系统的构成及故障维修 发表时间:2018-07-09T11:25:44.923Z 来源:《基层建设》2018年第12期作者:张景辉 [导读] 摘要:当汽车发动机冷却系统出现运行问题的时候,汽车的使用价值以及汽车使用者经济效益受到很大程度的影响。 贵州省凯里汽车运输[集团]有限责任公司 摘要:当汽车发动机冷却系统出现运行问题的时候,汽车的使用价值以及汽车使用者经济效益受到很大程度的影响。当汽车发动机冷却系统出现问题时,应该第一时间对出现的问题进行分析,对比各种应对方式,从中选择最为合适的维修方案。因此,本文从汽车发动机冷却系统的基础构成出发,分析了发动机冷却系统故障检测阶段应该注意的要点以及当前比较实用的维修方法,旨在推动汽车发动机冷却系统检测与维修技术的进一步发展。 关键词:汽车发动机;冷却系统构成;故障检测 一、汽车发动机冷却系统的构成 在对汽车发动机冷却系统进行维护之前,我们需要充分了解汽车发动机冷却系统的组成。节温器、水泵、散热器、散热水扇、蓄液罐和水温感应器是冷却系统系统结构的重要组成部分。同时,冷却液在冷却系统中充当冷却介质。节温器是冷却系统的主要温度控制结构。在测量环境温度后,节温器自动调节冷却液流动阀门,使汽车冷却系统处于最佳状态,从而让汽车正常运行。水泵是发动机冷却系统介质循环提供动力的来源,确保冷却液的循环流动。散热器是发动机冷却系统中重要的热量交换部件。散热器具有很好的散热效果,通过利用冷却风扇和车辆运动的气流达到冷却液降温的目的。散热风扇也是有促进冷却液降温的目的,通常会在汽车慢速或者原地运行的时候开动。水温感应器是测量汽车冷却系统的部件。在进行温度测量后,会把相应结果反映给其他部件,然后完成其他的动作。蓄液罐则是冷却液的重要储存结构,它会不断补充冷却物质。最后,冷却液是一种热量传导介质,它是汽车发动机冷却系统的主要部分。在发动机冷却系统工作的过程中,冷却液带走多余的热量,使得发动机更好的正常工作。水、防冻液、止锈成分是冷却液的组成成分。 二、汽车发动机冷却系统的维护 (一)冷却系渗漏的检查 检测仪是检查冷却系渗漏的检查装置。为了防止冷却系渗漏,需要把检测仪安装在膨胀水箱盖上。通过水泵给予适当的压力,若压力出现下降的情况,我们就必须进行及时地检查,找出渗漏处并且及时排除。注意在用手动泵来升高压力的时候,不要忘记打开限压阀。(二)冷却液液面高度的检查 在发动机静止状态、储液罐旋盖关闭的状态下,我们对冷却液液面高度进行仔细检查。一般情况下,冷却液液面会在上刻度线和下刻度线之间。如果汽车发动机处于热的状态下,液面高度可能会稍高。如果冷却液液面高度过低的情况下,温度信号灯会不停地闪烁,作为提醒。这时,应该立即检查渗漏的地方。 (三)冷却系统积垢清除 在车辆的运行过程中,冷却循环系统中生成的水垢是其散热效能降低的重要因素,目前在清除水垢时通常通过相应除垢加剂的使用完成清理。在清理过程中,应使用酸性溶液完成初步清洁,继而添加碱性溶液进行中和清洗,整个过程应通过水泵提供一定压力提高除垢剂对循环系统的冲刷作用。对于部分散热器积垢过于严重,除垢剂化学清理效果不理想的情况下,可适当拆除冷却液循环部件,使用通条进行水垢的机械清除。 (四)散热器的修理 如上所述,散热器泄漏是该结构的主要故障形式,而修理此类故障的主要方法为焊修法和堵漏法。焊修法主要适用于渗漏问题较为严重的散热器故障,多为碰撞、穿击等损害面积较大的情况。而当散热器的裂纹较小(通常低于0.3mm)的情况下,使用堵漏法进行修理则更为经济。堵漏法修理过程如下:加入碱性添加剂完成散热器内部清理,在运行温度80℃条件下运转5分钟,而后排出碱水,使用清水进行二次清理。清洁完毕后,拆除节温器,将堵漏剂以1∶20的比例加入水中,起动发动机,水温升到80~85℃持续运转1.0min,为了使堵漏剂尽可能发挥效用,应使其在冷却循环系统中停留一定时间。修复完成后,应对散热器进行必要的渗漏试验,确认不再出现渗漏问题后,车辆才能启动行驶。 三、汽车发动机冷却系统的故障维修 (一)发动机冷却液温度过高 发动机过热止最为主要的冷却故障,对车辆运行与能耗的影响也更为直接。当出现冷却液温度过高问题时,首先通过检查进行问题分类,区分是温度传感器测量问题,还是系统元器件性能问题下。检测的方法如下:使用红外线测温仪测量冷却系统实际温度、水温表指示的温度和使用检测仪读取的冷却液温度数据,若与水温表指示的温度相差较大,则说明水温表损坏;若测温仪测量的实际温度与检测仪检测的冷却液温度数据和水温表指示数据均相差较大,则说明是冷却系统散热性能下降导致冷却液温度上升。 根据检测结果,如果是冷却液传感器或水温表损坏,更换损坏部件故障就排除了;如果是冷却系统散热性能下降,就需要对冷却系统进一步检测。依据从简单到复杂,由外到内的检测原则,先检查电子扇是否工作,再用红外线测温仪检测散热器的上下水管温度,如果上下水管温差较大,说明水泵或节温器已经损坏。 (二)冷却系温度过低 由于汽车发动机冷却系统温度过低,所以常常出现一些故障现象。例如发动机乏力,排气管有放炮声;水温表指示刻度低于发动机正常温度;发动机长时间运转后依旧比正常温度低。分析原因后,发现可能有以下几种原因:①温控开关、风扇电机线路故障。②硅油离合器故障。③水温传感器故障。④节温器阀门经常打开。⑤百叶窗一直打开。⑥水温表和线路发生损坏。针对冷却系温度过低的情况,我们需要对其进行故障排除诊断和维修。首先,检查百叶窗是否处于关闭状态。当发动机冷态开始后打开水箱盖,观察水流速度和流量。如果流速过快流量过大的话则应该安装或者更换节温器。观察水温表,若显示温度过低,但是用温度计进行测量却是正常的,这种现象说明水温表或者水温传感器有故障。冷车启动发动机后,如果硅油离合器风扇高速转动的话,说明硅油离合器有损坏,应该更换硅油离合器。同时,如果电动风扇运转的话,说明电动风扇也应该进行更换。 (三)冷却液消耗异常 冷却液消耗异常的一般表现是冷却液消耗过快。分析原因:①水管破坏。②散热器泄露。③膨胀水箱盖泄露。④排气阀失灵,散热器

相关文档
最新文档